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Featured Application: The technique described herein is a method for linearizing the frequency
modulation error of a Frequency-Modulated/Continuous Wave (FMCW) radar as part of range
migration processing when forming SAR images that results in no additional computation cost.

Abstract: Linear FMCW radar suffers from impairments in range and range rate if there are errors in
the modulation rate or phase discontinuities. Often, this is a result of a nonlinearity of the voltage-
controlled oscillator that is in the source of the transmit and receive local oscillator. The nonlinearity
can be corrected at the source by using a nonlinear control voltage or by processing the received beat
frequency. Any signal processing using the later method leads to computation time and energy costs,
which can be considerable in some applications. When the range migration algorithm using the Stolt
Transform is used for Synthetic Aperture Radar (SAR) image processing, the autofocus linearization
technique described here costs nothing in additional hardware or computation time.

Keywords: autofocus; FMCW; radar; range migration; Stolt transform; nonlinear error

1. Introduction

Much has been written about FMCW radar, especially using linear modulation [1–4].
These can be seen in block diagram Figure 1a, and in Figure 1b, which shows an example
waveform where the desired modulation is a linear ramp from 400 MHz to 800 MHz

The transmitted frequency during a single linear sweep is

ωt(t) =
d
dt

θt(t) = 2π mot + ωo (1)

where
θt(t) = π mot2 + ωot + ϕ

is the instantaneous transmit phase, mo is the modulation slope in Hz/s, t is time, ωo is
the frequency offset at the beginning of the ramp in rad/s, and ϕ is a constant phase angle
in radians.

The phase of the received signal from a single point scatterer at a delay θr, is

θt(t) = π mo(t + τ)2 + ωo(t + τ) + ϕ (2)

where θr(t) is the transmit or receive phase as a function of time, and τ is the round-trip
time delay for a single point target. The received signal is a time delayed version of the
transmit signal due to a radar scattering object. The transmit and receive signals are mixed
and the baseband difference signal is kept for further processing.

θδ(t) = θr(t)− θt(t) =
(

πmoτ2 + ωoτ
)
+ 2πmotτ + ωoπ (3)
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The discrete phase as sampled as In phase and Quadrature phase baseband signals
can be expressed as

θδ(n) = 2πmonTτ + ωo

(
πmoτ2 + ωoτ

)
+ π (4)

where T is the sample period and n is the sample number. The frequency of the baseband
signal is

ωδ =
d
dt

θδ(t) = 2πmoτ (5)

which would show up as a peak after taking the Fourier Transform of the sampled data.
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rected, defocusing in Synthetic Aperture Radar (SAR) images becomes worse, especially 
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Loop [7–9], or Surface Acoustic Wave filter reference path delay [10,11]. Some methods 
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Figure 1. (a) FMCW radar block diagram and (b) example waveforms.

It is also known that nonlinearity in the modulation, i.e., replacing mo with m(t),
results in a baseband frequency that is not constant over the modulation ramp. This is a
common problem in FMCW radar where the signal source is a voltage-controlled oscillator
(VCO), and does not have a linear voltage to frequency characteristic. If left uncorrected,
defocusing in Synthetic Aperture Radar (SAR) images becomes worse, especially at large
squint angles and wide bandwidths.

Solutions have been proposed and proven to compensate or correct for nonlinearities.
These solutions require additional hardware such as a delay line [5,6], a Phase-Locked
Loop [7–9], or Surface Acoustic Wave filter reference path delay [10,11]. Some methods
require additional digital signal processing of the Intermediate Frequency (IF) [12–14].
The method described here utilizes phase resampling and integrates this with the Stolt
interpolation in the Range Migration Algorithm.

2. Linearization Method
2.1. Linearization Using Resampling

Some promising solutions to correct single pulse data are time resampling [15,16]
and phase resampling [17]. In terms of discrete samples, the phase of the baseband signal
is given by Equation (4) above. If there were no modulation error, the change in the
baseband phase would be only due to round-trip delay of a single point-target and the
modulation slope

∆θ = 2πmoTτ (6)

When there is modulation error, phase differs from sample-to-sample. The nth sample
is given by:

∆θ + ϕn = 2π(mo + εn)Tτ (7)

where εn is the error in modulation slope at the time of the nth sample and ϕn is the phase
error at the nth sample. The error term is

ϕn = 2π(εnT)τ (8)
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which reduces to one error vector, (εnT), that can be expressed as a modulation error or a
sample time error.

Time resampling, by interpolation, of each range profile effectively compensates for
the phase error for at the cost of computation time [15,16]. Time resampling ratio can be
fixed or optimized using phase error and the largest range of interest [17] by the least
squares fit at calibration time.

Autofocus method as described by Middleton et al. [18] is accomplished by a measure-
ment of a calibration target at a known range. The baseband signal should be a sinusoid,
and the phase error is extracted. Note that the phase error is a function of time delay. Ob-
jects will be more out of focus the farther they are from the calibration range. Scatterers at
different ranges would need a scaled version of this phase correction. A different matched
filter can be applied to each range bin, but is not effective for practical scenes that include
clutter and multiple objects.

2.2. Range Migration Algorithm in SAR Imagery

The Range Migration Algorithm (RMA) here has been previously described [19,20].
Consider an ideal SAR image and geometry in Figure 2 with the following properties:
(1) the aperture is a straight line; (2) radar data are sampled at uniform intervals; (3) the
image scene is broadside and centered on the aperture; (4) the radar antenna illumination
is a constant amplitude plane wave.
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Figure 2. SAR Imagery and scene geometry (a) SAR image processing (Purdue), (b) SAR image
processing (sandia.gov, accessed on 20 October 2020).

At the beginning of RMA processing, the collected SAR signal history is range com-
pressed, match filtered, and compensated for range skew if the data are from a pulse radar.
This is not necessary for FMCW radar data. Then, range curvature is removed for scatterers
at the center of the scene. This range curvature is recognized in the range profile as an arc
with a quadratic phase characteristic.

The RMA operates on the two-dimensional complex phase space S(kx,kr) where kr is
the range phase space and kx is the along-track phase space, if range compressed pulse
data would require transformation to the phase domain by a Fourier Transform (FT) on the
pulse-by-pulse data. The sampled data of an FMCW radar are already in terms of sampled
phase, kr, but should be windowed for a suitable method such as a Hamming window. If
these data represent real only phase history, it is necessary to transform this into complex
data by techniques such as a Hilbert transform or by an Inverse Fourier Transform (IFT) on
the one-sided result of a Fourier Transform (FT). Finally, a one-dimensional FT taken in
cross-range will yield the kx along-track phase space.

The second step is the application of a two-dimensional matched filter. This operation
corrects for range curvature of all scatterers at the same range as the scene center. The
phase of this two-dimensional matched filter is given by:

Φm f (kr, kx) = −Rskr + Rs

√
k2

r − k2
x (9)

sandia.gov
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where Rs is the slant-range to the center of the scene as shown in Figure 3 above. For
scatterers at slant-ranges other than Rs, some curvature will remain.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 9 
 

The second step is the application of a two-dimensional matched filter. This opera-
tion corrects for range curvature of all scatterers at the same range as the scene center. The 
phase of this two-dimensional matched filter is given by: Φ 𝑘 , 𝑘 = 𝑅 𝑘 𝑅 𝑘 𝑘  (9)

where Rs is the slant-range to the center of the scene as shown in Figure 3 above. For scat-
terers at slant-ranges other than Rs, some curvature will remain. 

 
Figure 3. SAR geometry details (asf.alaska.edu accessed October 2020). 

For an ideal linear FM/CW radar, a point scatterer on the center line of the scene at 
Rs is a sinusoid in the kr coordinate at every point along track corrodent kx in the (kx,kr) 
domain. However, point scatterers at other ranges would have some residual curvature, 
i.e., the sinusoid stretches (in cases where the target slant-range is less than Rs), or com-
presses (if the slant-range is greater that Rs) as the user traverses in the kx direction. On top 
of this curvature is the phase-error caused by a nonlinear VCO in the FMCW radar con-
sidered here. 

The Stoltz transformation corrects this their residual curvature described above 
[21,22]. This transform is a convenient mechanism to also correct for phase-error. The 
Stoltz transform is a one dimensional mapping of (kx,kr) domain space into (kx,kγ) space by 𝑘 = 𝑘 𝑘  (10)

This is implemented by interpolation, so the result is uniformly spaced samples kr 
remain uniformly spaced in kγ. If not, the resultant pixel size would vary in range across 
the image. 

The final step in Range Migration Algorithm (RMA) is a two-dimensional Fourier 
transform that result in an image in range and cross-range. This would result in a well-
focused image for an ideal radar. 

2.3. Linearization in RMA SAR Processing 
In practice, the phase error in Equation 8 above, as determined by a calibration target, 

only applies to scatterers in a Synthetic Aperture Radar (SAR) scene at the same slant 
range. The RMA process offers an opportunity to correct for the range-dependent phase 
error: in calculation and application of the matched filer Equation (9) or in the Stolt trans-
form and subsequent interpolation of kγ. By realizing that kr is: 𝑘 = 𝑘 𝑘 𝑘  (11)

where ke is the phase correction factor measured with a calibration target in Equation (8) 
and equal to 
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For an ideal linear FM/CW radar, a point scatterer on the center line of the scene
at Rs is a sinusoid in the kr coordinate at every point along track corrodent kx in the
(kx,kr) domain. However, point scatterers at other ranges would have some residual
curvature, i.e., the sinusoid stretches (in cases where the target slant-range is less than Rs),
or compresses (if the slant-range is greater that Rs) as the user traverses in the kx direction.
On top of this curvature is the phase-error caused by a nonlinear VCO in the FMCW radar
considered here.

The Stoltz transformation corrects this their residual curvature described above [21,22].
This transform is a convenient mechanism to also correct for phase-error. The Stoltz
transform is a one dimensional mapping of (kx,kr) domain space into (kx,kγ) space by

kγ =
√

k2
r − k2

x (10)

This is implemented by interpolation, so the result is uniformly spaced samples kr
remain uniformly spaced in kγ. If not, the resultant pixel size would vary in range across
the image.

The final step in Range Migration Algorithm (RMA) is a two-dimensional Fourier
transform that result in an image in range and cross-range. This would result in a well-
focused image for an ideal radar.

2.3. Linearization in RMA SAR Processing

In practice, the phase error in Equation (8) above, as determined by a calibration target,
only applies to scatterers in a Synthetic Aperture Radar (SAR) scene at the same slant range.
The RMA process offers an opportunity to correct for the range-dependent phase error: in
calculation and application of the matched filer Equation (9) or in the Stolt transform and
subsequent interpolation of kγ. By realizing that kr is:

kγ =
√

k2
r − k2

x − ke (11)

where ke is the phase correction factor measured with a calibration target in Equation (8)
and equal to

ke =
2 (∆r)

Rc
ϕn (12)

The interpolation operation expressed by Equation (10) must be performed in the
RMA image formation process, the addition of the phase correction term Equation (12)
results in little to no cost in computation time or memory.

The calibration target at a distance Rc from the radar and ∆r is the range resolution.
The term ke can be interpreted as the incremental phase error imposed by each range cell in

asf.alaska.edu
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turn and correcting for the roundtrip propagation. Keep in mind that the terms kγ, kx, and
ke are 1 by N arrays, where N is the number of data samples for each ramp (i.e., fast time).

3. Experimental Results

This technique was applied to 2.4 GHz FWCW SAR data taken with a low-cost radar
and platform constructed by the authors in the same way as the previously published
coffee-can radar [23]. The radar Voltage Controlled Oscillator (VCO) was purposefully
driven over a bandwidth of 1.1 GHz, well outside its linear region. The radar was mounted
on a cart and pushed along a straight line at a constant speed. Data were collected by a
laptop and saved as a wave file.

In the first experiment presented here, three corner reflectors were placed approx-
imately 12 m apart, 5.5 m from the broadside track of the radar, as shown in Figure 4.
SAR images were formed by taking the sampled data of one pass along a 50-m-long track
marked ‘Radar Path’ in Figure 4. Data were stored and post-processed to form the SAR
images shown here.
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Figure 4. Diagram of the test setup of three corner reflectors and the radar synthetic aperture
superimposed on a satellite photo of the location.

The sampled ‘IF’ voltage from one modulation ramp every 3.5 cm along the synthetic
aperture was windowed with a Hanning window. Next a cross track Fast Fourier Transform
(FFT) was calculated that resulted in the S(kx,kr) space. The RMA algorithm was used on
that data without attempting to correct for modulation error. Figure 5 below shows the
resultant image. The three corner reflectors stand out as the three bright returns but show
considerable broadening in range due to the nonlinearity of the modulation.
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To use the technique described here, using Equation (11) in the RMA, the phase error
ke can be found by autofocusing on one of the corner reflectors in the image by the same
technique as described by phase resampling [21].

The corner reflector labeled as number 1 in Figure 4 was used as the calibration
target to find the frequency and phase error shown in Figure 6. This phase error ϕn is
used in Equation (12) to find ke. This was then used as Equation (11) was substituted for
Equation (10) in the Range Migration algorithm and Stolt Transform.
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Figure 7a below shows a close up of the calibration reflector before error correction
and Figure 7b shows two SAR images of one corner reflector before and after phase error
correction using the technique described here. Figure 5 shows the image power of a range
slice through the center of the peak.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 9 
 

  
(a) (b) 

Figure 7. SAR image of first corner reflector (a) before phase correction and (b) after phase correction. 

Figure 8 below shows the range profiles as a slice of the images through the peak at 
approximately 12 m from the center of the image. The uncorrected range profile is wide 
and contains multiple sidelobes. After the correction, the theoretical range resolution is 
achieved. Figure 9 shows the whole corrected image of all three corner reflectors showing 
that all have benefited from phase correction. 

 
Figure 8. Range compressed data of a point target before and after correction. 

Figure 7. SAR image of first corner reflector (a) before phase correction and (b) after phase correction.

Figure 8 below shows the range profiles as a slice of the images through the peak at
approximately 12 m from the center of the image. The uncorrected range profile is wide
and contains multiple sidelobes. After the correction, the theoretical range resolution is
achieved. Figure 9 shows the whole corrected image of all three corner reflectors showing
that all have benefited from phase correction.
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Figure 9. Radar image after correction.

4. Conclusions

FMCW radars often suffer from nonlinear frequency modulation, which reduces the
range resolution and image quality when used in a synthetic aperture radar. Previously
reported methods of linearizing the modulation for SAR applications resulted in: (1) addi-
tional hardware; (2) an increase in the computational load; and (3) are only effective over a
limited range extent.

The technique presented here results in little to no computational cost when the Range
Migration Algorithm is used because the correction is a simple sum before the interpolation
process needed by the Stolt transform. Once found, the phase correction applies to the full
range extent that is expected from the Stolt transform. Given the fact that the phase error
is found from experimental data using a calibration target, the anytime the modulation
characteristics of the VCO, such as temperature or power supply voltage, the calibration
will no longer be valid. The extent of the degradation will depend on the VCO’s response
to these changes and the severity of the modulation error.
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