
applied
sciences

Article

Towards a Flexible Smart Factory with a Dynamic
Resource Orchestration

Milan Pisarić 1,* , Vladimir Dimitrieski 2 , Marko Vještica 2 , Goran Krajoski 1 and Mirna Kapetina 2

����������
�������

Citation: Pisarić, M.; Dimitrieski, V.;

Vještica, M.; Krajoski, G.; Kapetina, M.

Towards a Flexible Smart Factory with a

Dynamic Resource Orchestration. Appl.

Sci. 2021, 11, 7956. https://doi.org/

10.3390/app11177956

Academic Editor: Silvio Abrate

Received: 28 July 2021

Accepted: 26 August 2021

Published: 28 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Industrial Automation, KEBA AG, 4040 Linz, Austria; krgo@keba.com
2 Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia; dimitrieski@uns.ac.rs (V.D.);

marko.vjestica@uns.ac.rs (M.V.); mirna.kapetina@uns.ac.rs (M.K.)
* Correspondence: pisa@keba.com

Abstract: Amid the current industrial revolution, a total disruption of the existing production lines
may seem to be the easiest approach, as the potential possibilities seem limitless when starting
from the ground up. On the business side, an adaptation of existing production lines is always
a preferred option. In support of adaptation as opposed to disruption, this paper presents a new
approach of using production process orchestration in a smart factory, discussed in an industrial case-
study example. A proposed smart factory has the Orchestrator component in its core, responsible
for complete semantical orchestration of production processes on one hand, and various factory
resources on the other hand, in order to produce the desired product. The Orchestrator is a complex,
modular, highly scalable, and pluggable software product responsible for automatised planning,
scheduling, and execution of the complete production process. According to their offered capabilities,
non-smart and smart resources—machines, robots, humans—are simultaneously and dynamically
assigned to execute their dedicated production steps.

Keywords: dynamic resource orchestration; smart factory; cyber-physical systems; domain-specific
modelling languages; industrial automation

1. Introduction

Originating in Germany as Industry 4.0 (I4.0), the claim that society is amidst the fourth
industrial revolution has been accepted and widely developed in the past decade [1,2]. Sev-
eral governmental programs and paradigm-shifting initiatives that support and promote
the idea are growing worldwide, with the most elaborated industries being in front—from
‘Smart manufacturing’ in the United States and ‘Made Smarter’ in the UK, to ‘Made in
China 2025’ [2,3]. The scientific research community, although it sometimes struggles with
the multi-disciplinary nature and wide perspectives of I4.0, has also given an impetus
to great change [4,5]. In the I4.0 era, manufacturers are not only required to invest in
technological infrastructure but also need to reconsider their existing business models and
resources—including humans—to adapt quickly to changes in perspective [6]. Continuous
adjustment to a human workforce is particularly important in Europe, where jobs involving
manual work still constitute the second-largest category within the manufacturing sec-
tor [7]. I4.0 is faced with the challenge of blurred boundaries between the physical, digital,
and biological worlds integrating new digital technologies into production processes. In
addition, there is strong customer demand for highly customised products that are: with
prices near to mass production, of increased quality, and need a short time to be delivered.
Therefore, all manufacturers—in particular, Small and Medium-Sized Enterprises (SME)—
need to adapt quickly to new trends and answer to the ever-growing list of requirements if
they are to endure this revolution [8,9].

Smart Factory (SF) is nowadays a common term encapsulating the vision for factories
of the future. The creation of a Smart Factory is one of the most frequent directions taken
when applying I4.0, for both the scientific community and manufacturers [9]. Although

Appl. Sci. 2021, 11, 7956. https://doi.org/10.3390/app11177956 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0764-4453
https://orcid.org/0000-0003-3234-6543
https://orcid.org/0000-0003-2368-5818
https://orcid.org/0000-0002-2619-5796
https://orcid.org/0000-0002-2034-3401
https://doi.org/10.3390/app11177956
https://doi.org/10.3390/app11177956
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11177956
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11177956?type=check_update&version=2

Appl. Sci. 2021, 11, 7956 2 of 25

many envision smart factories to be built from the ground up, thus having the total
disruption, existing factories can be made ‘smarter’ by adapting them with the current
technology. The introduction of the idea of enriching the existing device with a cyber
component has gradually led to the wide acceptance of the Cyber-Physical Systems (CPS)
as one of the key enabling technologies of SF and I4.0 [4,5]. A legacy device can be
enriched with cyber interfaces and transformed into CPS in what could be considered
retrofitting. Therefore, by using the know-how already gained in the past two decades,
it is possible to partially retrofit, and thus adapt, the existing production systems into a
flexible manufacturing system of the next generation. Such manufacturing systems are self-
organised networks of machines, products, humans, and conveyors—the so-called cyber-
physical production system (CPPS). By retrofitting legacy equipment and information
systems, it will not matter what type the production participant is, as long as it can
communicate with the complete CPPS. Additionally, the I4.0 movement is not gravitating
towards workerless production facilities, unlike the CIM approach popular at the end
of the last century. It is rather motivated to integrate people into this cyber-physical
structure to maximise their potential [10]. Therefore, it will be essential to enable safe
and fluent cooperation of human workers with other—smart and legacy—resources [6].
Recent advances in production research forecast that future production and manufacturing
systems will integrate heterogeneous, decentralised, smart resources, and processes across
all organisational levels of control [11]. All factories must gradually become ‘smart’ if
they are to facilitate numerous cyber-physical systems communicating and cooperating
synchronically with each other and with humans [3,9].

The communication and cooperation between all the participants in an SF will need
to be well orchestrated, from early conceptualisation to late execution of the production.
The production systems will reconfigure as frequent as new bespoke products are ordered.
Currently, Product Management oversees checking that these orders are analysed and
adapted by several groups of dedicated technologists and specialists. Their task is to
plan, facilitate and reconfigure all the manufacturing tasks and resources [11]. These
tasks are later scheduled and executed in an automatised production if all the required
machines are available. If the shop floor includes human workers, they will simply
follow and execute instructions provided to them. Robots and other machines are of
course stopped, physically reconfigured and reprogrammed, and then finally ready for
a new set of instructions. All these challenges are just the tip of the iceberg since there is
also the coordination of the complete supply chain management, quality assurance, and
production management. Ideally, the orchestration of all the above-mentioned processes
is to be handled simultaneously, as a part of a synchronised computer system capable of
coordination of preparing, scheduling, executing, and delivering a customised product.

Although the concept of production orchestration is already known, numerous ques-
tions require further investigation and answering before the wider acceptance and appli-
cation of an orchestration solution. In order to guide this research work, our focus is on
two research questions (RQ):

• RQ1: Is it possible to make formal models of production processes and shop floor
resources aimed to enable and support dynamic resource orchestration?

• RQ2: Is it possible to create a system that would enable the automation of model-
driven dynamic orchestration of shop floor resources?

The contribution of this research is reflected in the fact that the existing orchestration
concepts have been reused and upgraded to provide answers to the above-stated research
questions. Based on a model-driven approach and Domain-Specific Modelling Languages
(DSMLs), the first aim of our research is to establish a foundation for formal modelling of
any production process or any type of resource, thus addressing the RQ1. In addition to
the production processes modelling already discussed in our previous papers [12,13], the
foundations for formal modelling of resources are also presented here. The vision of Smart
Factories based on our model-driven approach requires the existence of the Orchestrator as
its core component. Therefore, the second aim of our research is to design a system capable

Appl. Sci. 2021, 11, 7956 3 of 25

of performing a model-driven dynamic orchestration, thus addressing the RQ2. Such an
Orchestrator enables an SF managed and operated on a formal and abstract level by the
experts within the factory. At the same time, the end-users perceive it as a self-contained
black-box that delivers the desired product. In this paper, we present and discuss the
architecture and application of this component. An additional contribution of this research
is reflected in the design of a software architecture of the Orchestrator that industrial
manufacturers and practitioners could implement when switching from traditional to
advanced manufacturing systems in the emerging I4.0 era matching the current industrial
setting. To the best of our knowledge, there is no solution published that covers every
aspect of an SF addressed in this paper. As assembly processes have the tradition of
pioneering the adoption of new technologies, it is not a surprise that Assembly 4.0 (A4.0)
systems are expected to pioneer the integration of I4.0 technologies as well [14]. To discover
the limits or to confirm the applicability of the Orchestrator, an industrial assembly use-
case is used as a proof-of-concept. For the purposes of this research, an isolated and
experimental assembly line has been set up following the proposed architecture. In this
paper, we present the use-case and discuss the results.

The remainder of this paper is organised as follows: Section 2 briefly introduces the
methodology applied in the research. In Section 3, the Orchestrator Architecture and
its key elements are elaborated. In Section 4, an industrial case-study is presented as a
proof-of-concept. Section 5 provides background literature research, in the context of the
presented architecture. The paper is concluded in Section 6, with a summary, discussion
about the Orchestrator application in an industrial case-study, and insight into the future
activities of the research group.

2. Methods

Based on the knowledge and preferences shared by the stakeholders of an EU-based
manufacturer, and a literature review of state-of-the-art I4.0 smart factories, we were able
to define the initial steps for designing an SF capable of answering research questions. To
restructure and expand the existing know-how in dynamic orchestration, the principle
of Design Science Research (DSR) was used. As it is fundamentally a problem-solving
paradigm, DSR ‘seeks to enhance existing human knowledge with the creation of innova-
tive artefacts and the generation of design knowledge via innovative solutions to real-world
problems’ [15]. Therefore, the DSR methodology is considered to be a well-suited method-
ology for exploring the practical usefulness of generically designed technological artefacts
to answer the research questions within the field of information systems [16,17]. The
DSR methodology process model presented in Figure 1—originally elaborated in [16]—is
chosen and adapted according to the purposes of this research. This DSR process includes
six research steps, enumerated in Figure 1: (I) Problem Identification and Motivation,
(II) Definition of Solution Objectives, (III) Design and Development, (IV) Demonstration,
(V) Evaluation and (VI) Communication. These six steps are iterated as shown in Figure 1.

The kick-off of this research was the investigation carried out with the goal of in-
creasing the automatization and flexibility of the contemporary production lines, under
the I4.0 trends. At this point, we formed a team, as a part of the first step of the research
process. The second step started with our intention to identify and define the main research
problem behind the above-mentioned goal. The stakeholders and industrial practitioners
presented to us the contents of their internal analysis of work previously published by in-
dustrial competitors. These internal analysis results were written in a form of whitepapers,
thus representing the initial output of Step II of the research. In addition to that, we have
analysed the state of the art in scientific literature and discussed it as the second output of
Step II. This analysis is presented in Section 5 of this paper. Knowledge gained in Step I and
Step II lead to the problem specification and the definition of the first objective; to improve
the existing artefacts found fitting to solve the main problem. As a part of the third research
step, the architecture of the Orchestrator software solution was designed and is presented
in Section 3 of the paper. For the fourth research step, we found adequate use-cases that

Appl. Sci. 2021, 11, 7956 4 of 25

could be used as demonstrators of the usability of the designed architecture, an artefact of
Step III. The best-fitting use-cases would be those that involve experimentation, simulation,
case-study or proof-of-concept [15]. The Demonstration is covered in Section 4 of the paper,
where an industrial case-study is discussed.

Appl. Sci. 2021, 11, 7956 4 of 24

third research step, the architecture of the Orchestrator software solution was designed

and is presented in Section 3 of the paper. For the fourth research step, we found adequate

use-cases that could be used as demonstrators of the usability of the designed architecture,

an artefact of Step III. The best-fitting use-cases would be those that involve experimenta-

tion, simulation, case-study or proof-of-concept [15]. The Demonstration is covered in Sec-

tion 4 of the paper, where an industrial case-study is discussed.

P
ro

ce
ss

 I
te

ra
ti

o
n

Orchestrator
Architecture

Literature
Review

Industrial Case-
Study

I – Problem
Identification &

Motivation

II – DefinItion of
Solution Objectives

III – Design and
Development

IV – Demonstration

V – Evaluation

Nominal process
sequence

VI – Communication

Past research

Elaborated in the paper

Further research

Figure 1. DSR methodology process model.

Although all the above-described iterative steps were covered, they are denoted dif-

ferently in Figure 1. The steps denoted with the pattern-filled rectangles (steps III and IV,

and partially steps II and VI) are presented in this paper. The Evaluation (V) is currently

under way and only initial results are briefly discussed here. Additionally, this paper is

considered as the first output of the Communication (VI) phase. An extensive discussion

of the Evaluation step will be a topic of further research and communicated in future pub-

lications.

3. The Orchestrator

The Orchestrator is a complex, distributed system designed to support and enhance

the flexibility of both new production systems—made from the ground up—and old ones

adapted to be smart. It orchestrates a safe collaboration of all types of factory resources—

humans, machines, robots—with the aim of successfully bringing the production to end

result.

Formally specified production processes are fed to the Orchestrator, which is in turn

responsible for the complete orchestration—modelling, matching, scheduling, and enrich-

ing the process—and for the execution of final production steps in an SF’s Digital Twin.

Figure 1. DSR methodology process model.

Although all the above-described iterative steps were covered, they are denoted
differently in Figure 1. The steps denoted with the pattern-filled rectangles (steps III
and IV, and partially steps II and VI) are presented in this paper. The Evaluation (V) is
currently under way and only initial results are briefly discussed here. Additionally, this
paper is considered as the first output of the Communication (VI) phase. An extensive
discussion of the Evaluation step will be a topic of further research and communicated in
future publications.

Appl. Sci. 2021, 11, 7956 5 of 25

3. The Orchestrator

The Orchestrator is a complex, distributed system designed to support and enhance
the flexibility of both new production systems—made from the ground up—and old
ones adapted to be smart. It orchestrates a safe collaboration of all types of factory
resources—humans, machines, robots—with the aim of successfully bringing the pro-
duction to end result.

Formally specified production processes are fed to the Orchestrator, which is in
turn responsible for the complete orchestration—modelling, matching, scheduling, and
enriching the process—and for the execution of final production steps in an SF’s Digital
Twin. The Digital Twin (DT) metaphor is a part of the I4.0 movement which implies the
mirroring of a real system, to include both the physical appearance and its behaviour [18].
Although different in nature, once formally modelled as DTs within the Orchestrator, all
the resources are used uniformly, not depending on their type. Execution commands,
received from the Orchestrator, are propagated by a DT to its correlative resource to
be carried out at a shop floor level. The notion of production orchestration represents
mixed activities of scheduling, both batch product planning and operation scheduling,
and allocation of operation steps on resources. These activities are to be performed
automatically, enabling the fast and dynamical adaptation of the shop floor to the cus-
tomers’ needs. This paper is a continuation of the segments of our research previously
presented in [13,19].

The distant goal in applying the Orchestrator is to reach the milestone of ‘the assembly
of anything’ in SF which will implement listed principles:

• Complete production flow is coordinated by the Orchestrator, from ordering to deliv-
ering an assembled product.

• Assembly tasks are dynamically distributed among various resources.
• All resources have a uniform treatment, including a human worker as a potentially

central figure.
• Retrofitting of legacy resources and Plug-and-Produce is supported, to first adapt

the current production into an intermediate, smarter factory solution, ‘SF3.5′, before
reaching the long-term goal of ‘SF4.0′.

• Generic and powerful process and shop floor modelling tools that would enable easy
customisation and adaptation of the previously gained modelling knowledge.

• Simulation is synchronised with the real-time execution, thus enabling powerful
monitoring and quality control.

• All resources collaborate safely in real-time.
• Standardisation and interoperability are strongly advocated but not a limiting factor.

All the mentioned principles can be applied more abstractly to support future pro-
duction as a whole—i.e., manufacturing, supply chain, packaging, and delivery—and are
not limited to only one domain. A vision of an SF in which these principles are applied is
enabled by introducing the architecture of the Orchestrator presented next.

Architecture of the Orchestrator

The Architecture of the Orchestrator described in this Section is a resulting artefact
of Step III of the DSR methodology described in Section 2. Architectural elements of the
Orchestrator are presented in Figure 2. Differentiated here are the internal, core infrastruc-
ture components—enclosed within the dashed-line rectangle—and external components,
that are more oriented towards users of the Orchestrator. Users of the system are not
only the end-customers but also plant managers, process engineers and quality engineers,
among others. The plant manager specifies the factory’s shop floor model and oversees the
production, while process and quality engineers specify process models.

Appl. Sci. 2021, 11, 7956 6 of 25Appl. Sci. 2021, 11, 7956 6 of 24

Figure 2. Architecture of the Orchestrator with the denoted ‘Happy flow’.

On one side, the Orchestrator can be seen as a self-contained black-box. For end-cus-

tomers, the output of the black-box is the desired product, the specification of which is

given as an input to the system, while the entire production system is self-orchestrated in

the background. On the other side, several elements of the Orchestrator are pluggable, to

provide process and quality engineers with the possibility of adapting the solution to var-

ious use-case or even factory-specific requirements, e.g., the user interface. The plus sym-

bols in Figure 2 denote these pluggable elements. The full red line depicts the orchestra-

tion ‘Happy flow’ (i.e., ‘Happy path’), which is a default orchestration scenario that fol-

lows the numbered elements. The outset is the user interface (number 1) and the closure

is the execution of production using available Resources (number 9) without experiencing

any error states or unexpected behaviour. Other elements, although not numbered, con-

tribute to the integrity and completeness of the solution. Description of other orchestration

scenarios goes beyond the scope of this paper. The overall architecture of the presented

system is modular and is implemented as a set of software components packaged within

Docker containers. Every software component is a software agent. Each respective entity

has some intelligence attached to the software components, enabling the realisation of a

modular, smart, and pluggable software infrastructure. The high scalability of the system

and running on cross-platform with minimum time to set up is allowed by introducing

de-coupled containers. They are started, stopped, and run in multiple instances inde-

pendently and can be seen as isolated and complete micro-services. These containers are

run and instantiated on-demand, depending on a multitude of factors such as the load on

the existing container instances or the number of concurrent requests.

The entry point of the system is the Customer Interface (1). It is structured in a way

that supports the development of flexible ways to interact with the complete production

facility. This is one of the components suitable for factory-specific or user-specific adjust-

ments. Its pluggable fashion enables a customer to express an individually customised

product in various input formats, depending on the particular use-case. These inputs are

later converted into a more generic product model or even a standardised digital product-

Logging Bus4 – Knowledge BaseInfrastructure

Message Broker

5 – Resource Matcher

S2 S3

S3 S4 S5

S4

CP2

CP3

CP4

2 – Orchestration Agent

order
agent #1

order
actor
order
actor
order
actor

order
actor

order
actor
order

agent #2

3b – Modeling Tools

1 - Customer Interface

Product spec.
Order spec.

3a – Process Reasoner

CP2

CP3

CP4

Product -> Process

8 – Digital Twin

Digital Twin / Simulation

Error Handler

Rule-based error handling

Dashboard and Analytics

Resource Discovery

6 – Production Scheduler

9 – Resources

7 – Communication
Protocols

P1

P2

P3

Figure 2. Architecture of the Orchestrator with the denoted ‘Happy flow’.

On one side, the Orchestrator can be seen as a self-contained black-box. For end-
customers, the output of the black-box is the desired product, the specification of which
is given as an input to the system, while the entire production system is self-orchestrated
in the background. On the other side, several elements of the Orchestrator are pluggable,
to provide process and quality engineers with the possibility of adapting the solution
to various use-case or even factory-specific requirements, e.g., the user interface. The
plus symbols in Figure 2 denote these pluggable elements. The full red line depicts the
orchestration ‘Happy flow’ (i.e., ‘Happy path’), which is a default orchestration scenario
that follows the numbered elements. The outset is the user interface (number 1) and
the closure is the execution of production using available Resources (number 9) without
experiencing any error states or unexpected behaviour. Other elements, although not
numbered, contribute to the integrity and completeness of the solution. Description of
other orchestration scenarios goes beyond the scope of this paper. The overall architecture
of the presented system is modular and is implemented as a set of software components
packaged within Docker containers. Every software component is a software agent. Each
respective entity has some intelligence attached to the software components, enabling the
realisation of a modular, smart, and pluggable software infrastructure. The high scalability
of the system and running on cross-platform with minimum time to set up is allowed
by introducing de-coupled containers. They are started, stopped, and run in multiple
instances independently and can be seen as isolated and complete micro-services. These
containers are run and instantiated on-demand, depending on a multitude of factors such
as the load on the existing container instances or the number of concurrent requests.

Appl. Sci. 2021, 11, 7956 7 of 25

The entry point of the system is the Customer Interface (1). It is structured in a way that
supports the development of flexible ways to interact with the complete production facility.
This is one of the components suitable for factory-specific or user-specific adjustments.
Its pluggable fashion enables a customer to express an individually customised product
in various input formats, depending on the particular use-case. These inputs are later
converted into a more generic product model or even a standardised digital product-
specification (such as Computer-Aided Manufacturing (CAM) or Computer-Aided Design
(CAD) models). An individual customer-defined product specification is simultaneously
an input for the Orchestration Agent (2) and an order for the Orchestrator system. The
Orchestration Agent is a principal component in charge of all other processes inside the
Orchestrator. An agent can be seen as a state machine that runs each user’s product order
through various states—from matching to execution—to create the desired product. For
each new order, a new Order Agent is instantiated and resides in the Orchestration Agent
that stores the current state of the actor’s state machine. The state machine overviews all
the steps that need to be executed for an order to become finalised, and asynchronously
invokes other components depending on the current state of an individual actor.

The first component to be invoked by the Order Agent is the Process Reasoner (3a). It
is provided with a product specification as the input, thus starting the reasoning phase.
The main function of the Process Reasoner is to reason upon all required capabilities, steps,
and order of the sequences in order to generate the process specification as an output.
The process specification is a technology-agnostic and shop-floor-agnostic description,
which does not include resource allocations. On the contrary, it should hold complete
information about the bill of materials, quantities, timing constraints, acceptance, and
completion criteria. Similar to the Customer Interface, the Process Reasoner is also one
of the components implemented in a pluggable fashion so it can respond to the use-
case specific requirements. Once inferred, the production process specification can be
further customised using one of the supplied tools for modelling. The Modelling Tools
(3b) component, as seen in Figure 2, represents two independent tools—Process Modeller
and Resource Modeller—used by the Process Engineers and the Quality Engineers in
the modelling phase. The main purpose of the Process Modeller is to allow alteration of
the production process specification that is the product of the Process Reasoner [12]. Its
utilisation allows a customer to alter the existing production processes’ specifications—
either previously created or inferred by the Process Reasoner—or to create a production
process specification from scratch. Since product specifications might be provided in forms
that are not machine-readable, the ability to manually create and edit production process
specifications is of utmost importance. This way, the customer interface is being enriched or
practically substituted. An example of the Process Modeller usage applied to an industrial
use-case is further described in Section 4.

The Knowledge Base (4) data provide the required domain production knowledge in
a machine-readable form. It facilitates deductive reasoning, as it is based on well-defined
and formal meta-models. KB also contains a comprehensive map of required connections
in the system, both physical and logical connections among the resources. Based on
these connections and the inputted processes, it provides the topology upon which an
appropriate flow of operations can be created. This component is the enabler of storing
the factory’s specific data, such as data about resources, their capabilities and constraints,
collaboration models, interface contracts, and factory logistics. KB keeps the information
of all the resources on the shop floor, including the spare (e.g., tools or machines that
are not currently in use but are available) or temporary unavailable (e.g., operator on a
vacation, or a machine on reparation) resources. As it also preserves the semantics of
processes specifications, it plays a key role in orchestrating production. Furthermore,
KB provides an inference and query mechanism that can dynamically find connections
between available resources. In this way, the Orchestrator can find a semantic link and
orchestrate the complete production in real-time.

Appl. Sci. 2021, 11, 7956 8 of 25

The Resource Discovery is not considered a part of the ‘Happy flow’, as the KB is
already populated with all available resources at the moment of the Orchestration Agent
triggering. If that is not the case, this component enables the dynamic addition of resources
that enter the shop floor. Smart resources report themselves upon entering the system
and their specification is dynamically inserted into the KB. Ideally, every resource will
have a standardised asset administration shell developed and available [20]. They will
provide a semantic self-description of an asset and interaction contract specification of
offered capabilities. That way, a resource will be recognizable at the entry to any system in
a plug-and-produce fashion. Nevertheless, the customer is provided with an additional
modelling tool aimed at the specification of smart resources. The Resource Modeller (part
of the Modelling Tools component, 3b) serves the system similarly to the Process Modeller.
It allows a customer to alter the existing resource model—that is otherwise automatically
generated in a plug-and-produce fashion—or to create a new one from scratch. The latter
is used in cases when legacy or non-smart resources have to be described and specified
within KB. The Resource Modeller enables detailed description and specification of these
resources and their connectivity interfaces relevant for the orchestration, from the ground
up. All the resources, capabilities, and constraints are paired with their digital entities, and
consequently form a detailed factory resources model that can be exported to, or imported
from KB. Resource Modeller also provides the basis for formal modelling of all resources,
not depending on their type. Consequently, it is an essential component for providing
use-case-specific resource additions to the factory topology, and for subsequent uniform
treatment of resources. An example of the Resource Modeller usage applied to an industrial
use-case is further described in Section 4.

The process specification that is a result of the reasoning and modelling phase is
used as an input for the Resource Matcher (5). The main function of this component is
to carry out the multi-step matchmaking of the capabilities required by the production
process and capabilities offered by the existing resources. On one side, there are required
capabilities, constraints, acceptance, and completion criteria provided on the input. On
the other side, there are available resources’ specifications stored in KB. Based on the
resources’ offered capabilities, the Resources Matcher matches them to the processes and
the required capabilities. The first step of this matching process results in a set of possible
production processes with already allocated resources. These are structured as a set of
directed graphs in which each graph represents an individual process—practically a variety
of production process specifications. The matchmaking continues with the enrichment
of the previously generated production processes. The production process variations
are expanded in a sequence of enrichers. The resource level enrichment comprises the
preparation of a product order, in which additional production steps are inferred based
on the physical organisation of available resources and the factory topology. Based on the
same topology, the logistic enrichment additionally adds logistic steps to complete the
material flow among the resources during the production process. The result of this step,
and an output of the Resource Matcher component, is another set of directed graphs, in
which each graph now represents an enriched variation of a process specification.

The Production Scheduler (6) is one of the most complex components in the system,
as it is inputted with a formed graph of all feasible process specifications matched with
resources and offered capabilities, process steps, and material allocations. To deal with
the complexity of scheduling, it is common and expected to apply certain restrictions and
assumptions on several levels. Additionally, the datasets and objectives are large, so no
optimal computation of the schedule could be calculated as it would require infinite time.
Here, the Production Scheduler is based on a heuristic algorithm that leans on information
already stored in KB. The algorithm takes into consideration assumptions and restrictions—
i.e., regarding logistic steps, material allocation—which provides a (sub)optimal solution
of process order. The infrastructure established here enables constant improvements of
this component. It is possible to insert some use-case-specific algorithms and optimisation
criteria for each domain in which the Orchestrator is applied. The Production Scheduler

Appl. Sci. 2021, 11, 7956 9 of 25

outputs a sequence of resources assigned with operations and timing constraints, ready to
be executed on the shop floor.

The Communication Protocols (7) are a group of software components developed for
each communication protocol, which oversees translating generic execution commands
sent to a DT into instructions passed to the physical resources through an appropriate
protocol. The Orchestrator automatically generates execution commands based on the
semantic specification of resources in KB and generated production process specifications.
The structure of execution commands inside the Orchestrator is common and shared
among all resource types. However, every communication protocol acts as a resource
proxy and is in charge of translating generic commands received from the Order Agent.
The generic commands are translated into resource-specific commands that are to be
executed, thus making this component the actual Orchestrator executor. Although the
executor handles generic commands, different resources will communicate via various
protocols and interfaces; the operator interacts via a human-machine interface (HMI)
while machines communicate via standardised industrial interfaces. The Communication
Protocols component of the Orchestrator is still very factory-specific and will continue to
be so until a larger proportion of standardisation within I4.0 implementations is achieved.
Together with the Communication Protocols, the Digital Twin (8) is an essential component
in the chain of execution of the concrete production process steps. DT partially takes an
executor role and oversees the final execution of commands. It is an interface between an
individual Communication Protocol in the orchestration layer and a targeted resource in
the physical layer of the system. The complete factory shop floor is faithfully mirrored
in the DT, wherein each digital element reflects an actual resource that it is paired with
and can communicate with. High-level information about resources is stored in KB and
is used for matching. In addition to this, DT includes a dynamic store containing low-
level data needed for the production scheduling and final steps of process execution.
The last state stored in DT is a starting point used for scheduling. All this provides the
possibility to utilise the DT as the simulation only, as well as to simultaneously execute the
production process while visually presenting it. DT sends the appropriate command for
each production process step. This command is then propagated to a targeted resource via
a corresponding Communication Protocol.

Resources (9) are all the assets involved in the production. In the described system,
various types of resources—humans, robots, software agents, and machines—are all treated
uniformly and are only differentiated by their capabilities, interactions, and interface
specifications. Together they constitute a shop floor, upon which the production itself
is being orchestrated and the assigned tasks executed. All the resources are modelled
in a corresponding resource model included within KB. A human worker, the O4.0, is
modelled with its capabilities (i.e., inspect, analyse, turn) that are not necessarily different
from robot capabilities (i.e., pick-and-place, drill, turn) but are differentiated by adequate
constraints. Although robots and machines can operate with heavier loads or without
fatigue, Operator 4.0 is considered to be the most flexible asset in SF [21]. Therefore, it is not
strange that the biggest variety of capabilities and constraints are related to this resource
type. Additionally, some competencies and man-machine interactions—e.g., operator and
cobot collaboration—are unlikely going to be replaced by a single device, unless production
is based entirely on Artificial Intelligence (AI).

The communication between the Orchestrator components is established through an
internal communication layer based on a highly scalable communication backbone. Intra-
component communication is implemented through a broker-based messaging system. An
additional, distributed Logging Bus is being fed by every component, which provides de-
tailed logging data and tracing. This component is essential for rule-based Error Handling.
According to the information stored in logs, a corresponding error-handling mechanism
is triggered. The triggered mechanism provides a predefined set of steps taken in every
matching component, including matching and scheduling. The Dashboard and Analytics
component represents a set of additional, pluggable tools of various kinds. They also

Appl. Sci. 2021, 11, 7956 10 of 25

lean heavily on the communication layer and are customised based on use-case-specific
needs. The main function of this component is to provide a chance not only to the customer
but also to additional factory users—i.e., Operators, Managers, Engineers. By using the
data collected via the logging bus, these users can perform additional analytics of the
orchestration or the final execution of the production process.

With the described architecture, we propose a vision of SF capable of maximising the
currently available technologies, but also a system highly adaptable to existing production
facilities. Here, we present the foundations for an infrastructure capable of scaling and
allowing a large flow of information, with system components that are modular, inde-
pendent, and scalable. This enables both vertical and horizontal scalability. Finally, a
software system based on the proposed architecture is technology-agnostic, as it anticipates
and supports implementation and running both on isolated industrial PCs and on large
distributed systems or in a cloud.

4. An Assembly Use-Case

The application of the Orchestrator is discussed and evaluated on several use-cases, as
a part of Step IV of the DSR methodology applied in the research. A first assembly use-case
was used to set up a laboratory with accompanying simulation and is previously discussed
in [19]. Additional use-case, described in this paper, represents a proof-of-concept through
an industrial case-study carried out in an isolated and experimental assembly line of an
EU-based manufacturer. One of the product types from their product range is shown in
Figure 3. It is an industry-optimised controller with built-in I/O elements, that consists of
a mainboard with all electronic components pre-integrated, and a compact casing. There
are several product variants, slightly differentiated by the interfaces on the front side of the
controller. For this paper, it will further be addressed as Controller-A.

Appl. Sci. 2021, 11, 7956 10 of 24

With the described architecture, we propose a vision of SF capable of maximising the

currently available technologies, but also a system highly adaptable to existing production

facilities. Here, we present the foundations for an infrastructure capable of scaling and

allowing a large flow of information, with system components that are modular, inde-

pendent, and scalable. This enables both vertical and horizontal scalability. Finally, a soft-

ware system based on the proposed architecture is technology-agnostic, as it anticipates

and supports implementation and running both on isolated industrial PCs and on large

distributed systems or in a cloud.

4. An Assembly Use-Case

The application of the Orchestrator is discussed and evaluated on several use-cases,

as a part of Step IV of the DSR methodology applied in the research. A first assembly use-

case was used to set up a laboratory with accompanying simulation and is previously

discussed in [19]. Additional use-case, described in this paper, represents a proof-of-con-

cept through an industrial case-study carried out in an isolated and experimental assem-

bly line of an EU-based manufacturer. One of the product types from their product range

is shown in Figure 3. It is an industry-optimised controller with built-in I/O elements, that

consists of a mainboard with all electronic components pre-integrated, and a compact cas-

ing. There are several product variants, slightly differentiated by the interfaces on the

front side of the controller. For this paper, it will further be addressed as Controller-A.

Figure 3. Controller-A, assembled in the use-case.

This case study is based on a simplified real-world assembly process consisting of

the following steps:

1. The integrated mainboard is placed in the plastic bottom casing.

2. Optionally, the default interfaces are replaced with customer-specific ones.

3. The front casing is placed above the mainboard and sealed.

4. The testing phase is conducted by two collaborative resources working in parallel:

a. one is holding the product and performing a robust test, and

b. the other is visually inspecting the product.

5. If any defects are found in the inspection phase, the product is sent for reassembly.

6. If no defects are found, the product is sent for packaging. Both reassembly and

packaging are considered separate, complex sub-processes.

The complete orchestration process of the assumed Controller-A assembly is de-

scribed below, elaborating the impact on all the elements of the architecture depicted in

Figure 2. Complex sub-processes (assembly process steps 2 and 6) are not described in-

depth, as they are decomposed into simpler steps similar to those described below. The

numbers given next to all the architectural elements are the same as in Figure 2.

Figure 3. Controller-A, assembled in the use-case.

This case study is based on a simplified real-world assembly process consisting of the
following steps:

1. The integrated mainboard is placed in the plastic bottom casing.
2. Optionally, the default interfaces are replaced with customer-specific ones.
3. The front casing is placed above the mainboard and sealed.
4. The testing phase is conducted by two collaborative resources working in parallel:

a. one is holding the product and performing a robust test, and
b. the other is visually inspecting the product.

5. If any defects are found in the inspection phase, the product is sent for reassembly.
6. If no defects are found, the product is sent for packaging. Both reassembly and

packaging are considered separate, complex sub-processes.

Appl. Sci. 2021, 11, 7956 11 of 25

The complete orchestration process of the assumed Controller-A assembly is described
below, elaborating the impact on all the elements of the architecture depicted in Figure 2.
Complex sub-processes (assembly process steps 2 and 6) are not described in-depth, as
they are decomposed into simpler steps similar to those described below. The numbers
given next to all the architectural elements are the same as in Figure 2.

Usually, in the first step of the orchestration process, a client uses the customer interface
(1) to specify a product. The client creates a specification of the product and uploads it,
upon which the Orchestration Agent (2) triggers the Process Reasoner (3a) to generate the
production process specification and store it in the Knowledge Base (4). This is not the case
in the concrete example, as the interface for the upload of the predefined input format is
not developed. Process or Quality Engineers will instead use a provided Process Modeller
tool (3b) to create the desired production process from scratch and import it to the KB.
Therefore, the specification of the production process, similarly a recipe that is used for
complete orchestration of all the resources towards the product being delivered, is either
created or extended within the Process Modeller.

The first process step after the process starts is ‘Put Mainboard into the Case’, represented
by a sharp-edged rectangle with an inscribed circle. To perform this step, an allocated
resource will require the ability to perform assembling operations and to meet certain
constraints while acting. Therefore, this process step is linked to the capability ‘Assemble’,
depicted by a rounded rectangle. It is also required to determine the inputs and outputs of
every process step, and for this step, the inputs are a bottom cover and a mainboard, while
the output is the mainboard placed into the cover. Both inputs and outputs are depicted in
Figure 4 by a rounded rectangle marked with ‘OUT’ or ‘IN’ in its heading, linked to the
process step. The next in line is ‘Customise Interface Layout’, which is a sub-process consisting
of several simpler process steps and is depicted by a rectangle with a dashed borderline. It
is an optional step and will be performed when required by the product specification. The
optionality of this execution is implicit and encapsulated within the element.

The output of the previous process step is an input for the next one in the process
flow, as seen in Figure 4, represented by a directed dashed line between the output element
of ‘Put Mainboard into the Case’ and the input element of ‘Customise Interface Layout’.
These output-input dependencies are depicted in the same fashion for the other process
steps and sub-processes. The next process step is ‘Put a case cover’, which also requires the
capability ‘Assemble’, with an uncovered controller on input, and covered controller on
output. All used symbols are the same as already described and will not be repeated. The
next three process steps—‘Inspect Device’, ‘Robust Tests’, ‘Hold Device’—are to be performed
simultaneously. The first two are directly dependant on, and cannot be executed without,
the successful execution of the third one, as ‘Hold Device’ is started before and ends after
the finalisation of the other two. This is depicted by two directed, dot-dashed lines marked
with ‘Start’ and ‘End’, respectively. In the given example, ‘Hold Device’ marks the start,
while ‘Inspect Device’ and ‘Robust Tests’ together mark the end for all three process steps.
These three process steps are to be performed in collaboration with at least two allocated
resources, as product inspection and product testing are carried out by separate resources,
while one of the two can also hold the product being tested. This three-way execution of
production is depicted with directed lines leading from and into rhombus noted with ‘COL’.
Listed production steps are also linked to corresponding capabilities (i.e., ‘Test’, ‘Inspect’,
‘Hold’), inputs and outputs—as previously described.

Figure 4 depicts an example of a production process model of the assembling of
Controller-A. The model example is created by using Multi-Level Production Process
Modelling Language (MultiProLan) that is developed for production processes modelling,
models of which are suitable for automatic generation of instructions [12].

Appl. Sci. 2021, 11, 7956 12 of 25

Appl. Sci. 2021, 11, 7956 12 of 24

also used for semantic enrichment of the diagrams, i.e., Process step rectangles are green;

Inputs and Outputs are of various shades of blue. This is only a brief description of the

Process Modeller and the MultiProLan modelling language used here, as they are the fo-

cus of previously published papers [12,13].

Figure 4. Production process model, created in Process Modeller.

After the input of a modelled production process, the order is placed and the Orches-

tration Agent (2) initiates the Orchestrator mechanisms upon which the desired product

is being processed. The Process Reasoner (3a) uses the necessary information and data

specification of the previously generated production process to deduce all the production

steps according to the factory-specific topology and the use-case. The semantic infor-

mation stored in KB (4) is used by the Resource Matcher (5) to match the existing Re-

sources (9) and their offered capabilities and capability related constraints, with the capa-

bilities requested by the production process specification and previously deduced pro-

duction steps. Any desired product is to be assembled out of parts available on the shop

floor, using the resources specified in the KB and without any additional programming.

Figure 4. Production process model, created in Process Modeller.

Appl. Sci. 2021, 11, 7956 13 of 25

Next to be executed is the sub-process ‘Reassemble’. It is an optional step and its
execution depends on the output of the previously performed ‘Inspect Device’ step. Unlike
previously described in the case of ‘Customise Interface Layout’, the optionality is here
explicit and is depicted by lines directed from and into the rhombus decision element
noted with the ‘DEC’ mark. Finally, the last sub-process to be executed is ‘Packaging’.
Input for the packaging is either a checked or a reassembled controller, and the output
is a ready-to-deliver Controller-A. Both ‘Reassemble’ and ‘Packaging’ encapsulate a more
complex structure consisting of the previously described elements. As seen in Figure 4,
colours are also used for semantic enrichment of the diagrams, i.e., Process step rectangles
are green; Inputs and Outputs are of various shades of blue. This is only a brief description
of the Process Modeller and the MultiProLan modelling language used here, as they are
the focus of previously published papers [12,13].

After the input of a modelled production process, the order is placed and the Orches-
tration Agent (2) initiates the Orchestrator mechanisms upon which the desired product
is being processed. The Process Reasoner (3a) uses the necessary information and data
specification of the previously generated production process to deduce all the production
steps according to the factory-specific topology and the use-case. The semantic informa-
tion stored in KB (4) is used by the Resource Matcher (5) to match the existing Resources
(9) and their offered capabilities and capability related constraints, with the capabilities
requested by the production process specification and previously deduced production
steps. Any desired product is to be assembled out of parts available on the shop floor,
using the resources specified in the KB and without any additional programming. At the
initialisation of the shop floor, the KB will be automatically populated by triggering the
Resource Discovery mechanism. Smart resources will introduce themselves and offer their
capabilities to the Orchestrator. The Resource Modeller tool serves as a backup or the
additional way to add other, non-smart, or legacy resources, and it is used by engineers to
create a factory-specific topology.

Similarly to the described utilisation of Process Modeller, for this use-case, the Re-
source Modeller was used to model the available resources (listed in Table 1) from scratch
and then to import this to the KB where the model is stored. Figure 5 depicts an example
of the resource model created for the assembly of Controller-A. As visual representations
of these models can easily be overcrowded with symbols, layering mechanisms are utilised
to enable the showing and hiding of different model aspects. Resources, capabilities and
constraints are presented in the default layer of the resource model. ‘Operator1’ and
‘Operator2’ are the two available human workers, augmented by smart mobile devices
used for communication with the Orchestrator. All resource types—rounded rectangles
on the left and right side—have a graphical symbol of the resource-type inscribed in the
header (i.e., a wired human hand for O4.0; 6-axis robot for Robots; packaging machine for
Machines). Both operators are capable to assemble and inspect, and ‘Operator1’ is also
capable to reassemble.

Table 1. Shop floor resources.

Resource ID Resource Type Capabilities

Operator1 Operator 4.0 Assemble, Inspect, Reassemble
Operator2 Operator 4.0 Assemble, Inspect

Cobot Robot Hold, Test
AssemblyRobot Robot Assemble, Test

AGV1 Robot Move, Carry
AGV2 Robot Move, Carry

MachineHolder Machine Hold

Appl. Sci. 2021, 11, 7956 14 of 25

Appl. Sci. 2021, 11, 7956 14 of 24

Figure 5. The default layer of the resource model, created in Resource Modeller.

.

Figure 6. The topology layer of the resource model.

In the next phase, the Resource Matcher (5) first produces a production process var-

iation in which it assigns resources to their dedicated production steps for the assembly

of Controller-A, i.e., ‘Operator2’ is matched to execute ‘Put mainboard into the case’ and ‘Put

a case cover’; ‘Cobot’ and ‘Operator1’ are to execute the collaborated test and inspection;

‘Operator1’ is to perform the reassembly. The next phase carried out within the Resource

Matcher component is the logistic enrichment, performed according to the information

stored in KB; availability of the resources on the shop floor, the current topology of the

Figure 5. The default layer of the resource model, created in Resource Modeller.

The relation between a Resource and a Capability is performed over a corresponding
CapabilityRelation element, depicted by a rounded rectangle without a header. In the given
example, individual CapabilityRelation elements link both operators to Capabilities ‘Inspect’
and ‘Assemble’, while ‘Operator1’ is additionally linked with ‘Reassemble’. Capability ele-
ments, rounded rectangles centred in the diagram, are also decorated with a corresponding
capability-type symbol, i.e., human head for cognitive capability, a molecule-like symbol
for physical capability. In the given example, ‘Inspect’ is a cognitive capability, and all the
others are physical capabilities. In addition to the main function of linking resources and
capabilities, CapabilityRelation also contains Constraint elements—each individualised for
a concrete resource–capability combination. These are depicted by grey rectangles with
inscribed textual descriptions and symbols that represent constraint type, i.e., a book for
production process constraints, a hand and a dumbbell for physical constraints, scales
symbol for legal constraints. In the given example, constraints for both ‘Assemble’ and
‘Reassemble’ are limiting ‘Operator1’ to load weight up to 1 kg and not more than 40 times
per day, while capability ‘Inspect’ is specified as tool dependant.

Appl. Sci. 2021, 11, 7956 15 of 25

All the other resources (listed in Table 1), their offered capabilities, constraints and
interfaces are instantiated in a fashion similar to already described for ‘Operator1’. Colours
are again used for semantic enrichment of the diagrams (i.e., Capabilities are orange;
Resource elements are yellow). The topology layer, which specifies the shop floor topology
and material flow of the model from Figure 5 is depicted in Figure 6. The directed dashed
lines between resources represent the possible interactions among them, with the arrows
denoting the direction of material flow. The in-depth description of the Resource Modeller
is out of the scope of this paper.

Appl. Sci. 2021, 11, 7956 14 of 24

Figure 5. The default layer of the resource model, created in Resource Modeller.

.

Figure 6. The topology layer of the resource model.

In the next phase, the Resource Matcher (5) first produces a production process var-

iation in which it assigns resources to their dedicated production steps for the assembly

of Controller-A, i.e., ‘Operator2’ is matched to execute ‘Put mainboard into the case’ and ‘Put

a case cover’; ‘Cobot’ and ‘Operator1’ are to execute the collaborated test and inspection;

‘Operator1’ is to perform the reassembly. The next phase carried out within the Resource

Matcher component is the logistic enrichment, performed according to the information

stored in KB; availability of the resources on the shop floor, the current topology of the

Figure 6. The topology layer of the resource model.

In the next phase, the Resource Matcher (5) first produces a production process
variation in which it assigns resources to their dedicated production steps for the assembly
of Controller-A, i.e., ‘Operator2’ is matched to execute ‘Put mainboard into the case’ and ‘Put
a case cover’; ‘Cobot’ and ‘Operator1’ are to execute the collaborated test and inspection;
‘Operator1’ is to perform the reassembly. The next phase carried out within the Resource
Matcher component is the logistic enrichment, performed according to the information
stored in KB; availability of the resources on the shop floor, the current topology of the
resources (also seen in Figure 6), physical limitations of the collaboration between resources,
etc. Upon this phase, material flow steps are deduced, which leads to the creation of
additional production steps. In the concrete use-case, as seen in Figure 7, the inferred steps
are ‘Pick Device’ and ‘Move to Inspection Bench’. Either ‘AGV1’ or ‘AGV2’ will be assigned to
perform them, consequently carrying the necessary production parts and the assembled
product between the resources carrying out the assembly, inspection and packaging. This
results in Resource Matcher not only offering a match for every production step described
in the generated or created production process but also providing an optimal match for all
the inferred logistic steps.

Appl. Sci. 2021, 11, 7956 16 of 25

Appl. Sci. 2021, 11, 7956 15 of 24

resources (also seen in Figure 6), physical limitations of the collaboration between re-

sources, etc. Upon this phase, material flow steps are deduced, which leads to the creation

of additional production steps. In the concrete use-case, as seen in Figure 7, the inferred

steps are ‘Pick Device’ and ‘Move to Inspection Bench’. Either ‘AGV1’ or ‘AGV2’ will be as-

signed to perform them, consequently carrying the necessary production parts and the

assembled product between the resources carrying out the assembly, inspection and pack-

aging. This results in Resource Matcher not only offering a match for every production

step described in the generated or created production process but also providing an opti-

mal match for all the inferred logistic steps.

The Production Scheduler (6), as soon as the matching process has been performed,

is to find an optimal schedule by analysing the execution order of all the matched produc-

tion steps. The execution time and the uniform resource utilisation were the two optimi-

sation criteria used for this use-case, intending to assemble a controller as quickly as pos-

sible while equally using all available resources. A completely orchestrated production

process, the result of the matching and scheduling phase, can be reviewed on a detailed

level in the Process Modeller. Figure 7 depicts only an extract of the enriched production

process model created for the assembling of Controller-A, as seen in Figure 4. ‘Cobot’ is

assigned to execute ‘Hold Device’ and to simultaneously perform ‘Robust Tests’, while ‘Op-

erator1’ is performing ‘Inspect Device’ in parallel. ‘AssemblyRobot’ will never be assigned

to carry out the testing, although it is capable of it, as it cannot simultaneously hold the

device targeted for testing. ‘Operator1’ and ‘Operator2’ are capable of performing the col-

laborated inspection, but ‘Operator1’ is a more experienced worker and will more likely

be assigned for the testing unless he is already assigned for the ‘Reassemble’ sub-process—

as ‘Operator2’ is not capable of performing it.

Figure 7. An extract from the orchestrated production process model.

After the completion of the matching and scheduling phases, each command is prop-

agated to the individually assigned resource via a dedicated Communication Protocol (7).

Answering its main purpose, every Protocol translates the generic command into re-

source-specific commands for the execution. These proxies are leaning on the Digital Twin

(8) component that is practically acting as an executor, by propagating factory-specific

instructions to the designated resources. In the described use-case, commands for robots

Figure 7. An extract from the orchestrated production process model.

The Production Scheduler (6), as soon as the matching process has been performed, is
to find an optimal schedule by analysing the execution order of all the matched production
steps. The execution time and the uniform resource utilisation were the two optimisation
criteria used for this use-case, intending to assemble a controller as quickly as possible
while equally using all available resources. A completely orchestrated production process,
the result of the matching and scheduling phase, can be reviewed on a detailed level in
the Process Modeller. Figure 7 depicts only an extract of the enriched production process
model created for the assembling of Controller-A, as seen in Figure 4. ‘Cobot’ is assigned
to execute ‘Hold Device’ and to simultaneously perform ‘Robust Tests’, while ‘Operator1’ is
performing ‘Inspect Device’ in parallel. ‘AssemblyRobot’ will never be assigned to carry
out the testing, although it is capable of it, as it cannot simultaneously hold the device
targeted for testing. ‘Operator1’ and ‘Operator2’ are capable of performing the collaborated
inspection, but ‘Operator1’ is a more experienced worker and will more likely be assigned
for the testing unless he is already assigned for the ‘Reassemble’ sub-process—as ‘Operator2’
is not capable of performing it.

After the completion of the matching and scheduling phases, each command is prop-
agated to the individually assigned resource via a dedicated Communication Protocol
(7). Answering its main purpose, every Protocol translates the generic command into
resource-specific commands for the execution. These proxies are leaning on the Digital
Twin (8) component that is practically acting as an executor, by propagating factory-specific
instructions to the designated resources. In the described use-case, commands for robots
are sent via a bridge based on Robot Operating System (ROS) framework, while a tablet
application is developed to serve the Operator as a communicator with SF, within which the
Operator receives execution commands and confirms the status of the execution. Similar to
what has been presented previously in [19], the simulation is created using a proprietary
graphical editor in a way to resemble the real-life shop floor as much as possible. Addition-
ally, the execution process can simultaneously be reviewed in the Process Modeller tool,

Appl. Sci. 2021, 11, 7956 17 of 25

thus acting as a secondary DT or a process monitoring tool. An example of this enhanced
model of all the production steps matched with the available resources is presented in
Figure 7, showing the current state of the executed production process.

5. Literature Review

A literature review was carried out as a part of Step II of the DSR methodology
described in Section 2. Noted here are only the papers most relevant for the topics covered
in this paper. As the production orchestration is the core functionality of our Orchestrator,
first we present other implementations found in the literature. Additionally, in the light of
the presented Orchestrator architecture, it is relevant to compare some of its segments with
existing solutions and research ideas found in the literature as well.

Highly frequent repetitive tasks may still be a common playground in production
systems of today, but an imminent I4.0 trend is extensive product customisation and small
lot-size of products [5]. To achieve customisation and potential production of a single
product while integrating the new technologies, it is possible to implement an imagined
black-box-like system that acts as an SF controller capable of coordinating all available
assets depending on the input and desired output. This highly abstract controller is the
Orchestrator, while the coordination process is orchestration [22,23]. The digitalisation of
the complete production process is a necessary step in reaching any of the numerous and
distinct goals of Industry 4.0. The automated shop floor reconfiguration and service or
task-oriented programming of machines are among these goals. Therefore, the complete
production processes and all production resources need to have formal specifications,
alongside the digitised product [24]. According to these descriptions, modern industrial
software systems orchestrate the delegation of instructions and their assignment to smart
resources [22,23]. Drawing on the proposals of the authors [22,23], here the proposed
system is targeting the very execution of the delegated instructions, either in simulated or
on the real-life shop floor. To achieve high production flexibility in SF, the variability of
the production process needs to be fulfilled practically in the runtime, without stopping
the production [25]. This means that any addition or reconfiguration of the participating
physical resources should be carried out according to the Plug-and-Play concepts [26]. As
previously discussed, the proposal is to always lean on resource discovery mechanisms,
that are therefore also integrated into the Orchestrator. Smart resources will seamlessly
enter the shop floor in SF, ready to be controlled by the Orchestrator. They will offer their
particular capabilities and receive their assigned tasks for the execution accordingly.

The matchmaking of the production process and the production resources according
to their capabilities is enabled by the introduction of semantic-knowledge in the man-
ufacturing environment, which formalises the rules and the relationships between the
participating objects [27]. Ontologies and other semantic-knowledge concepts in produc-
tion research are not a novelty. In the past two decades, various concepts have been
presented in similar domains, from capability ontologies [28,29] to robot and automation
ontologies [30,31]. An approach for automatically configuring a control system software
composed of automation agents, based on a generative programming approach that uses
a declarative knowledge base is presented in [32]. In contrast to the listed works, the
presented solution uses a knowledge-based (KB) system to represent resources and their
capabilities. This KB supports the mechanism of easy enrichment and add-on of every
new shop floor resource that is capable of introducing it to the system. In the future, it
should be able to easily lean on the currently developed administrative shell concept [20].
Standardisation is certainly one of the fundaments of the future factories, to guarantee
interoperability between different modules of the production line, with different providers
and manufacturers closely cooperating with one another and with the scientific commu-
nity. One of the key technologies for enabling vertical integration within a future Smart
Factory structure is the Open Platform Communications United Architecture (OPC UA)
communication protocol [33]. OPC UA is a major part of the interoperability model that
has been chosen among the manufacturers, but unfortunately has not yet been developed

Appl. Sci. 2021, 11, 7956 18 of 25

as originally imagined. OPC-UA Companion Specification [34] needed to standardise the
communication between manufacturing resources of various vendors is in the development
status quo for some time now. Until these companion specifications are provided, the
proposal is to develop a kind of administration shell for non-smart devices. It will also
serve as a Communication Protocol and that way simultaneously serve as an admission
and execution helper.

Production flexibility is enhanced not only at the level of execution but also in the
production planning, notably in the process-modelling phase [1,35]. The dynamism of
complex manufacturing systems will no longer be studied using contemporary modelling
and simulation techniques. The new simulation systems must function as part of complex
control systems, working in real-time and able to support decision-making and the creation
of new knowledge [35]. Modelling and simulation will, therefore, be an integral part of
the planning and control of the processes of factories of the future. A specific DSML can
be designed for this purpose. The intent is not only to enable process and shop floor
customisation but also to facilitate a supplementary visualisation of the process monitoring
and graphical simulation of the entire production process model [12,13]. An additional
DSML and the tool for the support of resources modelling can also be created, in order
that all factory assets can be used optimally and to collaborate efficiently. As application
requirements grow alongside the evolution of SF solutions, the initially designed resource
model will likely evolve as well. This DSML would allow updating and fine-tuning these
resource models and could lean on the proposed KB for the representation of resources.

While comparing contemporary and future assembly lines, the authors [18] stated
that the current robots are not always capable of carrying out some of the tasks of high
complexity that skilled human workers can do. Additionally, they are not so fit for high
product customisation because of the lengthy time required for changeover and preparation
for the production of another ordered product. As SF further evolves, the human worker
will take on the role of the creative problem solver when confronted with complex problems
inside the CPS [10]. Authors suggest that while in currently typical assembly lines humans
work away from robots, in A4.0 they will work in direct collaboration with robots (so-called
‘Cobots’). Treating and modelling all these production resources uniformly is a challenging
task, especially when considering the much-desired orchestration of cooperation among
the resources. One of the key roles in production resources coordination will most likely
be created for a human worker whose primary function will be to lead a production
strategy and manage the implementation of the self-organising production processes. A
human worker will still supplement the adapted production lines of the future since his
problem-solving skills and cognitive abilities and are still irreplaceable [8,10]. Even though
the human worker was considered in our previous papers [13,19], it was referenced and
elaborated only briefly. The formerly rudimentary form of the resources model has recently
been extended and is presented in this paper in more detail.

During production planning, humans will need to be treated as an equal CPS, but their
broader existence makes them key players in future production systems [6,16]. A human
worker whose physical, sensorial, and cognitive capabilities are artificially enhanced,
that not only performs cooperative work with (electro)mechanical resources but also
aids the adaptation towards human-automation symbiosis, is a so-called Operator 4.0
(O4.0) and has been defined in [21]. The authors go even further, to propose a complete
topology of the O4.0 in the SF [36]. In addition to the usage of this topology for the
resource modelling, Operator 3.0 is here still differentiated as a human worker of the legacy
systems. This is in accordance with the wish for retrofitting of the existing production
systems. The idea of integrating the human worker as a special type of factory resource
in capability-based production planning was presented in [37]. This integration allows
the combined consideration of machine and human worker capabilities in production
planning but requires a consistent and standardised taxonomy to describe all the resources.
This paper addresses the orchestration of O4.0 in the same way as the orchestration of

Appl. Sci. 2021, 11, 7956 19 of 25

any other participating resource, by sending them the same generic instructions for the
final execution.

The production systems of the future will act as self-organising systems and execute
the complete production process. This is achieved on the basis of the digital description of
the desired product and by matching required resources with available resources and their
offered capabilities; intelligence which is the essential feature of the smart shop floor [38,39].
In contrast to [39], in this approach, humans are considered as resources equal to machines,
while also carrying out centralised scheduling unlike the described approach, which is
based on individual agent decisions. The focus of the work of Michniewicz and Rein-
hart [38], is on self-organising, multi-agent factory floors and the authors have described
means to model all the machine resources at the shop floor. In addition to that, the solution
presented here has an established concept of generating generic execution commands and
assigning them to the concrete resources of the production system. Authors [37] have
already proposed the integration of human workers as a special type of factory resource
in capability-based production planning. This allows the combined consideration of ma-
chine and human worker capabilities in production planning but requires a consistent
and standardised taxonomy to describe all the resources. In addition to this work, the
approach presented here addresses the orchestration of a human worker similar to other
participating resources, by sending generic instructions for the final execution. A human
worker is practically used as Human-as-a-Service, with a focus on further cooperation
and collaboration with (electro)mechanical resources in this adaptation of con-temporary
shop floors [8].

Production planning and scheduling incorporate a multiplicity of production elements
ranging from material and resource allocation, optimisation of material flow and workload
of the machines, to realising accurate delivery times for the customer. This complex inter-
play of material, machines, and manpower which constitute scheduling within production
is referred to as an NP-Hard problem [40]. In order to develop robust scheduling solutions,
it is necessary to consider various requirements from the shop floor, but it is not clear
which constraints should be analysed, and most research studies end up considering very
few of them [41]. Therefore, scheduling within the I4.0 is one of the biggest challenges, as
I4.0 bases itself on the concepts of further enhancement of flexibility, customisation and
dynamic assembly system design. Smart scheduling for I4.0 is reviewed in [40,41], and
authors suggest that the goal of dynamic rescheduling in CPPS is to automate the solution
in which a range of events are deemed as triggers of rescheduling. Other authors [42] also
describe various strategies for scheduling in an I4.0 environment. They propose a factory
with smart distributed scheduling based on the smart agents with self-organisation and self-
decision-making features, that can also trigger partial or complete rescheduling. Inspired
by the listed ideas, fundamentals for future implementation of a multistage scheduling
algorithm are set, which can be triggered according to the Orchestrator commands. In a
current solution, a scheduling or rescheduling command is triggered in an appropriate
instantiated agent, based on the observed system state. Consequently, it can lead to an
automatic reconfiguration of the shop floor resources. Dynamic scheduling for I4.0 is a big
challenge, and it is out of the scope of this paper. Nevertheless, in the proposed solution,
we have established the fundaments for future implementation of a multi-stage scheduling
algorithm that can be triggered according to the Orchestrator commands.

One of the carriers of the I4.0 is the Digital Twin (DT), a concept of virtual repre-
sentations of real-life systems that not only include the physical appearance but also the
behaviour of the simulated system [43]. The development of DT and simulators as generic
as possible—which can mimic any production process—remains an attractive challenge in
the industry [14,44]. With the notion of simulation, the DT of a complete production system
is denoted, which can visually demonstrate the execution of an individual process step or
a complete production process of the desired product. A DT model of a product is built
by mirroring a physical product into a virtual one [1]. DT implementations are domain-
dependent and a common definition or design for the DT concept have not been developed

Appl. Sci. 2021, 11, 7956 20 of 25

so far—or at least there are no widely accepted solutions [43,44]. The production process
simulation part of the DT has been addressed in the works of several research groups to val-
idate the result of assembly planning or to make modifications to the generated execution
plan [22,23,39]. The simulation in the presented solution is practically a real-time DT of the
product being produced. It can be utilised concurrently as a visualisation of the executed
production, but also for collecting adequate data for in- or post-production analysis. In
different circumstances, it can be alienated from the production process and used as a
pure simulation. When applied in production systems, simulation is to provide answers to
how these systems respond to the various variables and unpredictable situations that arise,
especially when simulation models are used instead of developing analytical solutions to a
studied problem [45]. By simulating the complete orchestrated process in the described
approach, potential production failures are reduced, resource consumption is optimised,
and the safety of participating employees is increased.

6. Conclusions

Leaning towards the realisation of the ‘assembly of anything’ milestone and answering
the main research questions established in the introduction, in this paper, we have presented
the Orchestrator component of an SF, capable of dynamically orchestrating the resources
and the complete production flow. It is a pluggable software system, that automatically
extracts instructions from the given input, sets up the factory shop floor accordingly, and
executes the production itself. The paper describes the architecture and system components,
discusses the application of the Orchestrator on an assembly use-case, and provides a
comparison with literature. The proof-of-concept in an industrial case study was discussed
and is currently being evaluated by the EU-based manufacturer’ experts and stakeholders:
Plant managers, Process and Quality Engineers. This detailed examination of an isolated
and experimental production line provided an insightful playground to find out to what
extent is the proposed architecture applicable. Although the Orchestrator can be applied,
there is still much room for improvement, and additional evaluation and efficiency analysis
will be the topic of future research, with more structured results to follow. Meanwhile,
some conclusions related to different parts of the presented system have been drawn and
we present them in the rest of the conclusion.

The application of the Orchestrator is possible for the given domain and assembly
use-case, for discrete assembly of hardware components. The Orchestrator was used and
operated on both abstract and formal levels by experienced domain experts. A Process
Engineer created the Controller-A assembly process from scratch—using the available
Process Modeller tool—and imported it to the KB. The Plant Manager previously fed
the KB with information about participating shop floor resources, by using the provided
Resource Modeller. Matchmaking and scheduling were carried out according to existing
knowledge stored in KB and dynamic resource information stored in DT, upon which the
factory-specific instructions were sent to the participating resources—robots and human
operators. Execution of the assembly tasks could be carried out similarly to before the
adaptation to the Orchestrator approach, as expected—without obvious differences in
duration or complexity. The approach described in this paper is conceptually applicable to
any analogous assembly use-case while enabling variability of the product being assembled.
The application in other domains will follow. On one hand, it may be concluded that it is
possible to create a system that would facilitate the automation of dynamic orchestration of
shop floor resources. On the other hand, it is too early to draw final conclusions about the
extent to which this is applicable, as the concrete results of the described use-case are still
being collected and analysed. In addition to that, analysis in domains other than assembly
will follow.

The semantic representation of all participating assets was essential for the match-
making of production resources and their capabilities. In line with expectations, the
Orchestrator algorithms had no issues in establishing and reusing various shop floor assets
stored in KB. Different shop floor resources were introduced to the system, including

Appl. Sci. 2021, 11, 7956 21 of 25

non-smart resources (non-augmented Human Operator). Although possible, a lot of ef-
fort is needed for KB to be ready in the first place, due to either the lack of use or lack
of application of the standardised communication protocols [33]. Many transformations
that are carried out to bring different devices and nomenclatures to the same—internal
representation—will be replaced by a simpler and more efficient KB that relies less on these
powerful transformations. As standardisation of all the manufacturing resources and their
assets further progresses, the KB component will become more versatile.

The lack of a standardised topology for capabilities is one of the biggest challenges
when considering the need for interoperability and generosity of the production processes
proposed by the Orchestrator. Any potential change in the factory resource is highly de-
pendable on the definition and classification of capabilities—offered and requested—which
may lead to wide discrepancies among each other. There is no possibility to recognise
or decompose even analogous capabilities without the great work of specialised human
workers, i.e., interoperability engineers, as none of the standardised capability topologies
exists to date. Additionally, the modelling and introduction of various resources—when
entering the shop floor—as well as their corresponding communication protocols, are
highly dependable on the customisation carried out by human workers or specialised
software agents. The further development and breakthroughs from the working groups
that are shaping the I4.0 in Europe—UA Companion Specifications from OPC UA Founda-
tion [34], as well as the Asset Administration Shell from ‘Plattform Industrie 4.0’ [20]—are
eagerly anticipated.

Formal modelling tools are highly helpful and were approved by the experts work-
ing in the factory (Plant manager; Process and Quality engineers). On one hand, generic
modelling was one of the assets strongly influencing the beforehand organisation of the
complete shop floor. Formal modelling—enabled by our Model-Driven approach and
DSMLs used—is important, as diagrams are not only structured drawings but also include
essential semantics. When such formally made models are available, certain algorithms
can be used to reason about the structure and infer the semantics of the modelled processes
and resources. This enabled much easier creation of KB and later running of automated
matching and scheduling algorithms, thus partially answering the RQ2. On the other
hand, the tooling facilitated vast possibilities for engineers to edit and customise the dig-
ital descriptions that are a part of the Orchestrator. The in-tool-provided layering of the
models is expected to greatly improve the modelling and adaptation of other production
processes—especially those similar to previously addressed ones. The evaluation of the
Process Modeller is presented in detail in [12]. The tool was evaluated by process engineers,
software developers, researchers and students, who strongly confirmed tool functional suit-
ability, usability, reliability, expressiveness and productivity. The participants also brought
several suggestions on what may be improved in the language or modelling tool, thus
providing essential information for the continuance of the research. Additional evaluations
with the emphasis on modelling methods and tools are currently underway and will be
part of future research.

All the resources can be modelled and orchestrated in uniform terms, including
robots, machines, and human operators. This is a confirmation of satisfying the RQ1, in
addition to the work evaluated in [12]. By semantically equalising human workers and
other types of resources, a much wider application of the Orchestrator than the narrow
domain of ‘workerless’ factories is enabled. Any system that includes human workers fully
adapted to I4.0 can serve as a transitional system when switching from a fully manual to a
fully autonomous production. However, in addition to that, fully adapted Operator 4.0 may
yet prove to be a key resource in the SF due to its versatility. Human operators in the given
example were augmented by smart mobile devices, therefore being classified as Operator
4.0, although there was still a possibility to consider non-augmented workers in the process.
This worker would be classified as Operator 3.0 and would perform predefined tasks out
of the constant feedback loop in communication with the Orchestrator. The development

Appl. Sci. 2021, 11, 7956 22 of 25

of different aspects of human worker models following the concepts of Operator 4.0 will
still be a part of this research.

Generic, dynamical scheduling is hard to achieve as the complexity becomes drasti-
cally higher when orders multiply, and scheduling of orders that are different in variability
is required to be carried out in parallel. Scheduling of the assembly of individual order
of Controller-A proved to be a relatively simple challenge that the Orchestrator handled
close to real-time. Complexity is higher when addressing variability of the user-specific
requests in step 2 of the described industrial assembly process. The complexity of the
scheduling rises, as expected, thus making the scheduling problem solution time much
longer. Although some level of generic scheduling mechanism was partly a goal of this
research and application, it was not possible in the current context. Scheduling proves to
be tightly dependent on the factory-specific optimisation criteria, but also on the needs and
characteristics of the shop floor itself. For the purpose of this proof-of-concept, schedul-
ing was made for a specific process only, and dynamical scheduling will be a part of
future research.

In comparison to the use-case shown previously in [19], it is harder to achieve complete
synchronisation between the simulation and real-time execution. Both simulations—one
created in a proprietary graphical editor, and the other shown in the Process Modeller
tool—were adapted following specific characteristics of the assembly process, thus lacking
the feature of genericity. Although the creation of generic Digital Twin was not a part
of this research, the emergence and addition of potentially powerful solutions will be
gladly accepted.

In our opinion, in the near future, it will be possible to supplement—if not completely
replace—some of the functions of expert workers and to automate and enrich current
assembly lines by adaptation. An automated black-box that controls the whole factory
production is far away, but technologies and solutions similar to ours bring us one step
closer. It is possible to make formal models of both the production processes and the shop
floor resources (RQ1). This formal modelling aims to support the dynamic orchestration
of the shop floor resources to follow the production processes. A system that enables
automation of this dynamic orchestration is attainable by using the approach presented
here (RQ2). The knowledge built into the KB can already be used for extending plans to
procure new resources, supporting supply chain configuration, as well as for optimising
the production planning as a whole. A big breakthrough in Artificial Intelligence and
other technologies are anticipated, in several aspects such as matching, scheduling and
command execution without pre-teaching of resources.

Our research group is continuing the work on the presented architecture. In this
paper, the fundaments and the first results of the research are given and discussed. Here,
discussed are some of the steps of the DSR methodology chosen for this research, as
stated in Section 2 of the paper. The Evaluation and the Communication steps are still
ongoing—detailed metrics and in-depth results will be published upon completion of
the Evaluation.

The lessons learned so far confirm that many areas of investigation are still open, in
addition to those already started. Among others, these include:

• the extension of the scheduling algorithms based on Artificial Intelligence (AI) towards
dynamical I4.0 scheduling solutions;

• decentralisation of the orchestrating process to the participating assets;
• further adaptation of existing legacy and non-smart resources by leaning on the con-

cepts developed by organisations responsible for standardisation and interoperability;
• automatic derivation of the production process steps out of the provided CAD/CAM

diagrams or recipes; and
• using the previously collected data and acquired AI knowledge to deduce the missing

information on process descriptions.

The focus of this research group is and will be a collaboration between humans,
machines, and robots in already existing production lines that would require controlled

Appl. Sci. 2021, 11, 7956 23 of 25

adaptation rather than disruption, while also answering growing ethical concerns and
challenges [46] in the human-centric SF of the future.

Author Contributions: Conceptualization, M.P. and V.D.; methodology, M.P. and M.V.; software, V.D.,
M.V., G.K. and M.K.; validation, V.D., M.K. and M.V.; formal analysis, M.P. and V.D.; investigation,
M.P.; re-sources, M.P.; data curation, M.V. and G.K.; writing—original draft preparation, M.P.;
writing—review and editing, M.P., V.D., M.V. and M.K.; visualization, M.P. and M.V.; supervision,
V.D.; project administration, M.P.; funding acquisition, M.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No Data available online. For further query email to the corresponding
author (pisa@keba.com).

Acknowledgments: The research is supported by KEBA Group.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the Art and Future Trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [CrossRef]
2. Thoben, K.-D.; Wiesner, S.; Wuest, T. “Industrie 4.0” and Smart Manufacturing—A Review of Research Issues and Application

Examples. Int. J. Autom. Technol. 2017, 11, 4–16. [CrossRef]
3. Sufian, A.T.; Abdullah, B.M.; Ateeq, M.; Wah, R.; Clements, D. Six-Gear Roadmap towards the Smart Factory. Appl. Sci. 2021,

11, 3568. [CrossRef]
4. Zheng, T.; Ardolino, M.; Bacchetti, A.; Perona, M. The Applications of Industry 4.0 Technologies in Manufacturing Context:

A Systematic Literature Review. Int. J. Prod. Res. 2021, 59, 1922–1954. [CrossRef]
5. Lu, Y. Industry 4.0: A Survey on Technologies, Applications and Open Research Issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [CrossRef]
6. Nardo, M.D.; Forino, D.; Murino, T. The Evolution of Man–Machine Interaction: The Role of Human in Industry 4.0 Paradigm.

Prod. Manuf. Res. 2020, 8, 20–34. [CrossRef]
7. Gellert, A.; Precup, S.-A.; Pirvu, B.-C.; Fiore, U.; Zamfirescu, C.-B.; Palmieri, F. An Empirical Evaluation of Prediction by Partial

Matching in Assembly Assistance Systems. Appl. Sci. 2021, 11, 3278. [CrossRef]
8. Bortolini, M.; Faccio, M.; Galizia, F.G.; Gamberi, M.; Pilati, F. Adaptive Automation Assembly Systems in the Industry 4.0 Era:

A Reference Framework and Full–Scale Prototype. Appl. Sci. 2021, 11, 1256. [CrossRef]
9. Zuehlke, D. SmartFactory—Towards a Factory-of-Things. Annu. Rev. Control 2010, 34, 129–138. [CrossRef]
10. Gorecky, D.; Schmitt, M.; Loskyll, M.; Zuhlke, D. Human-Machine-Interaction in the Industry 4.0 Era.; IEEE: Porto Alegre, RS, Brazil,

2014; pp. 289–294.
11. Neubauer, M.; Krenn, F.; Majoe, D.; Stary, C. Subject-Orientation as Design Language for Integration across Organisational

Control Layers. Int. J. Prod. Res. 2017, 55, 3644–3656. [CrossRef]
12. Vještica, M.; Dimitrieski, V.; Pisarić, M.; Kordić, S.; Ristić, S.; Luković, I. Multi-Level Production Process Modeling Language.

J. Comput. Lang. 2021, 65, 101053. [CrossRef]
13. Vještica, M.; Dimitrieski, V.; Pisarić, M.; Kordić, S.; Ristić, S.; Luković, I. An Application of a DSML in Industry 4.0 Production

Processes. In Advances in Production Management Systems. The Path to Digital Transformation and Innovation of Production Management
Systems, Proceedings of the IFIP Advances in Information and Communication Technology (AICT), Novi Sad, Serbia, 30 August–3 September
2020; Springer: Cham, Switzerland, 2020; Volume 591, pp. 441–448.

14. Cohen, Y.; Naseraldin, H.; Chaudhuri, A.; Pilati, F. Assembly Systems in Industry 4.0 Era: A Road Map to Understand Assembly
4.0. Int. J. Adv. Manuf. Technol. 2019, 105, 4037–4054. [CrossRef]

15. vom Brocke, J.; Hevner, A.; Maedche, A. Introduction to Design Science Research. In Design Science Research. Cases; vom Brocke, J.,
Hevner, A., Maedche, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–13. ISBN 978-3-030-46780-7.

16. Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; Chatterjee, S. A Design Science Research Methodology for Information Systems
Research. J. Manag. Inf. Syst. 2007, 24, 45–77. [CrossRef]

17. Hevner, A.; Chatterjee, S. Design Science Research in Information Systems. In Design Research in Information Systems; Integrated
Series in Information Systems; Springer: Boston, MA, USA, 2010; Volume 22, pp. 9–22. ISBN 978-1-4419-5652-1.

18. Ardanza, A.; Moreno, A.; Segura, Á.; de la Cruz, M.; Aguinaga, D. Sustainable and Flexible Industrial Human Machine Interfaces
to Support Adaptable Applications in the Industry 4.0 Paradigm. Int. J. Prod. Res. 2019, 57, 4045–4059. [CrossRef]

http://doi.org/10.1080/00207543.2018.1444806
http://doi.org/10.20965/ijat.2017.p0004
http://doi.org/10.3390/app11083568
http://doi.org/10.1080/00207543.2020.1824085
http://doi.org/10.1016/j.jii.2017.04.005
http://doi.org/10.1080/21693277.2020.1737592
http://doi.org/10.3390/app11073278
http://doi.org/10.3390/app11031256
http://doi.org/10.1016/j.arcontrol.2010.02.008
http://doi.org/10.1080/00207543.2016.1198058
http://doi.org/10.1016/j.cola.2021.101053
http://doi.org/10.1007/s00170-019-04203-1
http://doi.org/10.2753/MIS0742-1222240302
http://doi.org/10.1080/00207543.2019.1572932

Appl. Sci. 2021, 11, 7956 24 of 25

19. Pisarić, M.; Dimitrieski, V.; Vještica, M.; Krajoski, G. Towards a Non-Disruptive System for Dynamic Orchestration of the Shop
Floor. In Advances in Production Management Systems. Towards Smart and Digital Manufacturing, Proceedings of the IFIP Advances in
Information and Communication Technology (AICT), Novi Sad, Serbia, 30 August–3 September 2020; Springer: Cham, Switzerland, 2020;
Volume 592, pp. 469–476.

20. Tantik, E.; Anderl, R. Potentials of the Asset Administration Shell of Industrie 4.0 for Service-Oriented Business Models. Procedia
CIRP 2017, 64, 363–368. [CrossRef]

21. Romero, D.; Bernus, P.; Noran, O.; Stahre, J.; Fast-Berglund, Å. The Operator 4.0: Human Cyber-Physical Systems & Adaptive
Automation Towards Human-Automation Symbiosis Work Systems. In Advances in Production Management Systems. Initiatives
for a Sustainable World; IFIP Advances in Information and Communication Technology: Iguassu Fall, Brazil, 2016; Volume 488,
pp. 677–686.

22. Keddis, N. Capability-Based System-Aware Planning and Scheduling of Workflows for Adaptable Manufacturing Systems.
Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2016.

23. Loskyll, M.; Schlick, J.; Hodek, S.; Ollinger, L.; Gerber, T.; Pirvu, B. Semantic Service Discovery and Orchestration for Manufactur-
ing Processes. In Proceedings of the ETFA2011, Toulouse, France, 5–9 September 2011; pp. 1–8.

24. Backhaus, J.; Reinhart, G. Digital Description of Products, Processes and Resources for Task-Oriented Programming of Assembly
Systems. J. Intell. Manuf. 2017, 28, 1787–1800. [CrossRef]

25. Dorofeev, K.; Profanter, S.; Cabral, J.; Ferreira, P.; Zoitl, A. Agile Operational Behavior for the Control-Level Devices in
Plug&Produce Production Environments. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; pp. 49–56.

26. Pisarić, M.; Dimitrieski, V.; Babić, M.; Veselinović, S.; Dušić, F. Towards a Plug-and-Play Architecture in Industry 4.0. In
Proceedings of the 17th International Scientific Conference on Industrial Systems (IS’17), Novi Sad, Serbia, 4–6 October 2017;
pp. 136–141.

27. Alsafi, Y.; Vyatkin, V. Ontology-Based Reconfiguration Agent for Intelligent Mechatronic Systems in Flexible Manufacturing.
Robot. Comput.-Integr. Manuf. 2010, 26, 381–391. [CrossRef]

28. Wu, X.; Jiang, X.; Xu, W.; Ai, Q.; Liu, Q. A Unified Sustainable Manufacturing Capability Model for Representing Industrial
Robot Systems in Cloud Manufacturing. In Advances in Production Management Systems: Innovative Production Management Towards
Sustainable Growth. APMS2015, Proceedings of the IFIP Advances in Information and Communication Technology (AICT), Tokyo, Japan,
7–9 September 2015; Springer: Cham, Switzerland, 2015; Volume 460, pp. 388–395.

29. Järvenpää, E.; Siltala, N.; Hylli, O.; Lanz, M. The Development of an Ontology for Describing the Capabilities of Manufacturing
Resources. J. Intell. Manuf. 2019, 30, 959–978. [CrossRef]

30. Prestes, E.; Carbonera, J.L.; Rama Fiorini, S.; Jorge, V.A.M.; Abel, M.; Madhavan, R.; Locoro, A.; Goncalves, P.; Barreto, M.E.;
Habib, M.; et al. Towards a Core Ontology for Robotics and Automation. Robot. Auton. Syst. 2013, 61, 1193–1204. [CrossRef]

31. Schlenoff, C.; Prestes, E.; Madhavan, R.; Goncalves, P.; Li, H.; Balakirsky, S.; Kramer, T.; Miguelanez, E. An IEEE Standard
Ontology for Robotics and Automation. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 1337–1342.

32. Lepuschitz, W. Self-Reconfigurable Manufacturing Control Based on Ontology-Driven Automation Agents. Ph.D. Dissertation,
Technischen Universitat Wien, Wien, Austria, 2018.

33. Weyer, S.; Schmitt, M.; Ohmer, M.; Gorecky, D. Towards Industry 4.0—Standardization as the Crucial Challenge for Highly
Modular, Multi-Vendor Production Systems. IFAC-PapersOnLine 2015, 48, 579–584. [CrossRef]

34. OPC UA Companion Specification for Robotics (OPC Robotics)—Part 1: Vertical Integration, Release 1.00. Available on-
line: https://robotik.vdma.org/documents/105999/40530869/OPC%2040010-1%20-%20UA%20Companion%20Specification%
20Part%201%20for%20Robotics%201.00_1571666003593.pdf/32d1676f-c352-8977-d8a8-ffcb49f1cb48 (accessed on 30 July 2019).

35. Grznár, P.; Gregor, M.; Krajčovič, M.; Mozol, Š.; Schickerle, M.; Vavrík, V.; Ďurica, L.; Marschall, M.; Bielik, T. Modeling and
Simulation of Processes in a Factory of the Future. Appl. Sci. 2020, 10, 4503. [CrossRef]

36. Romero, D.; Stahre, J.; Wuest, T.; Noran, O.; Bernus, P.; Fast-Berglund, Å.; Gorecky, D. Towards an Operator 4.0 Typology:
A Human-Centric Perspective on the Fourth Industrial Revolution Technologies. In Proceedings of the International Conference
on Computers & Industrial Engineering, Tianjin, China, 19–31 October 2016; pp. 1–11.

37. Vernim, S.; Walzel, H.; Knoll, A.; Reinhart, G. Towards Capability-Based Worker Modelling in a Smart Factory. In Proceed-
ings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore,
10–13 December 2017; pp. 1576–1580.

38. Michniewicz, J.; Reinhart, G. Cyber-Physical-Robotics-Modelling of Modular Robot Cells for Automated Planning and Execution
of Assembly Tasks. Mechatronics 2016, 34, 170–180. [CrossRef]

39. Zhang, Y.; Qian, C.; Lv, J.; Liu, Y. Agent and Cyber-Physical System Based Self-Organizing and Self-Adaptive Intelligent Shopfloor.
IEEE Trans. Ind. Inform. 2017, 13, 737–747. [CrossRef]

40. Rossit, D.A.; Tohmé, F.; Frutos, M. Industry 4.0: Smart Scheduling. Int. J. Prod. Res. 2019, 57, 3802–3813. [CrossRef]
41. Alemão, D.; Rocha, A.D.; Barata, J. Smart Manufacturing Scheduling Approaches—Systematic Review and Future Directions.

Appl. Sci. 2021, 11, 2186. [CrossRef]
42. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of Job Shop Scheduling Research and Its New Perspectives under Industry 4.0.

J. Intell. Manuf. 2019, 30, 1809–1830. [CrossRef]

http://doi.org/10.1016/j.procir.2017.03.009
http://doi.org/10.1007/s10845-015-1063-3
http://doi.org/10.1016/j.rcim.2009.12.001
http://doi.org/10.1007/s10845-018-1427-6
http://doi.org/10.1016/j.robot.2013.04.005
http://doi.org/10.1016/j.ifacol.2015.06.143
https://robotik.vdma.org/documents/105999/40530869/OPC%2040010-1%20-%20UA%20Companion%20Specification%20Part%201%20for%20Robotics%201.00_1571666003593.pdf/32d1676f-c352-8977-d8a8-ffcb49f1cb48
https://robotik.vdma.org/documents/105999/40530869/OPC%2040010-1%20-%20UA%20Companion%20Specification%20Part%201%20for%20Robotics%201.00_1571666003593.pdf/32d1676f-c352-8977-d8a8-ffcb49f1cb48
http://doi.org/10.3390/app10134503
http://doi.org/10.1016/j.mechatronics.2015.04.012
http://doi.org/10.1109/TII.2016.2618892
http://doi.org/10.1080/00207543.2018.1504248
http://doi.org/10.3390/app11052186
http://doi.org/10.1007/s10845-017-1350-2

Appl. Sci. 2021, 11, 7956 25 of 25

43. Cimino, C.; Negri, E.; Fumagalli, L. Review of Digital Twin Applications in Manufacturing. Comput. Ind. 2019, 113, 103130. [CrossRef]
44. Roque Rolo, G.; Dionisio Rocha, A.; Tripa, J.; Barata, J. Application of a Simulation-Based Digital Twin for Predicting Distributed

Manufacturing Control System Performance. Appl. Sci. 2021, 11, 2202. [CrossRef]
45. Florescu, A.; Barabas, S.A. Modeling and Simulation of a Flexible Manufacturing System—A Basic Component of Industry 4.0.

Appl. Sci. 2020, 10, 8300. [CrossRef]
46. Longo, F.; Padovano, A.; Umbrello, S. Value-Oriented and Ethical Technology Engineering in Industry 5.0: A Human-Centric

Perspective for the Design of the Factory of the Future. Appl. Sci. 2020, 10, 4182. [CrossRef]

http://doi.org/10.1016/j.compind.2019.103130
http://doi.org/10.3390/app11052202
http://doi.org/10.3390/app10228300
http://doi.org/10.3390/app10124182

	Introduction
	Methods
	The Orchestrator
	An Assembly Use-Case
	Literature Review
	Conclusions
	References

