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Abstract: To provide more accurate and stable recommendations, it is necessary to combine display
information with implicit information and to dig out potential information. Existing methods only
consider explicit feedback information or implicit feedback information unilaterally and ignore the
potential information of explicit feedback information and implicit feedback information, which is
also crucial to the accuracy of the recommendation system. However, the traditional Heterogeneous
Information Networks (HIN) recommendation ignores the attribute information in the meta-path and
the interaction between the user and the item and, instead, only considers the linear characteristics
of the user-object often ignoring its non-linear characteristics. Aiming at the potential information
acquisition problem from assorted feedback, we propose a new top-N recommendation method
MFDNN for Heterogeneous Information Networks (HINs). First, we consider explicit and implicit
feedback information to determine the potential preferences of users and the potential features
of the product. Then, matrix factorization (MF) and a deep neural network (DNN) are fused to
learn independent feature embeddings through MF and DNN, and fully considering the linear and
non-linear characteristics of the user-object. MFDNN was tested on several real data sets, such as
Movie-Lens, and compared with benchmark experiments. MFDNN significantly improved the hit
ratio (HR) and normalized discounted cumulative gain (NDCG). Further research showed that the
meta-path bias had an excellent effect on the gain of potential information mining and the fusion of
explicit and implicit information in the accuracy and stability of user interest classification.

Keywords: deep neural network; matrix factorization; top-N recommendation; implicit feedback
information; meta-path bias

1. Introduction

A Recommender System (RS), a program that attempts to recommend the most
suitable products/services to a user, aims at providing personalized services by retrieving
the most relevant information and services from the big data generated on open, private,
social, and IoT (Internet of Things) data islands [1]. With the rapid increase in the amount
of information, when many users are looking for information about learning [2], movies [3],
music [4], popular events [5], and other fields, how to quickly and accurately obtain the
information they need most has become a key problem that needs to be solved in the
current development of big data. The emergence of the recommendation system provides
an opportunity to alleviate this problem [6].

With the development of data-mining algorithms, recommendation systems are used
in information retrieval (e.g., Google and Baidu), news feeds (e.g., Toutiao and Google
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News), e-commerce [7] (e.g., Amazon, Taobao, and Alibaba), and social networks (e.g.,
Facebook, Tencent, and Twitter) have achieved great success in various fields, effectively
alleviating the contradiction between information and users. Recommendation systems
due to their multi-domain applicability are among the main topics of scientific interest in
recent years [8].

Today, almost every organization leverages Recommender Systems to better under-
stand their customers and to suggest products and services [1]. For example, in the field of
e-commerce, recommendation systems are used to personalize products recommended to
users; and, in the field of short videos, recommendation systems are designed to personalize
and recommend short videos that users will love [9].

The recommendation system mines user interests from big data, captures interest
changes in real time [10], quickly feeds back user needs, helps customers complete data
access work with simple operation procedures and comprehensive data analysis [11], and
formulates or adjusts user recommendation information in a targeted manner. The security
and user experience the efficiency of production and life are greatly improved, the process
of information interaction, commodity circulation, and industrial asset circulation are
accelerated, and social development and the improvement of people’s living standards are
effectively promoted.The research by Ricci et al. [9] showed that recommendation systems
have been ubiquitous in various fields, including movies, music, travel, video, news, books,
and general products.

There are three main combination strategies for hybrid recommendation [12]: pre-
fusion, middle fusion, and post-fusion. (1) Pre-fusion refers to the fusion of multiple
recommendation algorithms in the process of constructing a recommendation model,
combining them into a unified model, performing a feature extraction training model,
and then generating recommendation results based on the fusion model. (2) Middle
fusion is based on one recommendation algorithm as the framework while fusing another
recommendation algorithm. (3) Post-fusion means that each recommendation algorithm is
trained separately to generate recommendation results, and finally a combination strategy is
adopted to fuse the recommendation results of each recommendation model. Combination
strategies that can be adopted include simple voting, linear combination, etc.

Recommendation systems rely on user feedback to evaluate attitudes toward items
viewed by users. According to the nature of user feedback [6], this can be divided into
explicit user feedback (for example, ratings, likes, and dislikes) or implicit feedback (for
example, clicks, plays, and views), that is, display feedback and implicit feedback [7].
Explicit feedback is that the user’s preferences can be directly expressed and exist in a
way that makes it easy to obtain their preferences. Implicit feedback refers to the user’s
preference behavior information expressed in an indirect way rather than directly [13].

Explicit feedback data has the ability to express user preferences and behaviors more
accurately; however, in real life, it is difficult to obtain representative and sufficient amount
of explicit feedback information based on users [14]. At the extreme, feedback data can be
very scarce and not easy to obtain in many application scenarios. Implicit information data
is easy to obtain, and the amount of information is relatively large; however, its information
cannot accurately express user preferences. Therefore, if we make full use of the advantages
of the two types of data, we can achieve a good recommendation effect [8].

For the first time, ROber and Yen [15] proposed the theoretical idea of combining
explicit feedback data with implicit feedback data. Nathan N. Liu et al. [16] proposed a
matrix factorization model, which used different weights for implicit feedback data and
explicit feedback data for learning modeling. The main idea of the matrix factorization
model is to treat purchased and viewed commodities as implicit feedback data and mark
them as “1”, to mark other types of commodities as “0” for processing, and then combine
them with display feedback data, before combining explicit feedback and implicit feedback.

Weike [17] first clustered user sets and item sets to propose a learning model. GaiLim [18]
proposed a personalized ranking model that combined explicit and implicit feedback,
which was implemented by optimizing the evaluation index ERR (Expected Reciprocal Rank).
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With the rapid development of deep learning, the application of deep learning in
recommendation models is gradually increasing. Ding et al. [19] proposed a friend recom-
mendation model based on a Bayesian ranking deep neural network, which converted the
recommendation problem into a ranking problem. The recommendation method based
on deep learning has been successfully applied to label recommendation [20] and POI [21]
recommendation, and different neural network structures have been proposed, such as
multi-layer perceptron (MLP), convolutional neural networks (CNN), and recurrent neural
networks (RNN) [6].

A deep neural network can effectively simulate nonlinearity in the data through
nonlinear activation. Some are also used to transform recommendation problems into
classification problems. Although deep learning has been widely used in recommendation
methods and recommendation systems, the research on recommendation methods based
on deep learning is still in the development stage [10].

Recently, some researchers have realized the importance of heterogeneous information
for recommendation. Heterogeneous Information Networks (HINs) effectively integrate
more information and form a new trend in the development of data mining. A large
amount of user information can be obtained to make the content of the recommendation
system more diverse, including academics, commodities, friends, music, services, etc. [22].
In addition to traditional recommendation methods, a large number of new recommen-
dation methods have also been generated, such as social network-based recommendation
methods, context awareness recommended methods of the internet [23], and location-based
recommendations [24].

However, these recommendation methods based on heterogeneous information also
have some challenges: (1) Massive amounts of HIN data hide the objects’ comprehensive
and detailed information. Hence, mining and analyzing valuable information for HIN
recommendations is a key challenge. (2) The rapid expansion of HINs generates increasing
amounts of data, such as a wide variety of user features. How to take advantage of
these features to build a unified top-N recommendation model is a substantial problem.
(3) It is difficult to combine and measure all of the features of objects to produce HIN
recommendations. Considering all of the features may require a significant amount of
time and cause an over-fitting problem. (4) Transmission delays, energy saving issues,
data redundancy, and inaccuracy of data transmission during data transmission are also
issues that need to be resolved [25]. As a result, selecting the most relevant one from the
recommendation results among all the features of objects in HINs is challenging.

Based on user–item history information, rating prediction models predict the specific
rating for an item given by a user [26]. In practical applications, merchants are concerned
about whether users will buy an item, which means telling whether a user will watch a
movie is more consequential than predicting the rating value that the user may give after
watching the movie.

This study mainly considers a bipartite network, a special type of heterogeneous
information network, for generating top-N recommendations [27]. Existing user–item data
recommendation methods mostly consider user–item implicit feedback and ignore the user
preference characteristics behind the explicit data. Here, the explicit feedback data refers to
the user–item rating information, and the implicit feedback refers to whether user–item
interaction information exists or not.

To obtain the user’s preference information more comprehensively, this study consid-
ers both the explicit and implicit feedback from user–item interactions for mining the users’
potential preferences and the underlying features of items [28]. In order to improve the
performance of the recommendation algorithm of the heterogeneous information network,
the recommendation model is constructed by fusing matrix factorization (MF) [29] and
a deep neural network (DNN) [19], which, respectively, obtain the explicit and implicit
feedback prediction results.

The explicit and implicit feedback prediction results are combined to generate the top-
N recommendations [30–32]. Two bias factors are introduced to consider the characteristics
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of the user–item data in explicit feedback information. More specifically, we first consider
both explicit and implicit feedback data; the explicit and implicit feedback information is
separately trained as input to better mine the potential information behind the user–item
rating meta-path information. Here, explicit feedback data refers to user–item ratings, and
includes both meta-path attribute information and the characteristics of objects; implicit
feedback refers to the user–item relationship data.

Then, the MF and DNN models are merged to form the relationship between the
user–item rating meta-path and the attribute value information. As they learn embedded
features independently, MF and DNN can fully consider the linear and nonlinear user–item
features, and respectively train the explicit and implicit feedback data in order to obtain
the corresponding output. Subsequently, by combining the explicit and implicit feedback
prediction results, the top-N items are recommended to the target user.

Finally, we use the MovieLens dataset to verify the model and apply leave-one-out
to further evaluate the model. The performance of the method is evaluated using the hit
ratio (HR) and normalized discounted cumulative gain (NDCG) evaluation metrics. The
proposed method was found to outperform the traditional recommendation model and
state-of-the-art recommendation methods.

The contributions of this paper are summarized as follows.

• We exploit both explicit and implicit feedback information to obtain the user’s prefer-
ence information and the underlying characteristics of the item based on the meta-path
selection results. Additionally, in order to obtain explicit feedback information, two
bias factors are introduced according to the individual characteristics of the user–item
information.

• We fuse MF and DNN to mine the potential features of users and items from both lin-
ear and nonlinear perspectives. MF and DNN learning are independently embedded
to better capture user preference information and the potential feature information of
items.

• Using the leave-one-out evaluation method, we combine explicit and implicit feedback
results to obtain the top-N recommendation list for target users and adopt the HR
and NDCG metrics to evaluate the proposed model.

The remainder of this paper is organized as follows: We briefly outline the related
work in Section 2. We provide the problem definition and explain the proposed architecture
in Section 3. Section 4 shows and discusses the experimental results that validate our
model. Finally, we conclude this paper in Section 5.

The notations used in this paper are summarized in Table 1:

Table 1. Notations

Symbol Description

Y User–item interaction matrix
U Set of users
I Set of items
Ŷ Final prediction results
Ŷ− Implicit feedback prediction results
Ŷ+ Explicit feedback prediction results
Y− User–item relation matrix
Y+ User–item rating matrix
Ŷui,MF Final prediction results of MF
Ŷui,DNN Final prediction results of DNN
pF

u User embedding vector of MF
qF

i Item embedding vector of MF
pI

u User embedding vector of DNN
qI

i Item embedding vector of DNN
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2. Related Work

An increasing number of researchers have focused on HIN recommendations with
different types of objects or relations [33]. Since HINs were first proposed in [34], many
HIN recommendation methods have been proposed. In these works, similarity measure-
ments are vitally important and fundamental, and the most popular method is path-based.
For example, a meta-path associated with top-N similarity measurement was proposed
in [34,35] proposed a recommendation method based on personalized semantics to predict
users’ ratings of items, and [36] proposed symmetric measurements on arbitrary meta-
paths. Random-walk-based methods are usually used to mine the paths, weigh the paths,
and compute the closeness or relevance between two nodes in a HIN [37].

Random walks in the connected components of the graph assume the properties of
Markov Chains (steady-state distribution, irreducibility, etc.) [38,39]. However, these
traditional HIN techniques ignore the value of link attributes; as a result, the meta-path
cannot accurately capture the relationship between objects [40]. More recently, other strate-
gies have been proposed to alleviate this shortcoming. A unified and flexible personalized
sorting framework, MFPR, was proposed in [41]; this framework combines explicit feed-
back with multiple implicit feedback. In [42], a unified model fusing generalized matrix
factorization and multilayer perception was proposed. In [43], a collaborative filtering
recommendation method in view of heterogeneous relations was proposed.

Among the works described above, we must compare MFDNN against the model
proposed in [44], because it is not only a state-of-the-art HIN recommendation method but
also very similar to our model. DeepMF [44] performs click-through rate (CTR) prediction
by combining the recommendation ability of factorization machines with the feature
learning ability of deep learning, and simultaneously learns the low-order and high-order
feature interactions from the original features of the input.

Compared with DeepMF, MFDNN has three main differences: (1) In MFDNN, MF
and DNN learn embedded features separately, while DeepMF shares the same raw input
feature vector. (2) The input layer of MFDNN combines user–item explicit and implicit
feedback, while the input layer of DeepMF is a one-shot encoding of each feature field (e.g.,
gender, and location). (3) The output of MFDNN is a top-N recommendation list, while
DeepMF aims to predict the value of ratings.

There are many other HIN recommendation algorithms, including collaborative fil-
tering [45] and content-based recommendation [46]. These traditional methods were
extensively used in the early phases of HIN. However, the former is not applicable to
high-dimensional data, and there is a cold-start problem [47], while the latter takes fewer
attributes into consideration.

Deep neural networks (DNN) have demonstrated breakthroughs in data mining, e.g.,
voice recognition [48], image labeling [49,50], and text classification [51–53]. Deep learning-
based methods, which can learn a large-scale nonlinear network structure and obtain
deep feature representations of users and items, have proven effective in recommendation
tasks [54–56]. Convolutional neural networks have a powerful ability to learn feature
representations and have the potential to learn sophisticated feature interactions [57,58].

BayDNN was proposed in [19] as a Bayesian personalized ranking deep neural net-
work model for social network friend recommendations; in this model, the recommendation
problem is regarded as a ranking problem. The method described in [59] adopts a simple
pre-training strategy using a four-layer neural network for link prediction. In [21], a deep
content-aware point-of-interest (POI) recommendation (DCPR) algorithm was proposed;
broad learning from multiple sources of information is utilized to solve the problem. Based
on the above studies, we found that deep learning-based recommendation methods are still
in their infancy, and MFDNN effectively improves the accuracy of HIN recommendation.

In the past few decades, numerous researchers have focused on designing and im-
plementing top-N recommendation methods; however, these methods only consider the
direct relations between pairs of items to compute the similarities needed for constructing
recommendation frameworks. In fact, a high-order information and neighborhood-based
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method was proposed to merge high-order information earlier in the process; however, it
did not significantly improve performance.

The sparse linear method (SLIM) was proposed in [60]; this method aggregates users’
purchase/rating profiles to generate recommendation results. However, it can only model
the relationship between items co-purchased by at least one user. To address the limitations
of SLIM, LorSLIM [61], which introduces a low-rank structure, was proposed. Low-rank
assumptions are usually driven by factor models. HOSLIM was proposed in [62], which
revisited the problem of using higher-order information rather than low-rank information.

3. Our Approach: MFDNN
3.1. Problem Definition

In this subsection, we first provide the related preliminary definition and then provide
a formal problem definition.

Definition 1. Heterogeneous information network (HIN). HINs were first defined in [34]. A
directed graph G = 〈V, E〉 is defined to present an information network, where V is the set of
objects, E is the set of relations, the object-type mapping function is φ : V → A, and the relation-
type mapping function is ψ : E → R. A network is called a heterogeneous information network
when the types of objects |A| > 1 or the types of relations |R > 1|; otherwise, it is a homogeneous
information network.

A bibliographic information network [63] is a typical HIN that contains three types of objects:
author, venue, and paper, and two types of relations: publish and write. Other examples of HINs
are shown in [64]. We mainly focus on the bipartite network—a special HIN that has two types
of objects.

Definition 2. Bipartite Network. A bipartite network is a special HIN that has two types of objects.

Problem 1. U = {u1, u2, · · · , um} is a user set of size m, and I = {i1, i2, · · · , in} is an item set
of size n. We first analyze and select a reasonable meta-path that can help find the most similar user
or item according to the meta-path. An example of a selected meta-path is shown in Figure 1.

Figure 1. The selected meta-path.

In this study, we consider the meta-path link information as well as the attribute
information of the user and item. According to the UI rating meta-path, we define the
user–item interaction matrix Y− ∈ Rm×n and the user–item rating matrix Y+ ∈ Rm×n

according to the historical rating record as Equation (1) and (2):

y−ui =

{
1 if interaction (user u, item i) is observed(score>2);
0 otherwise.

(1)

y+ui =

{
Y+

ui the rating (user u, item i);
0 otherwise.

(2)
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Here, a value of 1 for y+ud denotes that u and i have an interaction; however, this
does not necessarily mean that u actually likes i. Similarly, a value of 0 for y−ud also does
not indicate that user u dislikes item i; perhaps user u is not aware of item i at all. In
other words, observed relations reflect the users’ preferences on items, while unobserved
relations can result from missing data. For example, when shopping online, the rating
value of an item is affected by factors other than the item itself, such as delivery speed and
service attitude.

In such cases, the final rating may not indicate whether the user likes the item. How-
ever, if the user buys the item, it is certain that one of the characteristics of the item attracts
the user. Therefore, we simply conclude that the level of the rating reflects the preferences
of the user. It becomes a challenge to learn users’ intentions from the historical rating
record since it contains various noisy data indicating users’ preferences. We often cannot
obtain explicit feedback information directly, and the data is sparse.

In contrast, we can easily obtain implicit feedback information, and the data cov-
ers most users and objects; thus, it can mitigate the problem of sparse data to some
extent [65–67]. We obtain a top-N recommendation list via modeling with a recommenda-
tion algorithm according to historic explicit and implicit feedback information.

3.2. Top-N Recommendation Architecture

In general, a user’s preferences will not change significantly over a relatively short
period of time. Therefore, our goal is to combine the explicit and implicit feedback informa-
tion by fusing MF and DNN to predict the missing user–item interaction rating value ŷui
and sort the rating values to obtain the top-N recommendation list. The main framework is
shown in Figure 2.

Figure 2. Architecture of the proposed method.

As shown in Figure 2, we first construct a user–item rating matrix and a user–item
relation matrix, here, for the explicit information matrix construction, that is, the user–item
rating matrix, we fill in the corresponding position according to the historical scoring
record. For those without scoring, we fill in with 0; For the construction of the implicit
information matrix, that is, the user–item relation matrix, according to the historical scoring
record, we fill in the position corresponding to the user’s score greater than 2 with 1, and
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the other positions with 0; the user–item relation matrix and user–item rating matrix are
made in different ways.

Then, we run the MFDNN model to obtain the explicit and implicit feedback pre-
diction results; finally, we combine the explicit and implicit results to obtain the top-N
recommendation list for target users. Here, we can choose the weighted average method
(WAM) or simply sum the explicit and implicit prediction results. For explicit feedback
prediction, we choose the parameters by minimizing the value of the cross-entropy loss
between y+ui and ŷ+ui, which is expressed by the formula in Equation (3):

L+ = ∑
(u,i)∈Y

log(ŷ+ui + bu + bi)−

∑
(u,i)∈Y−

log(1− ŷ+ui − bu − bi).
(3)

This is the same as implicit feedback—the only difference is that explicit feedback
information considers two individual bias factors bu and bi, where ŷ+ui denotes the explicit
prediction results. By minimizing Equation (3), we can obtain the best recommendation
list according to the explicit feedback. Additionally, we can obtain the results of bu and bi
according to Equation (4) and (5):

bu =
ŷ+ui − r̄u

#i
, (4)

bi =
ŷ+ui − r̄i

#u
. (5)

where ŷ+ui is the rating value that user u has given to item i, r̄u is the average of the ratings
given by user u, and #u is the number of items that u has rated. Similarly, r̄i is the average
rating of item i, and #d is the number of users that have rated i. By adding a regularization
term to optimize the target loss function, the target loss function of the regular term is
introduced as Equation (6):

L+ = ∑
(u,i)∈Y

log(ŷ+ui + bu + bi)−

∑
(u,d)∈Y−

log(1− ŷ+ui − bu − bi)+

λ

2
(
∥∥ŷ+ui

∥∥2
+ b2

u + b2
i ).

(6)

where λ is the regularization parameter.

3.3. Framework of MFDNN

In this section, we describe the design of MFDNN, a recommendation architecture
based on MF and DNN. MF can fully consider the linear relation between users and items,
on the other hand, DNN can fully consider the nonlinear features between users and items.
The framework of MFDNN is shown in Figure 3.

The input data includes user–item explicit and implicit feedback, as shown in Figure 3.
The explicit feedback is the user–item rating matrix constructed based on the meta-path,
and the implicit feedback implies a user–item relation matrix. They are trained in order to
obtain the corresponding results: Ŷ− and Ŷ+. The embedding layers are independently
trained for MF and DNN. For MF, the user is embedded as pF

u , and the item is embedded
as qF

i , For DNN, the user is embedded as pI
u, and the item is embedded as qI

i .
The subsequent user and item embedding can be viewed as a potential vector for

describing users and items in the context of a latent factor model. The embedding layer
is a fully connected layer that maps the coefficient representation of the input layer to a
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dense vector. The MF model and DNN model separately train the result and, finally, fuse
the results by an activation function. This is shown as Equation (7):

ŷui = σ(ŷui,MF + ŷui,DNN). (7)

Here, we select the sigmoid function as the activation function because of the prob-
ability of ŷui ∈ [0,1]. We note that ŷui,MF and ŷui,DNN are trained independently in the
model.
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Input Layer MFDNN  Layer Output  Layer

MF  Layer

DNN  Layer

Figure 3. Framework of MFDNN.

3.4. Implementation of MFDNN

A linear combination of potential features of a user and an item can be learned by
matrix factorization, and pu and qi are used to represent the potential vectors of u and
i, respectively. The matrix factorization estimates the inner product of pu and qi as the
prediction function value, as shown in Equation (8):

ŷui = pT
u qi =

K

∑
k=1

pukqik. (8)

where K denotes the dimensions of latent space. However, using a simple inner product
to estimate complex user–item interactions in the low-dimensional latent space limits the
expression of MF and affects the generalization ability of the model. Thus, we define the
mapping function of the first layer of MF as Equation (9):

φ(pF
u , qF

i ) = pF
u � qF

i . (9)

where � denotes the element-wise product of vectors; the output of MF is given by
Equation (10):

ŷui,MF = αout(hTφ(pF
u , qF

i )). (10)

where αout is an activation function. In consideration of convergence speed, we used the
ReLU (rectified linear unit) function as the activation function, which is simply defined
as max(0, x); hT is the weight vector. For DNN, we first obtain the first layer results by
processing the embedding layer using Equation (11):

f1 = φ1(pI
u, qI

i ). (11)

In the same manner, the second layer results are obtained using Equation (12):

f2 = α2(WT
2 f1 + b2). (12)
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where WT
2 and b2 are the weight matrix and biased vector, respectively, and α2 is the

activation function. The results of the N-th layer are obtained using Equation (13):

fN = αN(WT
N fN−1 + bN). (13)

According to Equations (11)–(13), we obtain the final DNN prediction result using
Equation (14):

ŷui,DNN = α(W |H|+1 ·
[

pI
u, qI

i

]T
+ b|H|+1). (14)

where α is the activation function, H is the number of hidden layers, and W and b are the
weight matrix and biased vectors, respectively. Here, we chose the ReLU function as the
activation function. The sigmoid activation function maps the output of each neuron to the
(0,1) interval. This may hamper the performance of the model, and it is likely to cause an
over-fitting problem; that is, when the output approaches 0 or 1, the neuron stops learning.

Although Tanh mitigates the problem of the sigmoid to a certain extent, the result
is a scaled version of the sigmoid function. Therefore, the ReLU activation function was
selected for the model. The ReLU activation function avoids over-fitting and supports
sparse data so that the model does not overfit. The explicit and implicit prediction results
are generated by MFDNN. After obtaining the Ŷ+ and Ŷ− by executing MFDNN, we can
obtain the final user–item prediction results according to Equation (15):

Ŷ = ω1Ŷ− + ω2Ŷ+(0 6 ω1 6 1, 0 6 ω2 6 1). (15)

where ω1 + ω2 = 1, ω1 is the weight of implicit feedback and ω2 is the weight of explicit
feedback. As for the best recommendation list for target users, we find the optimal weights
by minimizing the objective function using Equation (16):

L = ∑
(u,i)∈Y

logŷui − ∑
(u,i)∈Y−

log(1− ŷui) +
λ

2

∥∥∥ω2
1 + ω2

2

∥∥∥
= − ∑

(u,i)∈Y∪Y−
yuilogŷui + (1− yui)log(1− ŷui)+

λ

2

∥∥∥ω2
1 + ω2

2

∥∥∥.

(16)

In the network structure, each layer employs fewer neurons in succession. By using
a small number of hidden units at the upper layer, more abstract features can be learned
from the data. For higher layers, the scale is reduced compared with the previous layer.

In addition, we utilized the dropout technique to alleviate the over-fitting problem.
We chose the Adam algorithm [68] to train the model from scratch; this yielded faster
convergence than SGD, which was important because we were unable to pay more attention
to tuning the learning rate. The main steps of MFDNN are shown in Table 2:
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Table 2. The MFDNN algorithm.

Algorithm MFDNN algorithm

Ỹ− ⇐ User–item relation matrix;
Ỹ+ ⇐ User–item rating matrix;
λ⇐ Parameter of regularization term;
Learning rate⇐0.001;
epochs⇐ Number of iterations;
pF

u ⇐ User embedding vector of MF;
qF

i ⇐ Item embedding vector of MF;
pI

u ⇐ User embedding vector of DNN;
qI

i ⇐ Item embedding vector of DNN;
epochs Calculate ŷ+ui,MF Equations (8)–(10)
Calculate ŷ+ui,DNN Equations (11)–(14)
Update MFDNN with Adam
Calculate ŷ+ui Equation (7)
Calculate ŷ−ui at the same way
Calculate Ŷ Equation (15)
Top-N recommendation list

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets

In this study, we used MovieLens 1m and Netflix, two benchmark datasets commonly
used for testing recommendation systems, to evaluate the proposed model. These datasets
do not require additional processing. We obtained the last interaction for every user, and
then randomly selected 100 movies that the user had not interacted with. Table 3 shows
the statistics for these two datasets.

Table 3. Descriptions of the MovieLens 1m and Netflix datasets

Aspect MovieLens 1m Netflix
#users 6040 48,018
#movies 3706 17,770
#ratings 1,000,209 11,160,900
Rating Density 0.04468 0.01308

According to the definition of HIN and the content of [35,69], MovieLens 1m and
Netflix are typical examples of HINs; the network pattern of these datasets are shown in
Figure 4. Figure 4 shows that there are four types of objects: users, movies, actors, and
directors. In this study, we only considered users and movies, which have the relations
“rating” and “rated by.” If two users often view the same movies, we can simply conclude
that they have similar interests or preferences. Using the implicit and explicit feedback
based on user–movie relations, we evaluated the performance of the proposed model.

Figure 4. The network pattern of MovieLens 1m and Netflix.
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4.1.2. Evaluation Metrics

We adopted the HR (hit ratio) and NDCG (normalized discounted cumulative gain)
metrics to evaluate the performance of MFDNN. HR: The probability that the user clicks
or browses the recommended item. NDCG: Measures the quality of the ranking, which
considers the ranking of the ratings; it is defined as

NDCG =
DCG
IDCG

. (17)

The NDCG value of the first k ratings is defined as

NDCG =
DCGk
IDCGk

. (18)

where DCG is the discount cumulative gain. The DCG value of the first k ratings is
defined as:

DCGk =
k

∑
i=1

2reli − 1
log2(i + 1))

. (19)

where reli denotes the ith rating. IDCG denotes the ideal DCG, that is, the recommendation
list sorted according to the value of ratings from high to low.

4.1.3. Baseline Methods

In this section, we aim to explain how our proposed MFDNN outperformed the
existing top-N recommendation methods. We compare the MFDNN with the follow-
ing representative methods in addition to two state-of-the-art recommendation methods
(DMF [29] and NCF [42]) and three HIN-based methods (HeteCF [43], HeteMF [70], and
CMF [71]).

DMF (Deep Matrix Factorization): A new matrix decomposition model based on a
neural network structure. It uses the user–item explicit feedback matrix as input and learns
a common low-dimensional space of objects via a deep learning framework.

NCF (Neural Collaborative Filtering): NCF can be used to express and generalize
matrix decomposition under its framework. In order to use nonlinear enhanced NCF
modeling, a multilayer perceptron is used to learn user–item interactions. NCF learning
emphasizes the probability model of the binary properties of implicit data. It unifies the
linear modeling advantages of MF and the nonlinear advantages of MLP to model the
potential structure of user-projects.

HeteCF (Heterogeneous network Embedding based approach for Recemendation):
the HeteCF method is based on a social collaborative filtering algorithm using heteroge-
neous relations.

HeteMF (Dual Similarity Regularization): the HeteMF method is based on the HIN
recommendation method through combining user ratings and item similarity matrices.

CMF (Dual Similarity Regularization): The CMF method is based on the coupled ma-
trix factorization recommendation method integrating user couplings and item couplings
into the basic MF model.

4.2. Parameters Analysis

In order to determine the best learning rate, we evaluated the MFNN model using
learning rates of 0.0001, 0.0005, 0.001, and 0.005. The results are shown in Figure 5. Figure 5
shows that there were fewer differences when the learning rate was 0.0005, 0.001, or 0.005.
We further analyzed the HR and NDCG values to select the best rate. According to HR, the
performance was better when the learning rate was 0.001 rather than 0.005. It is also clear
that the value was higher when the learning rate was 0.001 rather than 0.0005 during early
training. The trends of NDCG values were similar to those of HR. Thus, we concluded that
a learning rate of 0.001 was best in terms of the experimental results.
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We used similar methods to determine that the best batch size was 256. We also
considered how the number of hidden layers impacts the recommendation performance,
in order to determine whether deeper was actually better. We trained the DNN model with
1, 2, 3, and 4 deep layers. The HR and NDCG values achieved with the different numbers
of deep layers are shown in Figure 6. As shown in Figure 6, the DNN performed best when
the number of hidden layers was 3. In line with these results, we reached the following
conclusion: it is not correct to assume that the greater the number of hidden layers, the
better the performance is, or vice versa.

Thus, we selected the most reasonable and best number of hidden layers to implement
the MFDNN. In addition, the number of embedding factors for MF affected the recommen-
dation performance. We conducted tests using different numbers of embedding factors
in order to find the optimal number; the results are shown in Figure 7. Figure 7 shows
that, when the number of embedding factors was 32, the MF performance was the best
according to HR and NDCG; thus, we set the number of factors to 32.

Figure 5. The HR and NDCG values for different learning rates.

Figure 6. The MAP and NDCG values for different numbers of hidden layers.

Figure 7. The HR and NDCG values for different numbers of embedding factors.

Dropout, a technique for addressing overfitting, refers to the probability that a neuron
is kept in the network [72]. We set the dropout rate to be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
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and 0.9. As shown in Figure 8, MFDNN was able to achieve its best performance when the
dropout rate was 0.6 according to the HR and NDCG metrics. The results illustrate that the
robustness of MFDNN was strengthened by adding reasonable randomness.

Figure 8. The HR and NDCG values for different dropout rates.

4.3. Performance and Comparison

The MFDNN recommendation model combines user–item explicit and implicit feed-
back. The recommendation model combines MF and DNN, which learn embedded features
independently; however, the model only merges them in the final output layer through
the activation function. In this experiment, we compared and analyzed results in all these
aspects. The selected top-N value was taken as N = 10, and the dataset was MovieLens 1m.

(1) Explicit and implicit feedback information
In order to measure the recommendation performance achievable with explicit and

implicit feedback information, the explicit and implicit feedback data were separated
out for experiments. Specifically, we first removed the implicit feedback information,
denoted by MFDNN+, and then we removed the explicit feedback information, denoted by
MFDNN-. The experimental results for MFDNN+, MFDNN-, and MFDNN are shown in
Figure 9. As shown in Figure 9, the most accurate recommendations were generated using
the explicit and implicit feedback data.

According to the HR value, MFDNN provided the highest performance. In the
small batch of data before training, the performance of MFDNN- was better than that
of MFDNN+, and subsequently the performance of MFDNN+ was better. According
to the NDCG value, MFDNN had the best performance, followed by MFDNN- and,
finally, MFDNN+. These experiments verified that the combination of explicit and implicit
feedback data provided better recommendation performance.

Figure 9. The HR and NDCG values achieved with MFDNN+, MFDNN-, and MFDNN.

These results also illustrate the shortcomings of simply considering explicit and
implicit feedback data individually. Explicit and implicit feedback data reflect the user’s
preferences or item feature information from a certain aspect. In order to generate accurate
recommendations, it is necessary to fully consider the user’s interests or preferences and
the potential features of the item itself.
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The performance was further verified by considering two bias factors in the explicit
feedback information; the results were compared with those from the method that does not
consider these two factors (MFDNN–). The experimental results are shown in Figure 10.
As shown in Figure 10, when considering two bias factors, the performance of the recom-
mendation model was improved. Although the performance improvement was not very
large, the overall performance improved to some extent. Further, in practical applications,
different users have different score preferences.

For users who tend to give positive reviews even when they are not satisfied with
an item, the score values will not be too low, and the ratings from this type of user are
generally high. Conversely, users who are more stringent may give a lower rating even if
they are somewhat satisfied with an item; thus, their score values will not be particularly
high. In addition, if an item is inexpensive, its overall rating will be higher, and if the item
is of poor quality, its overall rating will be lower.

Based on the above analysis, it is meaningful to consider the explicit feedback score
preference information, and in theory this can improve the performance of the recom-
mendation algorithm. Although the model considers the bias factor, its performance
improvement is not obvious. In subsequent research, it will be necessary to learn more
suitable bias factors to improve the recommendation performance [28,73].

Figure 10. HR and NDCG values for MFDNN- - and MFDNN.

(2) Recommendation model based on MF and DNN
MF is a linear model that can mine linear user–item correlation features. On the

other hand, DNN is a nonlinear model that can mine the potential nonlinear relationship
characteristics of user–item data. In order to verify the recommendation performance of
MFDNN, MF and DNN were separately trained as recommendation models. The HR
and NDCG values for MF, DNN, and MFDNN are shown in Figure 11. As shown in
Figure 11, MFDNN demonstrated the best performance. According to the HR, MFDNN
had the best performance, MF and DNN were similar, and their trends were consistent.
According to the NDCG value, MFDNN performed best, followed by MF and, finally,
DNN. The results of the comparison experiments verify that MFDNN provided the best
recommendation performance.

In order to evaluate the recommendation performance of MF and DNN, which learn
embedded features independently, separate training processes were employed to facilitate
the sharing of the best MF and DNN embedding layers; these are, respectively, denoted as
MFDNN: (share MF) and MFDNN: (share DNN). The HR and NDCG values for MFDNN:
(share MF), MFDNN: (share DNN), and MFDNN are shown in Figure 12. Figure 12 shows
that, although there are small batches of data indicating that the performance was the best
when embedding layers were shared, the overall trend shows that MFDNN performed
the best.

According to the HR, MFDNN provided the best overall performance, while MFDNN:
(share MF) performed better than MFDNN: (share DNN) at the early epochs; subsequently,
the performance of MFDNN: (share MF) decreased. According to the NDCG, the overall
trend is consistent with HR. Optimal performance was achieved when MF and DNN
learned embedding independently.
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(3) Comparison with the baseline methods

Figure 11. HR and NDCG values for MF, DNN, and MFDNN.

Figure 12. The HR and NDCG values for MFDNN: (share MF), MFDNN: (share DNN), and MFDNN.

In order to evaluate the performance of MFDNN over other recommendation models,
we trained two state-of-the-art recommendation models (DMF and NCF) and three HIN-
based methods (HeteCF, HeteCF, and CMF) separately. The HR and NDCG values for
MFDNN and the two baseline methods are shown in Figure 13 (MovieLens 1m) and
Figure 14 (Netflix). The HR and NDCG values for MFDNN and the three HIN-based
baseline methods are shown in Figure 15 (MovieLens 1m) and Figure 16 (Netflix). The best
performance results of each baseline method are shown in Figure 17.

Figures 13–16 show that MFDNN achieved the highest performance. According to
the HR, MFDNN performed the best, followed by the two baseline methods NCF, DMF,
and the HIN-based baseline methods, HeteCF, HeteMF, and CMF. According to the NDCG
value, MFDNN performed the best, followed by the two baseline methods, NCF, DMF, and
the HIN-based baseline methods, HeteCF, HeteMF, and CMF. Further analysis indicates
that the performance of NCF was better than that of DMF. As NCF uses implicit feedback
data and DMF uses explicit feedback data, the results are consistent with the experimental
results shown in Figure 9. Table 4 shows the best HR and NDCG values for the MFDNN
and baseline methods.

Figure 13. The HR and NDCG values for the MFDNN and baseline methods.
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Figure 14. HR and NDCG values for MFDNN and baseline methods.

Figure 15. The HR and NDCG values for the MFDNN and HIN-based baseline methods .

Figure 16. The HR and NDCG values for the MFDNN and HIN-based baseline methods .

Figure 17. The results of the MFDNN and baseline methods.
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Table 4. The experimental results compared with the results from the baseline methods.

MovieLens 1m Netflix

Method HR@10 NDCG@10 HR@10 NDCG@10

MFDNN 0.7278 0.4319 0.6828 0.4214
DMF 0.6735 0.3975 0.5776 0.3459
NCF 0.7048 0.4252 0.6245 0.4000
HeteCF 0.7097 0.4268 0.6601 0.4013
HeteMF 0.7123 0.4271 0.6609 0.4062
CMF 0.7235 0.4308 0.6445 0.3893

Table 4 clearly shows that MFDNN outperformed the two baseline methods. In
terms of HR, MFDNN achieved an average 5.4% improvement over DMF, an average 2.3%
improvement over NCF on the MovieLens 1m datasets. In terms of HR, the two compared
methods underperformed MFDNN by an average of 2.75% in terms of HR on the Netflix
datasets. The five methods underperformed MFDNN by an average of 3.75% in terms of
NDCG. The performance improvements provided by MFDNN are statistically significant
according to these results.

(4) Selection of N of Top-N
In the above experiment, the value of N was 10; however, with different N values,

the HR and NDCG values will also be different. We selected N values of 5, 10, and 15 to
train the model and chose the best performance in the training epochs. The HR and NDCG
values for different top-N values are shown in Table 5:

Table 5. The HR and NDCG values for different top-N values.

MovieLens 1m Netfilx

Top-N HR NDCG HR NDCG

N=5 0.5303 0.3672 0.4583 0.3058
N=10 0.7279 0.4319 0.6828 0.4214
N=15 0.7869 0.4443 0.7542 0.4386

Table 5 clearly shows that MFDNN performed the best when N was 15; however, we
cannot conclude that the larger the value of N, the better the performance. HR relates to
whether a test item is in the recommendation list; therefore, for this metric, the larger the
value of N, the better the performance. The NDCG relates to the order of the test items in
the recommendation list.

4.4. Discussions

In this section, we further analyze the architecture of MFDNN and discuss the experi-
mental results to illustrate the performance of MFDNN.

(1) Table 4 clearly shows that MFDNN outperformed the other baseline methods,
which indicates that MFDNN improved the top-N recommendation performance of HINs
to an extent.

(2) We see that, by combining explicit and implicit feedback information, we can
improve the recommendation performance significantly (+3.0% and +2.5%, respectively, for
MFDNN+ and MFDNN- in terms of HR, and +1.9% and +1.0%, respectively, for MFDNN+
and MFDNN- in terms of NDCG).

(3) We also found that configuring MF and DNN to learn embedding factors indepen-
dently improved the recommendation performance (+0.6% and +0.7%, respectively, for
MFDNN+ and MFDNN- in terms of HR and +0.8% and +0.9%, respectively, for MFDNN:
(share MF) and MFDNN: (share DNN) in terms of NDCG). Although it is not obvious,
learning embedding factors independently can improve the performance to a certain extent.
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Although MFDNN provided significantly improved performance compared with
baseline methods, there is room for further improvement in terms of the metrics. We will
continue our best efforts to improve the performance of MFDNN.

5. Conclusions

In this work, we explored the information behind the meta-path in the binary network.
We designed a new framework MDFNN. The model considers both the explicit feedback
information and implicit feedback information of the user-object. It fully captures the
preference information of the object based on the meta-path and merges the obtained infor-
mation into the MFDNN to mine the user–item linear and non-linear characteristics. We
proved the rationality and effectiveness of MFDNN through a large number of experiments
on various data sets and achieved improvements to existing models. In our comparative
experiments, MFDNN was superior to the five models in terms of HR and NDCG.

Although MFDNN improved the recommendation performance, there are still other
factors that we should consider. On the one hand, we excavated certain potential features,
and there are other available features that have not been excavated, such as other semantic
information. On the other hand, we still need to improve the operating efficiency. This
takes longer to run on a data set with a large amount of data. This work explores the
potential of using explicit and implicit information to mine the potential information of the
meta-path in recommendation.

In addition to the meta-path information used in this article, there is other potential
information in the real scenes, such as the mining of semantic information of gender, age,
and time; another exciting direction is to apply the model to other realities in the scene
or use other structural information of the real scene, such as social networks and project
context. In social networks, through the combination of social network information, we
can also investigate how social influence affects recommendations.
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