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Featured Application: Local application of Hyaloglide®avoids adherence formation after tenol-
ysis and supports normal restoring with regeneration of the synovial sheath in a rabbit model.

Abstract: Peritendinous adhesions are a frequent occurrence following tenolysis and present a
major clinical challenge regarding prevention and management, with no recovery assured from
conservative or surgical approaches. Herein, we investigated the effectiveness of Hyaloglide®, a
hyaluronan gel-based product with a novel autocross-linked technology, in a rabbit model affected
by tenolysis on the flexor digitorum communis tendon (FDC). A 1.5-cm-long scrubbing of the tendon
surface was performed bilaterally to induce peritendinous adhesion on FDC of 30 animals with
subsequent application of Hyaloglide® on the surrounding injured area, in one randomly chosen
tendon. The contralateral tendon was treated with saline solution as the control. We sacrificed the
rabbit models after 45 days of surgery and quantitatively assessed the generation of peritendinous
adherence and regeneration of the tendon sheaths using histological (hematossyline-eosine, masson’s
trichromic), histomorphometrical (Tang score, Soslowsky Svesson, and Cook score), light electron
microscopic, and gene expression investigations. Four rabbits were devoted to biomechanical analysis.
Peritendinous adhesions were limited in Hyaloglide®-treated tendons; moreover, well-regenerated
tendon sheaths were observed conversely to untreated tendons presenting with extensive areas of
adhesions on the tendon surface. Histomorphometrical analysis revealed an adhesion score (Tang
score) significantly better in the treated group (p = 0.001 *) compared to the control group. Moreover,
the Soslowsky, Svensson, and Cook score parameters revealed a significantly improved regeneration
for fiber structure, cellularity, and vascularity in the treated group (p = 0.001 *). No differences
were reported for cartilaginous formation (p = 0.08). Gene expression analysis showed a significant
increase in collagen type I expression in the treated group compared to the control group, while
metalloprotease 1 and 9 were significantly increased in the control group. Biomechanical analysis
did not show significant differences in both groups. Hyaloglide® treatment was safe and well-
tolerated, generating improved tissue status. Local application of Hyaloglide® prevents adhesion
formation after tenolysis and promotes normal healing with regeneration of the synovial sheath in a
rabbit model.
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1. Introduction

Tendons are a histologic high-tensile-strength band of dense fibrous connective tissue
that connects muscles and bones and enable joint movement [1] by transmitting the force
developed in the muscle to the bone. Tendons are equipped with a coverage, so-called
peritendinous synovial sheaths [2], which facilitate their movement and protect them from
the friction of surrounding tissue and organs. Two fibrous sheaths (parietal and visceral)
that constitute a closed tube with peritendinous fluid for lubrification are located under
a fibrous layer and some tendons possess a peritendinous fibrillar sheath of elastic tissue
enabling the tendons to move freely in relation to the surrounding tissues.

Adhesion formation following tendon repair and/or tenolysis in the area between the
tendon and the surrounding tissue is a critical issue for the surgeon [3–5]. Tendon injury
will initially provide an inflammatory response, but developing adhesions and scar tissue
will subsequently inhibit the gliding movement of the tendon [6,7]. The prevention of
peritendinous adhesions post tenolysis has been investigated using numerous techniques,
with an objective to separate the recovering tendon from the surrounding wound area
with an intent to decrease inflammation and subsequent scar tissue formation around the
surface of the tendon, thus reducing the formation of adhesions. An optimal material,
therefore, should neither inhibit the synovial sheath of the tendon to naturally regenerate
nor should it interfere with its repair mechanism [8].

Authors have proposed various techniques, such as tissue engineering, which permits
the withdrawal of biological membranes from other tissues or the application of synthetic
membrane to encase the lesion area and enable the generation of a peritendinous barrier.
Strauch and co-authors [9] used autologous vein grafts during primary tendon repair
and obtained favorable outcomes in functionality compared to controls. Furthermore, the
enveloping role of the amniotic membrane in chickens prevented peritendinous adhesions
following tendon repair [10]. Biological membranes derived from the peritoneum [11],
pericardium [12], fascial grafts, and fascial flaps [13,14] have also been investigated. Studies
have also revealed the efficacy of fibrin sealant applied to the lesion, reducing post-surgical
tendon adhesion formation [15,16].

Beneficial effects have been observed concerning autogenous transplantation of bio-
logical tissues from diverse sources. This cost-effective and accessible technique allows for
a barrier to be formed, which is similar to a normal tendon sheath. Polytetrafluoroethylene,
millipore cellulose tubes, and silastic, hydroxyapatite or alumina [17], and polyethylene
membranes [18] are among the alternative mechanical barriers successfully employed to
prevent tendon adhesion following surgery.

Hyaluronic acid or its derivatives regarding injured tendons have recently been dis-
cussed and examined, revealing a reduction in post-surgical peritendinous adhesions in
repaired tendons on administration of hyaluronic acid [19–24]. It is also noteworthy that
human amniotic fluid (HAF) possesses a high molecular weight with elevated concentra-
tions of hyaluronic acid and acts as a hyaluronic acid-stimulating activator, which may be
used alone or with hyaluronic acid to prevent peritendinous adhesions [25,26].

Recent investigations have revealed positive outcomes in the local administration
of autocross-linked derivatives with hyaluronic acid, specifically ACP, displaying safety
and biocompatibility properties and reduced post-surgery adhesion in various sites. De
Iaco [27] and Belluco [28] demonstrated the clinical use and efficacy of ACP in preventing
adhesion following abdominal surgery. Moreover, other authors reported ACP efficacy
following knee surgery in a preclinical setting [29] and in nerve reconstruction in both
preclinical and clinical contexts [30]. Riccio and colleagues showed that ACP is effective in
the treatment of pathological scars [31].
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A biomaterial barrier that blocks the infiltration of cells but enables the passage of
cytokines and GFs may be useful to avoid adhesion formation, without altering the normal
healing process.

Recently, Imere et al. [32] developed a bilayer membrane combining a nanofibrous
poly (ε-caprolactone) (PCL) electrospun mesh with a layer of self-assembling peptide hy-
drogel (SAPH) laden with type-B synoviocytes that showed good biomechanical behavior,
preventing post-operative tendon adhesion. Chen et al. [33] also developed a multifunc-
tional nano fibro membrane that acts as a physical barrier to prevent fibroblast penetration.
Hyaluronic acid reduced fibroblast attachment and helped lubrification and tendon gliding,
with ibuprofene adjunct acting as an anti-inflammatory drug.

Moreover, Yurdakul et al. [34] recently compared a bioresorbable membrane com-
posed of sodium hyaluronate and carboxymethyl cellulose and an auto-crossed linked
gel derivative from hyaluronic acid in preventing tendon adhesion after crush injuries,
showing that the gel was effective only after tendon fiber repair in a rat model.

A multicenter clinical trial recently investigated an autocross linked hyaluronan-based
gel (Hyaloglide®), revealing positive results in preventing adhesion recurrence follow-
ing tenolysis of flexor tendons in zone II of the hand [3]. This non-stick mechanism,
albeit clinically effective, has been scarcely examined in animal models. In this context,
we herein assess, for the first time, the effectiveness of Hyaloglide®, a resorbable gel-
formulated adhesion barrier, on rabbit models affected by tenloysis, showing positive
results in the prevention of peritendinous adhesions. The study particularly concentrated
on the histological and electron microscopy analyses. Owing to its mechanical charac-
teristics, Hyaloglide® may enhance regeneration of the tendon synovial sheath, ensuring
tendon elasticity and avoiding peritendinous adhesion formation, thus enabling favorable
recovery of tendon function.

The aim of the present study was to assess the efficacy of Hyaloglide® application
in tendon adhesion prevention through the evaluation of primary endpoints, such as
the histological and histomorphometrical score, and secondary endpoints, such as gene
expression analysis and biomechanical evaluation.

We hypothesized that in the treated group, the evaluated scores would be statistically
better compared to the control group.

2. Materials and Methods
2.1. In Vivo Study Design

Thirty adult male New Zealand rabbits weighing 2 to 3 kg were selected for tendon
analysis. At the end of the study, all animals underwent macroscopic evaluation (histolog-
ical and histomorphometrical evaluation), then four rabbits were randomly assigned to
biomechanical analysis. The remaining 26 animals underwent light electron microscopy
and gene expression evaluation.

The protocol was approved by the Italian Ministry of Health (authorization number CP
1-10/09). The animals were treated according to the institutional and national guidelines
for the care and use of laboratory animals and approved by the local Institution’s Animal
Care and Ethics Committee, conforming to the European Communities Council Directive
of 22 September 2010 (2010/63/UE).

The rabbit tendon is larger and similar to the human model and is considered an
appropriate experimental model. The tendon of the FDC muscle of the posterior limb is a
long tendon with a distinct peritendinous sheath and is surgically attainable and consistent
with our type of investigation [35].

Furthermore, a type of lesion that emulates tenolysis in a clinical context was required,
therefore we scrubbed the tendon surface (1.5 cm in length) from the proximal and distal,
performing a slit proportional to 40% of the tendon caliber.

Herein, we investigated the efficacy of Hyaloglide® or auto-cross-linked polysaccha-
ride ACP gel (Fidia Advanced Biopolymers, Abano Terme, Italy) in preventing post-surgical
peritendinous adhesions. Moreover, peritendinous frictions during physical activity will be
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reduced, resulting in improved regeneration of the tendon sheaths. We conducted a three-
phase analysis: (1) assessment of the gliding function of the tendon was performed via
macroscopic examination at the time of tendon explant; (2) light electron microscopy was
used to evaluate adhesion and the peritendinous tendon sheaths; and (3) biomechanical
evaluation of the tendon was assessed by taking four samples from each group.

The rate of adhesion formation and regeneration of the synovial sheaths was evaluated
in the animal models using a 4-point semi-quantitative grading system and macroscopic, mi-
croscopic, and ultrastructural investigations. Two independent masked observers assessed
the sample results, presenting the mean score as the mean between two scores. The score of
the adhesion formation was evaluated as follows: 0—severe adherence; 1—moderate adher-
ence; 2—few adherences; 3—no adherence. The synovial sheath regeneration was scored
as follows: 0—very poor regeneration; 1—poor regeneration; 2—moderate regeneration;
3—successful regeneration.

2.2. Surgical Procedure

The animals enrolled in the study were kept in large cages in a room under controlled
temperature and humidity conditions with 12–12 h light/dark cycles.

The rabbits were intravenously anesthetized with 0.1 mL of Zoletil 100, 0.5 mL of
Rompum, 3.5 mL of saline solution, 30 mg/1 kg body weight, and the tendon of the FDC
proximal to the ankle was exposed.

The animals were positioned face down and surgery was performed under sterile
manners. The skin from the dorsal side of the left thigh was trimmed and cleansed using
antiseptic solution according to normal practice.

We surgically impaired the tendon sheath of 30 rabbits, precisely a bilateral 1.5-cm-
long segment of the tendon sheath around the circumference to emulate tenolysis, which
commonly arises in patients (Figure 1). We performed an incision at the center of the injured
tendon segment equivalent to 40% of the tendon diameter, bilaterally. This procedure
permitted the precise identification of the lesion site at withdrawal. We randomly selected
one tendon in each animal and applied 1 mL of Hyaloglide® around the injured tendon
segment. We administered 1 mL of saline solution to the contra-lateral segment applying
the solution around the tendon in accordance with the treated tendon. We proceeded to
suture the skin of both the posterior’s paws with 4/0 reasorbable sutures.
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Figure 1. Surgical steps. (A) Approach to the tendon. (B) Tendon damage is performed. (C)
Hyaloglide® application to the tendon injury site.

The rabbits were housed in single crates post-surgery for three days and a dosage of
300,000 units of intramuscular penicillin intramuscular was administered during the first
three postoperative days to prevent infections. We did not immobilize the hind limbs.

Therefore, animals were conceded normal cage activities under standard laboratory
conditions and sustained with standard chow and water ad libitum.

After 45 days, animals were then sacrificed using a 300 mg/kg pentobarbital overdose.

2.3. In Vitro Study Design

The damaged tendons were then accessed, and macroscopic investigation performed
to monitor gliding movements and the formation of peritendinous adhesions.
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Macroscopic scoring of adhesions was conducted prior to tendon withdrawal in all
30 animals, while biomechanical tests of resistance were carried out on 4 samples from
each randomly chosen group. The remaining tendons were separated into two 1-cm-long
samples, one sample proximal to the tenotomy and the other sample distal to the tenotomy.
The samples were then subjected to light and electron microscopy and gene expression
analysis and respectively analyzed.

2.4. Histology

The samples were prepared for light microscopy by fixing the tendons in 10% formalin
for 12 h then were dehydrated in alcohol, clarified in xylene, and embedded in paraffin. The
samples were cut at 6–8 µm perpendicular to the tendon axis and the sections (6–10 micron)
were stained with hematoxylin-eosin (HE) and Masson’s trichromic stain and observed
with a DM400 microscope equipped with a DFC320 digital camera and IM1000 image
manager system (Leica Microsystems, Wetzlar, Germany).

2.5. Histomorphometry

Histological images of the stained H&E and Masson’s trichrome sections were taken
for digital analysis at a 10X and 20X magnification. Two masked histologists scored the
images using two semiquantitative scores: The Tang score (Table 1) [36] to assess the total
adhesions, and the Soslowsky, Svesson, and Cook score (Table 1) [37–39] was adopted
to analyze tendon regeneration. The collagen fibril orientation was analyzed by the fast
Fourier transform (FTT) method (ImageJ 1.53a, NIH) and by a semi-quantitative method.
These methods were previously validated by the same authors [40].

Table 1. The Tang score, used to evaluate adhesion of tendons, and Soslowsky, Svesson, and Cook (SSV) score, used to
evaluate tendon regeneration.

Score Quantity Quality

0 No adhesion No adhesion
1 Sparse filaments Regular, elongated and thin filaments
2 High number of filaments Irregular and short filaments
3 Countless strands Dense and non-filamentous adhesions

DEGREE of ADHESION (sum of previous score)
0 No adhesion
2 Slight adhesion

3–4 Moderate adhesion
5–6 Severe adhesion

SSV Score 0 1 2 3

FIBER STRUCTURE
Normal structure with
parallel and compact

collagen fibers

Slight changes with
separate collagen

fiberswith increased
ripple (<25%)

Moderate changes with
disorganized, separate

and disoriented
collagen fibers(≥25%

and ≤50%)

Marked changes with
disorganized and

hyalinized collagen
fibers(>50%)

CELLULARITY
(ASPECT)

Tapered and elongated
nuclei, not very visible

and with
little cytoplasm

Increased cell rotondity:
nuclei become less oval

and rounder with
little cytoplasm

Increased roundness
and cellular size: the
nuclei become round
with an increase in

the cytoplasm

The nucleus appears
round and wide with
abundant cytoplasm
and lacuna formation

VASCULARITY
The few vessels are

parallel to the
collagen fibers

Slight increase in
the vessels

Moderate increase in
the vessels

Marked increase in
the vessels

CARTILAGINEOUS
FORMATION

No cartilaginous
formation

Isolated hyaline
cartilage nodules

Moderate cartilaginous
formations(25–50%)

Extended cartilaginous
formations(>50%)
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2.6. Electron Microscopy

Tendon samples were fixed in 2.5% glutaraldehyde (Fluka, St. Louis, MO, USA) and
0.5% saccharose in 0.1 M Sörensen phosphate buffer for 6–8 h. The samples were then
rinsed in 1.5% saccharose in 0.1 M Sörensen phosphate buffer for 6–12 h, post-fixed in 2%
osmium tetroxide, dehydrated, and placed in Glauert’s embedding mixture 34 containing
equal parts of Araldite M and Araldite Härter, HY 964 (Merck, Darmstadt, Germany) and
an additional 2% of DY 064 accelerator (Merck, Darmstadt, Germany). The plasticizer
dibutyl phthalate was added at 0.5%.

Semi-thin sections (1 µm) were obtained, then ultra-thin sections were cut (70–100 nm)
using a Leica Ultracut UCT. The semi-thin sections were stained with toluidine blue for
2–3 min and observed under a DM400 microscope equipped with a DFC320 digital camera
and an IM1000 image manager system (Leica Microsystems, Wetzlar, Germany). The ultra-
thin sections were stained with uranyl acetate and lead citrate and then analyzed under a
JEM-1010 transmission electron microscope (JEOL, Tokyo, Japan).

2.7. Gene Expression

Complementary DNA (cDNA) was made from 200 ng of total RNA using M-MLV
Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) or a miRcute miRNA First-strand
cDNA Synthesis Kit (Tiangen Biotech, Shangai, China), following the manufacturer’s pro-
tocols. Real-time PCRs were performed with a Rotor-Gene 3000 (Corbett Research, Sydney,
Australia) using the 300 nM concentration of the designed primers and FastStart SYBR
Green Master (Roche Diagnostics, Mannheim, Germany). Differences in gene expression
were evaluated by the 2delta Ct method. Values were normalized to the expression of the
glyceraldehyde-3-hosphate dehydrogenase (GAPDH) housekeeping gene. The mature
miRNAs expression levels in tendons treated and not treated were estimated with the
miRcute miRNA qPCR detection kit (Qiangen).

2.8. Biomechanical Analysis

The specimens were mounted onto a Bionix 100 mechanical testing system (MTS
System Limited, Cirencester, UK). A preload force of 2 N was applied as the initial tension.
The tendons were marked with black ink ~5 mm away from the site of laceration. The
tendons were then loaded to failure at a constant speed of 20 mm/min. The collected data
were used to calculate the biomechanical properties of each specimen.

2.9. Statistical Analysis

The sample size was calculated a priori using the paired t-test, with at least 80%
power and an alpha-error of 0.05 obtained from a previous study comparing the Soslowsky,
Svensson, and Cook score in the treated and control tendons [41]. Power and sample size
were analyzed using G-Power software version 3.1.9.2.

Data of the adhesion formation and the synovial sheath regeneration and biome-
chanical analysis were not normally distributed. Accordingly, all statistical analyses were
performed via a nonparametric approach: the Wilcoxon test was adopted to compare the te
groups. Statistical significance was set as p < 0.05. The mean values for quantitative data
were compared, applying the Anova test for RT-PCR results. Statistical significance was set
as p < 0.05.

3. Results
3.1. General Conditions and Macroscopic Evaluations

Anesthesia, surgery, and Hyaloglide® application were well tolerated in the animals
with no presentation of necrosis or infections. At the follow-up examinations, no adverse
events were reported following administration of Hyaloglide®. Macroscopic qualitative
analysis of the injured tendons revealed fewer peritendinous adhesions in the tenolysis
site of the Hyaloglide®-treated tendons (Figure 2A,C) compared to the untreated control
group (Figure 2B,D).
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Figure 2. Macroscopic analysis of tendon adherences at time of explant. (A,B) Hyaloglide® group.
(C,D) Control unprotected group.

The adhesion rates and grades of the groups are presented in Table 2. In comparing
adhesion grades, a significant difference was found between the control group and the
treatment group (p < 0.001).

Table 2. Post-operative adhesion rates and grades for two groups.

Adhesion Grade
Group N◦ Rabbit 0 1 2 3 4 Adhesion Rate (%)

Hyaloglide 30 26 4 0 0 0 4/30 (10)
Non-Treated 30 0 0 1 4 25 30/30 (100)

3.2. Histological Evaluations

The peritendinous sheaths in the Hyaloglide®-treated tendons were similar in appear-
ance to normal tendons (data not shown), while in the untreated tendons, we observed
denser surroundings, disorganized, deteriorated, and separated collagen fibers and exten-
sive adhesion sites. We reported fewer peritendinous adhesions in the Hyaloglide®-treated
samples and clearly noted well-regenerated synovial sheaths, including parallel collagen
fibers and an organized architecture, devoid of an overlapping fibrous architecture. More-
over, we observed extended cells with a less pronounced cytoplasm with no inflammatory
infiltration (Figure 3A–E). Hypercellularity zones with round cells and large adhesion sites
in proximity to the tendon surface were evident in the untreated tendons (Figure 3F–H).
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3.3. Histomorphometric Evaluations

We also observed relevant improvements in the tendons treated with Hyaloglide®

compared to the untreated tendon. The positive outcomes were highlighted via com-
parative statistical analysis of the adhesion evaluation score (Tang score) and tendon
regeneration (Soslowsky, Svensson, and Cook score) specifically reporting decreased ad-
hesion formation: (Tang score: total adhesions OR = 0.01, p = 0.001 *) (Figure 4A, Table 3).
An improved regeneration was also evident (Soslowsky, Svensson, and Cook score: fiber
structure OR = 0.08, p = 0.001 *; cellularity OR = 0.03, p = 0.001; vascularity OR = 0.03,
p = 0.001 *. No statistical differences were reported for cartilaginous formation OR = 0.10,
p = 0.08); (Figure 4B–E, Table 3).
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Table 3. Tang score and Soslowsky, Svesson, and Cook score results of tendons treated or not with
Hyaloglide.

PARAMETER CONTROL HYALOGLIDE
TANG SCORE 5.52 ± 0.7 0.81 ± 1.4
SOSLOWSKY, SVESSON,
COOK
(FIBER STRUCTURE)

2.9 ± 0.34 0.34 ± 0.5

SOSLOWSKY, SVESSON,
COOK
(CELLULARITY)

2.92 ± 0.3 0.23 ± 0.43

SOSLOWSKY, SVESSON,
COOK
(VASCULARITY)

2.92 ± 0.3 0.26 ± 0.44

SOSLOWSKY, SVESSON,
COOK
(CARTILAGINEOUS
FORMATION)

0.24 ± 0.43 0.24 ± 0.43

The results on collagen orientation show similar results to the Fourier analysis and
semiquantitative evaluation, using a scale from 0 (extremely parallel) to 1 (extremely
random), as suggested by Van Zuijlen and colleagues [40]. The collagen orientation index
is the ratio of the minor axis and the major axis of the thresholder Fourier power plot.
An example of collagen bundle orientation measurement by Fourier analysis is provided
in Figure 5.

3.4. Electron Microscope Evaluations

Electron microscope analysis of the synovial sheaths (Figure 6) revealed that the
synovial sheaths were arranged in stratified layers with large cleavage spaces (Figure 6A)
in the tendons treated with Hyaloglide®, with a similar arrangement observed in normal
tendon sheaths (Figure 6B). We also noted an increased packed density of the collagen fibers
related to the normal tendons, albeit organized in parallel fascicles (Figure 6C) with typical
differences in dimension between the inner visceral layer (Figure 6D) and the external
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fibrous layer (Figure 6E). Contrastingly, neither the cleavage spaces nor stratification of
the peritendinous sheaths were well delineated in the untreated tendons (Figure 6E,F).
However, substantial collagen fiber bundles of various sizes were present in a densely
packed assembly and with no distinct orientation (Figure 6G,H).
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3.5. Gene Expression

A detailed analysis of the gene expression of the extracellular matrix components
involved in tenogenesis is reported in Figure 7. Significant alteration of sclerodermin
(SCX), tenascin (TNC), and collagen type I (Coll 1 a 1) expression, n related to good tissue
regeneration, on treated tendons is observed. On the contrary, a defined reduction of
collagen type III, closed to a scar tissue, is observed.

Nowadays, miRNAs represent an important tool in biological and medical fields,
due to their crucial role as biomarkers of regeneration. At the post-transcriptional level,
miRNAs are known to influence both the stability and protein expression of their mRNA
targets. For this reason, these are now considered key regulators of several biological
processes, including tissue regeneration. In the light of such considerations, in the last part
of this work, we evaluated the expression of the most mature miRNAs known as negative
inducers of tenogenesis. As reported in Figure 7, all the miRNAs related to the positive
effects of tendon regeneration were found to be upregulated in the treated tendon. On
the contrary, miR-29b-3p, which is a negative regulator of tenogenesis, was found to be
downregulated in the treated group.
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3.6. Biomechanical Evaluations

As regards the failure load, no significant differences (p = 0.75) were observed between
the control group (median 79.68 N range 49.45–105.89) and the group with tendons treated
with Hyaloglide® (median 74.87 N median 44.87–104.40).
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4. Discussion

Tenolysis is a common inflammatory response resulting in scar tissue formation and
inhibits synovial sheath regeneration, which will subsequently impede the gliding function
of the tendon and restrict related movements, e.g., digital flexion [42]. Over the last 25 years,
researchers have been striving to overcome this clinical challenge, with positive advances
in wound healing research regarding the molecules and cells related to the healing process.
Hence, characterization of the growth factors involved in tendon wound healing is paving
the way towards a new era of potential anti-adhesion treatments. Numerous studies have
evaluated the efficacy of HA on adhesions, gliding resistance, and tendon healing [42–44].
Different in vitro models have been used, including animals (dog, chicken, rabbit, rat, and
horse) [21–23,45], tendons [46,47], and procedures of induced tendon damage (surgical,
collagenase, or steroid lesion). So far, numerous studies have evaluated in vitro responses
in animal models regarding the effect of various growth factors or the impact of the
same growth factor inhibitors to monitor the healing process and acquire adhesion-free
tendons [48–52]. Nevertheless, a limited number of pre-clinical studies have led to clinical
trials, and to date, no favorable clinical outcomes have been obtained regarding adhesion
reduction, although some adhesion barriers have demonstrated satisfactory clinical efficacy.

An absorbable autocross-linked hyaluronan-based gel (Hyaloglide®) [3] is an adhesion
barrier. Herein, we reported the efficacy of Hyaloglide® application post tenolysis in a
rabbit model to prevent post-surgical peritendinous adhesions. The data herein contributes
to and extends existing knowledge concerning the restoration of neighbouring tendons
(synovial tendon sheaths). Noteworthy is the avoidance of adherence, which induces
improved synovial regeneration as illustrated in the ultrastructural analysis. Our findings
suggest that Hyaloglide® application prevents peritendinous adhesions after tenolysis.
This process is attributable to the facilitating role of the treatment in reorganizing the
tendon sheaths. Hyaloglide® and specifically the sodium hyaluronate component of the
gel [20] compensate for the loss of synovial fluid [53] commonly occurring after tenolysis
and is imperative for the restoration of peritendinous sheaths.

Hyaloglide® was not observed upon macroscopic examination during the explants nor
was it observed upon microscopic examination after histological staining with H&E and
Masson’s trichrome staining. Numerous quantitative and qualitative procedures have been
used in histological investigations. Adhesions were classified into four grades by Tang [36]
as follows: no adhesions, few adhesions, moderate adhesions, and severe adhesions. This
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grading considered the presence of adhesions, the extending length of adhesions, and the
density of filamentous fibers. Weeks and Wray [54] classified adhesions into two different
groups: (i) loose adhesions, which may be released by physical activity to improve the
tendon glide, and (ii) dense adhesions, which are generally difficult to release. Furthermore,
the authors noted that the adhesive tissues resulting from the subcutaneous tissue and the
fat would become loose adhesions and adhesive tissues from the palmar fascia, volar plate,
tendon sheath, and periosteum would become dense adhesions. Biochemical examination
of adhesion tissue specimens was conducted in each group. It is well known that upon
inflammatory trigger/stimuli, such as in the presence of adhesion tissue related to scar
formation, tenocytes tend to express inflammatory cytokines, including tumor necrosis
factor (TNF)-α; interleukin (IL)-1β, IL-6, and IL-21; and transforming growth factor (TGF)-
β. Of note, tendon tissues in the presence of bad healing do not show the classical histology
of inflammation but an alteration of collagen type II fibers. So far, the epigenetics associated
with tendon disorders could represent a novel tool. Moreover, several miRNAs have been
reported to be involved in tendon disorders and inflammation [55–57]. These studies
revealed the alteration of hundreds of miRNAs, which are considered to be associated
with the pathological changes in the tendon. Among them, miR-145-5p, miR-100-5p,
miR-195-5p, and let-7 were found to be the key miRNAs and warrant further detailed
investigations. With this in mind, on our tested sample, their alteration confirms that in
the untreated tendon, their expression is negatively correlated with tenogenesis, which is
higher compared to the one related to the treated tendons.

5. Conclusions

The findings observed within the present study strongly support the efficacy of local
Hyaloglide® application around the tendon as a favorable alternative to prevent adhesions
after tendon surgery, a finding that was further confirmed by a clinical randomized multi-
center trial. This treatment may be particularly indicated in cases of extensive injury to the
tendon sheath and the presence of tenolysis. The absorbable anti-adhesion action of the gel
plays a fundamental role in the repair of the peritendinous synovial sheaths. In addition,
the potential of the hyaluronate autocross-linked gel may support the growth factors or
cells to enhance the biological tendon healing process.
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