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Abstract

:

The design of the modern computing paradigm of heuristics is an innovative development for parameter estimation of direction of arrival (DOA) using sparse antenna arrays. In this study, the optimization strength of the flower pollination algorithm (FPA) is exploited for the DOA estimation in a low signal to noise ratio (SNR) regime by applying coprime sensor arrays (CSA). The enhanced degree of freedom (DOF) is achieved with FPA by investigating the global minima of highly nonlinear cost function with multiple local minimas. The sparse structure of CSA demonstrates that the DOF up to   O ( M N )   is achieved by employing   M + N   CSA elements, where M and N are the numbers of antenna elements used to construct the CSA. Performance analysis is conducted for estimation accuracy, robustness against noise, robustness against snapshots, frequency distribution of root mean square error (RMSE), variability analysis of RMSE, cumulative distribution function (CDF) of RMSE over Monte Carlo runs and the comparative studies of particle swarm optimization (PSO). These reveal the worth of the proposed methodology for estimating DOA.
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1. Introduction


Accurate estimation of target locations in array signal processing has been received a great acclaim in military and commercial applications like radar [1,2] sonar [3], seismology [4] and mobile communications [5,6]. Direction of arrival estimation and spatial filtering are becoming two important hotspots in the field of array signal processing. In accordance with literature, DOA estimation can be categorized into two important aspects with respect to estimation:the first is distribution array structures and the second one is estimation algorithms. The array structure is divided into two major groups depending upon the distance between the antenna elements. First are the uniform linear arrays ULA [7] and second is the sparse arrays structure [8,9,10]. A vast amount of literature is available on ULAs. In ULAs, all antenna elements are equispaced and furthermore, distance between each antenna element is equal to a fraction of wavelength of the received signal. To detect more targets using ULA, more antenna elements will be needed, which will increase the cost of hardware and computing complexity. This limitation in ULAs leads us to the world of sparse arrays.



Minimum redundancy array (MRA) [11], nested array (NA) [12,13] and coprime sensor arrays (CSA) [14,15] are the most popular types of the sparse arrays. These spare arrays are used to attain more number of degree of freedom rather than N-1 targets with N sensors. In sparse arrays, distance between each antenna elements is not same. MRA has maximum   N ( N − 1 ) + 1   DOF but it has no closed form expression for its array structure. A nested array has   O (  N 2  )   DOF but it has more mutual coupling issue than MRA and coprime due to a dense ULA in its physical structure. Although, CSA has more holes in its co-array structure but it has less mutual coupling and additionally,   O ( M N )   is the DOF for this array structure. The past decade has been shown a huge growth in CSAs. Consequently, CSA is used in this paper due to enhanced DOF and reduced mutual coupling effect for efficient detection of targets in far field. CSA is obtained from union of two ULAs of coprime numbers.



The second aspect of the DOA estimation is categorized into two further parts. First are the deterministic algorithms and the second part is the heuristic algorithms. Deterministic algorithms are sub-space based and consist of multiple signal classification(MUSIC) [16], root MUSIC [17], estimation of signal parameters via rotational invariance techniques (ESPRIT) [18], minimum variance distortionless response (MVDR) [19], maximum Likelihood (ML) [20], etc. Although, these sub-space methods perform well and provide better resolution [21,22] in terms of computational complexity, solving a problem quickly and increasing robustness to also increase efficiency, the degree of freedom heuristic algorithms are employed. In consonance with the literature, sub-space based methods are eligible to estimate   N − 1   targets by configuring N antenna elements. Therefore, heuristic algorithms are used to subdue this issue. Numerous algorithms are included under heuristic algorithms, such as Genetic Algorithm (GA) [23], flower pollination algorithm (FPA) [24], particle swarm optimization (PSO) [25,26], ant colony optimization (ACO) [27], bee colony optimization (BCO) [28], simulated annealing (SA) [29], differential evolution (DE) [30], etc. For far-field narrow-band signal DOA estimation, so far, a set of algorithms have been proposed, such as Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT), Multiple Signal Classification (MUSIC), Maximum Likelihood (ML, including Deterministic ML (DML) and Stochastic ML (SML), compressed sensing, and Weighted Subspace Fitting (WSF). Among these algorithms, it is well known that ML and WSF have the highest accuracy of DOA estimation. However, it is also well demonstrated that the computational complexity of them is also the highest because their criteria are nonlinear multi-dimensional optimization [31]. In this research work, we exploit the features of Flower Pollination Algorithm and estimate the direction of arrival. FPA is a biological-inspired soft computing algorithm, which is associated with the transformation of pollens by pollinators like bees, birds and other insects. There are two basic procedures for transformation of pollens. The first one is biotic and the other is an abiotic process. Biotic or cross-pollination is also known as global search pollination and abiotic or self- pollination is also known as local search pollination. In FPA the major objective is to deduce the best reproduction of plants by surviving the fittest flower in the flowering plants [32]. The aim of our research is to estimate DOA through novel computing paradigm using coprime sensor array with the help of meta heuristic technique. We analyze the performance of the proposed scheme in term of estimation accuracy, robustness against noise, robustness against snapshots, frequency distribution of RMSE, variability analysis of RMSE and CDF of RMSE over Monte Carlo runs.



Organization and Notation of Paper


The rest of the paper is organized as follows. A mathematical model of the proposed scheme is derived in Section 2, Section 3 elaborates on the frame work of the FPA and PSO, results and discussion are explained in Section 4 and finally, the conclusion of the presented model is concluded in Section 5.





2. Mathematical Modeling


Suppose signals of L narrowband uncorrelated targets are impinging on CSA consisting of two sub ULAs. Sub-array 1 contains M antenna elements having   N d   space among each antenna element as shown in Figure 1a while sub-array 2 has N antenna elements   M d   apart from each other as shown in Figure 1b. M and N are coprime integers and d is equal to the half of the wave length   ( λ / 2 )  . By combining these two sub arrays, we get a generalized coprime antenna array having   M + N − 1   elements, as seen in Figure 1c. The first antenna element is shared with both sub-ULAs and physical location of each antenna element of CSA is enclosed in Equation (1).


  I = { 0 , N d , M d , 2 N d , 2 M d , . . . , ( N − 1 ) M d , ( M − 1 ) N d }  



(1)







Direction of arrival of L uncorrelated signals is summarized in vector  θ 


  θ = [  θ 1  ,  θ 2  ,  θ 3  , . . . ,  θ L  ]  



(2)







Hence, the received signal of L uncorrelated targets impinging on coprime array is given by


  x  ( t )  =  ∑  l = 1  L   a l   ( θ )   s l   ( t )  + n  ( t )  = A  ( θ )  s  ( t )  + n  ( t )   



(3)




where


  A  ( θ )  = [  a 1   ( θ )  ,  a 2   ( θ )  , . . . ,  a L   ( θ )  ]  



(4)






   a l   ( θ )  =  [ 1 ,  e  π N sin  θ l    ,  e  π M sin  θ l    ,  e  π 2 N sin  θ l    ,  e  π 2 M sin  θ l    , . . . ,  e  π  ( N − 1 )  M d sin  θ l    ,  e  π  ( M − 1 )  N d sin  θ l    ]   



(5)






   s l   ( t )  =   [  s 1   ( t )  ,  s 2   ( t )  , . . . ,  s L   ( t )  ]  T   



(6)




and   n ( t )   is the iid and complex additive white Gaussian noise (AWGN) with variance   σ  I 2    and zero mean.


  n  ( t )  = [  n 1   ( t )  ,  n 2   ( t )  , . . .  n  M + N − 1    ( t )  ]  



(7)







Based on this coprime array structure, we can be performed the computation of covariance matrix by taking expectation of the received signal as presented in following equation


  R x x = E [ x  ( t )   x H   ( t )  ]  



(8)







By solving this equation we will get


  R x x = A R s s  A H  +  σ 2  I  



(9)







  R s s   is the amplitude covariance matrix of received signal as shown in following Equation (9)


  R s s = E [ s  ( t )   s H   ( t )  ]  



(10)







Now virtual uniform linear array can be obtained by performing vectorization on covariance matrix   ( R x x )   as expressed in the following equation


  z = v e c  ( R x x )  = v e c  ( A R s s  A H  +  σ 2  I )  = D  σ 2  +  σ 2  I  



(11)




where D is the Kronecker product and the elements in D are expressed in the form of following equation


   e  j K  (  I i  −  I j  )  sin  θ l    w h e r e   i , j = 0 , 1 , 2 , . . . , M + N − 1   .  



(12)







In the process of vectorization, all columns of correlation matrix are placed one by one under the first column. After performing vectorization, the correlation matrix become a column vector   z    ( M + N − 1 )  2  × 1   . This column vector z is sorted out in accordance with exponent term of the received signal. After sorting, redundant terms of this sorted vector are being skipped. In [33], this can be assessed as continuous virtual uniform linear array (vULA)


   I c  =  {  ( M n d − N m d )  ∪  ( N m d − M n d )  }  ,  w h e r e  0 < m < M − 1  a n d  0 < n < N − 1   



(13)







Locations of this vULA elements can be expressed as


   I v  =  {  (  I i  −  I j  )   i , j = 0 , 1 , 2 , . . . , M + N − 1 }   



(14)







We concentrate on the continuous part of vULA of CSA for application of our proposed algorithms. Due to this continuous part of the vULA, we get a higher degree of freedom and this DOF is directly proportional to the length of continuous vULA.




3. Proposed Methodology


3.1. Flower Pollination Algorithm


In this research article, a flower pollination algorithm is designed to optimize the received signal at coprime antenna arrays. In Figure 2, a flow chart of FPA is illustrated to describe the complete function of FPA. Briefly, the flower pollination algorithm is described in following steps.



	Step 1: Population Generation

	
 







Randomly generate the initial population   x i  .



Then evaluate the whole population by the help of fitness function   f (  x i  )  .



	Step 2: Global pollination process

	
 







By using Levy distribution, global pollination process is done by executing the following equation


   x i  ( t + 1 )   =  x i t  + L  (  g ∗  −  x i t  )   



(15)







	Step 3: Local pollination process

	
 







Choose two solutions i and j randomly and generate the parameter  ϵ  for exploration process by executing following equation


   x i  ( t + 1 )   =  x i t  + ϵ  (  x j t  −  x k t  )   



(16)







	Step 4: Update solution

	
 







At the end we check that if new solution is better than the older one, then set


   x i  t + 1   =  x i  t + 1    



(17)




otherwise set


   x i  t + 1   =  x i t   



(18)







This process is repeated until the best solution is achieved.




3.2. Particle Swarm Optimization


Particle swarm optimization is a nature inspired robust stochastic optimization technique. The workings of PSO can be explained in following six steps as illustrated in Figure 3



	Step 1: Initialization:

	
 







The PSO algorithm is initialized by a group of random particles and each particle is a solution.



Ater Initializing parameters   (  x i  )   and velocities   (  v i  )  . Each particle searches for the optimal value by updating the generation.



In each iteration every particle is updated. The first best one is the best solution. After finding the best value particle, update its velocity and position again.



Particle updates its position by


   x i  ( t + 1 )   =  x i  ( t )   +  v i  ( t )   ∗ t  



(19)







Particle updates its velocity through following equation


   x i  ( t + 1 )   = w ∗  v i  ( t )   +  c 1  ∗  v 1   ( x b e s t  i t  −  x i t  )  +  c 2  ∗  r 2   ( g b e s t  i t  −  x i t  )   



(20)




where



  c 1   is the constant parameter;



  r 1   is the random parameter;



Xbest is the best particle position;



Gbest is the group best position.



	Step 2: Evaluate Fitness:

	
 







Calculate fitness value for each particle. If fitness value is greater than the gbest then set new value as gbest and choose particle with the best fitness value.



	Step 3: For each particle calculate velocity and position from Equations (1) and (2).

	
 







	Step 4: Evaluate Fitness   f (  x i t  )   and find current best.

	
 







	Step 5: Update t = t + 1.

	
 







	Step 6: Output gbest and    x i   ( t )   .

	
 







The process will be continued until the condition is met.




3.3. Fitness Function


Fitness function plays an important role in optimization problems. This is a fundamental tool for the evaluation of the population. This evaluation is performed in each iteration of the algorithm. Fitness function is the difference between the actual and estimated value and it is defined in the following equation


  f  (  x i  )  =   |  x  a i    ( t )  −  x  e i    ( t )  |  2   



(21)







In both methodologies, this fitness function is used for evaluation of pollens and particles.





4. Results, Discussions and Achievements


This section contains various simulated results to validate the potential of FPA and PSO. This analysis is done in term of estimation accuracy, robustness against noise, RMSE vs. snapshots, variation analysis of RMSE, frequency distribution of RMSE, cumulative distribution function of RMSE and box plot analysis under different varying parameters of far field sources. In all of these simulations, Additive White Gaussian Noise (AWGN) channel is assumed with zero mean and variance   σ 2   while physical coprime antenna elements are 6 and 200 snapshots are taken for each simulation. All simulated results are compared by estimating seven, nine and eleven targets which are located at   [  20 0  ,  40 0  ,  60 0  ,  80 0  ,  100 0  ,  120 0  ,  140 0  ]  ,  [  20 0  ,  40 0  ,  60 0  ,  80 0  ,  100 0  ,  120 0  ,  140 0  ,  160 0  .  170 0  ]   and   [  20 0  ,  35 0  ,  50 0  ,  65 0  ,  80 0  ,  95 0  ,  110 0  ,  120 0  ,  135 0  ,  150 0  ,  165 0  ]   simultaneously.



4.1. Estimation Accuracy


Estimation accuracy of FPA and PSO is looked into by varying the number of sources and their positions. This analysis is set out by best, worst and mean values of the angles estimated by proposed methods to validate their performance along with statistical analysis. In the case of seven targets, we clearly monitored that angles estimated by FPA are accurate than PSO at 0dB, −5 dB and −10 dB SNRs as depicted in Table 1, Table 2 and Table 3. Furthermore, Table 1, Table 2 and Table 3 includes the standard deviation (STD) analysis for the FPA and PSO models, which clearly define that the proposed model has optimized outcomes.



The statistical analysis including STD for nine targets are declared in Table 4, Table 5 and Table 6, comparing the performance of FPA and PSO algorithms. The outcomes prove that the computation analysis of FPA is more optimized than PSO.



Table 7, Table 8 and Table 9 illustrate the analysis of different angles in terms of best, mean, worst and STD for FPA and PSO algorithms. By keeping in view the analysis of STD, it clearly observed that the achievements of FPA are much better than PSO.




4.2. Robustness against Noise


Robustness against noise is one of the best analysis to measure the performance of algorithms used for DOA estimation. In this analysis, as signal to noise ratio increases, the value of RMSE decreases. RMSE is the performance indicator against different numbers of SNR in this analysis. In all three cases, FPA shows much robustness against noise than PSO as shown in Figure 4, Figure 5 and Figure 6.




4.3. RMSE Analysis against Multiple Snapshots


Based on Figure 4, Figure 5 and Figure 6, the value of Root Mean Square Error (RMSE) is observed by increasing the Signal to Noise Ratio (SNR) from −30 dB to 0 dB while in Figure 7, Figure 8 and Figure 9 comparison of RMSE for FPA and PSO is performed with respect to a number of snapshots. In array signal processing, when direction of arrival estimation is performed multiple snapshots of the received signal are taken while we simulate the problem. If value of error reduced gradually when increasing the number of snapshots, it means that our algorithm works properly. Therefore, we perform the comparison of RMSE vs. snapshots for FPA and PSO in Figure 7, Figure 8 and Figure 9 to explore the superiority of the algorithms. It can be clearly observed in Figure 7, Figure 8 and Figure 9, that FPA is more effective for DOA estimation with enhanced degree of freedom than PSO. Moreover, as number of snapshots increases, RMSE decreases gradually.




4.4. Variation Analysis of RMSE


A box-plot is a standard way to demonstrate the distribution of error in accordance with   Q 1  ,  Q 2  ,  Q 3  , min and max value of data. We distinguish the min and max values on the basis of outlier and in conformity with outlier, we easily identify the performance of the proposed methodologies. In Figure 10 maximum RMSE of FPA is 40, 55 and 60 at 0 dB, −5 dB and −10 dB, respectively. Whereas at 0 dB, −5 dB and −10 dB the relative maximum RMSE is below 400 and 600. These plots showed that FPA performed vastly superior than PSO.



In the case of nine targets, it can be easily observed that spread of RMSE of FPA is far less than PSO at 0dB, −5 dB and −10 dB as depicted in Figure 11. In the case of eleven targets detection, again the performance of FPA is outclassed, as illustrated in Figure 12. In accordance with this diagram RMSE spread of FPA is below 200 at 0 dB, −5 dB and −10 dB while this spread is more than 1300 in case of PSO.




4.5. Cumulative Distribution Function of RMSE


CDF is a non decreasing function and in this subsection, it is applied to specify the persistence and failure times of optimization techniques in respect with Monte Carlo runs. CDF is the part of probability density function and it is presented in the form of probability. Figure 13 shows that FPA performs very well as compared to PSO in respect with RMSE. In case of FPA, RMSE has been occurred around zero at 80% of MC runs at 0 dB, −5 dB and −10 dB while RMSE is exceeded up to 150 at 25% of MC runs of PSO algorithm.



In case of nine targets estimation, again FPA performs superbly. The value of RMSE is near to zero at 50% of MC runs while it exceed up to 1500 in the scenario of PSO at 0 dB, −5 dB and −10 dB as depicted in Figure 14.



In case of eleven targets estimation, the performance of FPA is remarkable. In this case, the RMSE value is near to 50 at 50% of MC runs in FPA algorithm while it exceed 1000 in the scenario of PSO at 0 dB, −5 dB and −10 dB as shown in Figure 15.




4.6. Histogram Analysis of RMSE


In histogram representation, bars are in the form of continuous grouping. In this analysis, we check how much RMSE occurred against Monte Carlo runs. On the basis of this analysis, we checked the performance of algorithms. In Figure 16 RMSE of FPA is very low at 0dB, −5 dB and −10 dB SNR over 500 iterations. In the same scenario, RMSE of PSO increases gradually as SNR decreases. Thus, we clearly observed that FPA performed very well as compared to PSO on the basis of RMSE distribution.



In Figure 17, RMSE spread of FPA is very low at 0dB, −5 dB and −10 dB SNR in accordance with 500 iterations while spread of RMSE of PSO is very wide. Thus, it can be noticed clearly that performance of is much better as compared to PSO on the basis of RMSE distribution.



As per Figure 18, RMSE spread of FPA is very small at 0 dB, −5 dB and −10 dB SNR with respect to 500 iterations while RMSE spread of PSO more wider. Thus, it can be examine easily that performance of FPA is much better as compared to PSO on the basis of RMSE distribution.





5. Conclusions


In this paper, we estimate DOA of electromagnetic waves received at coprime arrays through the Flower Pollination Algorithm. In DOA estimation, enhanced degree of freedom and estimation accuracy are the main challenges in a low SNR environment. Deterministic algorithms provide high resolution, but performance of these algorithms is degraded when we need higher DOF in a low SNR regime. However, meta heuristic algorithm, as we implement FPA in this paper, provides higher DOF and resolution ability at low SNR. In the future, we will expand the span of this study by estimating other parameters like frequency and amplitude of the impinging waves by exploring advance meta heuristic techniques.







Author Contributions


Conceptualization, K.H., N.A. (Nauman Ahmed), W.K. and S.T.; Methodology, K.H., N.A. (Nauman Ahmed), W.K., A.B., A.A. and F.S.A.; Validation, N.A. (Norah Alnaim), K.H., N.A. (Nauman Ahmed), W.K., A.B., A.A., F.S.A., M.S.Q. and F.A.; Analysis, K.H., N.A. (Nauman Ahmed), W.K. and A.B.; Writing—Original Draft Preparation, K.H.; Writing—Review and Editing, K.H., N.A. (Nauman Ahmed), W.K., A.B., A.A., F.S.A., M.S.Q. and F.A., Funding Acquisition, S.T., N.A. (Norah Alnaim), A.A. and F.S.A. All authors have read and agreed to the published version of the manuscript.




Funding


This work is supported in part by the Beijing Natural Science Foundation (No. 4212015), Natural Science Foundation of China (No. 61801008), China Ministry of Education - China Mobile Scientific Research Foundation (No. MCM20200102), China Postdoctoral Science Foundation (No. 2020M670074), Beijing Municipal Commission of Education Foundation (No. KM201910005025), China National Key Research and Development Program (No. 2018YFB0803600).




Institutional Review Board Statement


Not applicable.




Informed Consent Statement


Not applicable.




Data Availability Statement


The authors confirm that the data supporting the findings of this study are available within the article.




Acknowledgments


We are immensely grateful to Florian Römer, Group Manager, Fraunhofer Institute for Nondestructive Testing IZFP (Ilmenau University of Technology Germany) for his unconditional help and guidance that greatly improved the manuscript. His expert opinion and assistance enable us to achieve this milestone. We would also like to state our gratitude to the late Ijaz Mansoor Qureshi for sharing his pearls of wisdom and care during the course of this research work. Although, he is no longer present among us, his guidance and love will always be there to show us the right path.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Zhang, Y.; Hu, G.; Zhu, M.; Zhan, C.; Zhao, F.; Zhou, H.; Zhao, F.; Yue, S. DOA estimation based on average processing of redundant virtual array elements for coprime MIMO RADAR. J. Phys. Conf. Ser. 2021, 1894, 012092. [Google Scholar] [CrossRef]

	



Wen, F.; Mao, C.; Zhang, G. Direction finding in MIMO RADAR with large antenna arrays and non-orthogonal waveforms. Digit. Signal Process. 2019, 94, 75–83. [Google Scholar] [CrossRef]

	



Jing, H.; Wang, H.; Liu, Z.; Shen, X. DOA estimation for underwater target by active detection on virtual time reversal using a uniform linear array. Sensors 2018, 18, 2458. [Google Scholar] [CrossRef]

	



Straser, V.; Cataldi, D.; Cataldi, G. Radio direction finding system, a new perspective for global crust diagnosis. New Concepts Glob. Tectonics J. 2018, 6, 203–211. [Google Scholar]

	



Wang, J.J.-M.; Liu, J.; Pare, T.E., Jr.; Wu, T.; Bajko, G.; Hsu, Y.-P. Direction Finding and Ftm Positioning in Wireless Local Area Networks. U.S. Patent 10,484,814, 19 November 2019. [Google Scholar]

	



Suryavanshi, N.B.; Reddy, K.V.; Chandrika, V.R. Direction finding capability in bluetooth 5.1 standard. In International Conference on Ubiquitous Communications and Network Computing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 53–65. [Google Scholar]

	



Qin, S.; Zhang, Y.D.; Amin, M.G.; Himed, B. DOA estimation exploiting a uniform linear array with multiple co-prime frequencies. Signal Process. 2017, 130, 37–46. [Google Scholar] [CrossRef]

	



Guo, M.; Zhang, Y.D.; Chen, T. DOA estimation using compressed sparse array. IEEE Trans. Signal Process. 2018, 66, 4133–4146. [Google Scholar] [CrossRef]

	



Elbir, A.M. Two-dimensional DOA estimation via shifted sparse arrays with higher degrees of freedom. Circuits Syst. Signal Process. 2019, 38, 5549–5575. [Google Scholar] [CrossRef]

	



Liu, K.; Zhang, Y.D. Coprime array-based DOA estimation in unknown nonuniform noise environment. Digit. Signal Process. 2018, 79, 66–74. [Google Scholar] [CrossRef]

	



Chen, C.-Y.; Vaidyanathan, P.P. Minimum redundancy mimo radars. In Proceedings of the 2008 IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008; pp. 45–48. [Google Scholar]

	



Pal, P.; Vaidyanathan, P.P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [Google Scholar] [CrossRef]

	



Liu, J.; Zhang, Y.; Lu, Y.; Ren, S.; Cao, S. Augmented nested arrays with enhanced DOF and reduced mutual coupling. IEEE Trans. Signal Process. 2017, 65, 5549–5563. [Google Scholar] [CrossRef]

	



Vaidyanathan, P.P.; Pal, P. Sparse sensing with coprime arrays. In Proceedings of the 2010 Conference Record of the forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 1405–1409. [Google Scholar]

	



Zheng, Z.; Huang, Y.; Wang, W.; So, H.C. Direction-of-arrival estimation of coherent signals via coprime array interpolation. IEEE Signal Process. Lett. 2020, 27, 585–589. [Google Scholar] [CrossRef]

	



Adhikari, K.; Drozdenko, B. Symmetry-imposed rectangular coprime and nested arrays for direction of arrival estimation with multiple signal classification. IEEE Access 2019, 7, 153217–153229. [Google Scholar] [CrossRef]

	



Muhammad, M.; Li, M.; Abbasi, Q.H.; Goh, C.; Imran, M. Direction of arrival estimation using hybrid spatial cross-cumulants and root-music. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]

	



Ning, Y.; Ma, S.; Meng, F.; Wu, Q. DOA estimation based on ESPRIT algorithm method for frequency scanning LWA. IEEE Commun. Lett. 2020, 24, 1441–1445. [Google Scholar] [CrossRef]

	



Hakam, A.; Shubair, R.M.; Salahat, E. Enhanced DOA estimation algorithms using MVDR and MUSIC. In Proceedings of the 2013 International Conference on Current Trends in Information Technology (CTIT), Dubai, United Arab Emirates, 11–12 December 2013; pp. 172–176. [Google Scholar]

	



Wang, P.; Kong, Y.; He, X.; Zhang, M.; Tan, X. An improved squirrel search algorithm for maximum likelihood DOA estimation and application for MEMS vector hydrophone array. IEEE Access 2019, 7, 118343–118358. [Google Scholar] [CrossRef]

	



Jaafer, Z.; Goli, S.; Elameer, A.S. Best performance analysis of DOA estimation algorithms. In Proceedings of the 2018 1st Annual International Conference on Information and Sciences (AiCIS), Fallujah, Iraq, 20–21 November 2018; pp. 235–239. [Google Scholar]

	



Vikas, B.; Vakula, D. Performance comparision of MUSIC and ESPRIT algorithms in presence of coherent signals for DOA estimation. In Proceedings of the 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 20–22 April 2017; Volume 2, pp. 403–405. [Google Scholar]

	



Ahmed, N.; Wang, H.; Raja, M.A.Z.; Ali, W.; Zaman, F.; Khan, W.U.; He, Y. Performance analysis of efficient computing techniques for direction of arrival estimation of underwater multi targets. IEEE Access 2021, 9, 33284–33298. [Google Scholar] [CrossRef]

	



Yang, X.-S. Flower pollination algorithm for global optimization. In International Conference on Unconventional Computing and Natural Computation; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249. [Google Scholar]

	



Qamar, M.S.; Tu, S.; Ali, F.; Armghan, A.; Munir, M.F.; Alenezi, F.; Muhammad, F.; Ali, A.; Alnaim, N. Improvement of Traveling Salesman Problem Solution Using Hybrid Algorithm Based on Best-Worst Ant System and Particle Swarm Optimization. Appl. Sci. 2021, 11, 4780. [Google Scholar] [CrossRef]

	



Hammed, K.; Ghauri, S.A.; Qamar, M.S. Biological inspired stochastic optimization technique (pso) for DOA and amplitude estimation of antenna arrays signal processing in RADAR communication system. J. Sens. 2016, 2016. [Google Scholar] [CrossRef]

	



Zhao, H.; Hou, Y.; Mao, X. A synthetic layout method for distributed Nested Circular Array based on Ant colony algorithm. In Proceedings of the IET International RADAR Conference (IET IRC 2020), Chongqing, China, 4–6 November 2020; pp. 955–959. [Google Scholar]

	



Parsa, S.A.H.; Zadeh, A.E.; Kazemitabar, S.J. A novel modified artificial bee colony for doa estimation. Int. J. Sens. Wirel. Commun. Control 2021, 11, 96–106. [Google Scholar] [CrossRef]

	



Jia, W.; Liu, S. Application of Simulated Annealing Genetic Algorithm in DOA estimation technique. Comput. Eng. Appl. 2014, 12, 266–270. [Google Scholar]

	



Das, S.; Suganthan, P.N. Differential Evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2010, 15, 4–31. [Google Scholar] [CrossRef]

	



Chen, H.; Li, H.; Yang, M.; Xiang, C.; Suzuki, M. General Improvements of Heuristic Algorithms for Low Complexity DOA Estimation. Int. J. Antennas Propag. 2019, 2019, 3858794. [Google Scholar] [CrossRef]

	



Sallam, T.A.R.; Abdel-Rahman, A.B.; Alghoniemy, M.; Kawasaki, Z. Flower Pollination Algorithm for Adaptive Beamforming of Phased Array Antennas. J. Mach. Intell. 2017, 2, 1–5. [Google Scholar] [CrossRef]

	



Pal, P.; Vaidyanathan, P.P. Coprime sampling and the MUSIC algorithm. In Proceedings of the 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona, AZ, USA, 4–7 January 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 289–294. [Google Scholar]








[image: Applsci 11 07985 g001 550] 





Figure 1. Coprime antenna array configuration: (a) sub antenna array 1; (b) sub antenna array 2; (c) generalize coprime antenna array. 
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Figure 2. Flow diagram for Flower Pollination Algorithm. 
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Figure 3. Flow diagram for Particle Swarm Optimization. 
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Figure 4. Robustness against noise for seven targets. 
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Figure 5. Robustness against noise for nine targets. 
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Figure 6. Robustness against noise for eleven targets. 
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Figure 7. Robustness against snapshots for seven targets. 
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Figure 8. Robustness against snapshots for nine targets. 
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Figure 9. Robustness against snapshots for eleven targets. 
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Figure 10. Variation analysis of RMSE for seven targets. 
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Figure 11. Variation analysis of RMSE for nine targets. 
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Figure 12. Variation analysis of RMSE for eleven targets. 
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Figure 13. CDF analysis of RMSE for seven targets at different SNRs. 
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Figure 14. CDF analysis of RMSE for nine targets at different SNRs. 
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Figure 15. CDF analysis of RMSE for eleven targets at different SNRs. 
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Figure 16. Histogram analysis of RMSE for seven targets. 
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Figure 17. Histogram analysis of RMSE for nine targets. 
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Figure 18. Histogram analysis of RMSE for eleven targets. 
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Table 1. Estimation accuracy and STD for seven targets at SNR = 0 dB.






Table 1. Estimation accuracy and STD for seven targets at SNR = 0 dB.





	
Actual Angles

	

	
     θ 1    = 20     

	
     θ 2    = 40     

	
     θ 3    = 60     

	
     θ 4    = 80     

	
     θ 5    = 100     

	
     θ 6    = 120     

	
     θ 7    = 140     






	
FPA

	
Best

	
20.554

	
39.328

	
59.914

	
79.794

	
100.400

	
120.194

	
139.941




	
Mean

	
20.184

	
36.820

	
58.325

	
78.922

	
102.355

	
121.292

	
142.981




	
Worst

	
180.000

	
37.021

	
59.478

	
80.592

	
100.762

	
119.896

	
139.453




	
STD

	
8.0112

	
7.6306

	
7.3363

	
7.2551

	
7.076

	
6.7608

	
13.0759




	
PSO

	
Best

	
22.585

	
37.755

	
59.198

	
79.539

	
96.225

	
106.215

	
120.000




	
Mean

	
23.146

	
34.461

	
52.488

	
63.898

	
80.206

	
100.494

	
119.387




	
Worst

	
0.000

	
36.178

	
37.319

	
58.481

	
58.711

	
78.657

	
98.202




	
STD

	
8.8477

	
5.3369

	
10.351

	
15.299

	
19.8711

	
21.992

	
23.3032
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Table 2. Estimation accuracy and STD for seven targets at SNR = −5 dB.
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Actual Angles

	

	
     θ 1    = 20     

	
     θ 2    = 40     

	
     θ 3    = 60     

	
     θ 4    = 80     

	
     θ 5    = 100     

	
     θ 6    = 120     

	
     θ 7    = 140     






	
FPA

	
Best

	
20.554

	
39.328

	
59.914

	
79.794

	
100.400

	
120.194

	
139.941




	
Mean

	
14.697

	
38.478

	
59.783

	
80.211

	
98.590

	
121.139

	
141.271




	
Worst

	
180.000

	
34.132

	
60.093

	
78.950

	
101.367

	
119.340

	
139.785




	
STD

	
8.5051

	
8.1359

	
7.6892

	
7.8932

	
7.6953

	
7.3345

	
13.8623




	
PSO

	
Best

	
24.320

	
39.690

	
59.613

	
79.500

	
98.327

	
110.181

	
120.000




	
Mean

	
24.777

	
32.753

	
51.729

	
63.982

	
80.608

	
100.351

	
119.243




	
Worst

	
0.261

	
35.533

	
36.028

	
55.937

	
60.200

	
78.614

	
98.036




	
STD

	
9.7167

	
5.8089

	
11.1897

	
15.428

	
19.3838

	
20.5064

	
21.6453
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Table 3. Estimation accuracy and STD for seven targets at SNR = −10 dB.
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Actual Angles

	

	
     θ 1    = 20     

	
     θ 2    = 40     

	
     θ 3    = 60     

	
     θ 4    = 80     

	
     θ 5    = 100     

	
     θ 6    = 120     

	
     θ 7    = 140     






	
FPA

	
Best

	
21.034

	
39.874

	
59.772

	
80.466

	
99.778

	
120.534

	
139.494




	
Mean

	
25.846

	
34.286

	
58.860

	
76.878

	
102.507

	
120.626

	
144.842




	
Worst

	
179.201

	
31.046

	
58.433

	
76.493

	
103.240

	
121.604

	
145.273




	
STD

	
7.3575

	
7.0672

	
5.51

	
6.1898

	
5.5168

	
5.5472

	
10.4078




	
PSO

	
Best

	
16.144

	
34.875

	
57.315

	
78.143

	
102.429

	
120.000

	
120.000




	
Mean

	
29.010

	
36.222

	
52.800

	
62.549

	
77.717

	
101.883

	
120.000




	
Worst

	
0.000

	
32.768

	
33.258

	
40.144

	
58.502

	
78.027

	
99.566




	
STD

	
12.9084

	
6.3004

	
15.559

	
17.1445

	
20.1051

	
19.7943

	
21.6932
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Table 4. Estimation accuracy and STD for nine targets at SNR = 0 dB.
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Actual Angles

	

	
     θ 1   = 20     

	
     θ 2   = 40     

	
     θ 3   = 60     

	
     θ 4   = 80     

	
     θ 5   = 100     

	
     θ 6   = 120     

	
     θ 7   = 140     

	
     θ 8   = 160     

	
     θ 9   = 170     






	
FPA

	
Best

	
21.006

	
38.750

	
60.502

	
79.982

	
100.441

	
119.939

	
140.742

	
160.451

	
170.148




	
Mean

	
0.215

	
39.874

	
60.583

	
79.703

	
100.416

	
119.783

	
142.500

	
179.858

	
179.915




	
Worst

	
0.000

	
38.758

	
58.943

	
80.572

	
100.388

	
120.260

	
142.292

	
1.398

	
0.000




	
STD

	
14.2678

	
18.1622

	
14.7291

	
14.3368

	
14.2258

	
13.776

	
13.9762

	
13.5198

	
9.3947




	
PSO

	
Best

	
1.186

	
37.058

	
59.335

	
82.653

	
96.478

	
120.000

	
104.940

	
75.794

	
0.000




	
Mean

	
31.074

	
41.587

	
55.661

	
80.701

	
100.348

	
118.800

	
65.155

	
0.000

	
0.000




	
Worst

	
38.524

	
38.120

	
56.432

	
79.084

	
98.278

	
0.339

	
0.000

	
62.001

	
0.000




	
STD

	
19.9584

	
39.6766

	
41.721

	
38.3223

	
44.4625

	
50.1277

	
56.1085

	
59.8789

	
52.0099
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Table 5. Estimation accuracy and STD for nine targets at SNR = −5 dB.
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Actual Angles

	

	
     θ 1    = 20     

	
     θ 2    = 40     

	
     θ 3    = 60     

	
     θ 4    = 80     

	
     θ 5    = 100     

	
     θ 6    = 120     

	
     θ 7    = 140     

	
     θ 8    = 160     

	
     θ 9    = 170     






	
FPA

	
Best

	
20.063

	
40.167

	
59.702

	
79.861

	
100.205

	
120.889

	
140.965

	
162.774

	
171.189




	
Mean

	
23.035

	
34.792

	
57.209

	
80.132

	
100.174

	
116.792

	
129.355

	
154.086

	
156.307




	
Worst

	
11.371

	
36.931

	
59.788

	
78.922

	
99.862

	
120.054

	
134.764

	
151.199

	
0.250




	
STD

	
10.8943

	
14.1462

	
13.4699

	
13.8556

	
14.1729

	
13.4184

	
13.5677

	
13.3974

	
9.9573




	
PSO

	
Best

	
0.885

	
36.881

	
59.177

	
79.224

	
97.356

	
120.000

	
120.000

	
105.922

	
0.000




	
Mean

	
31.074

	
41.587

	
55.661

	
80.701

	
100.348

	
118.800

	
65.155

	
0.000

	
0.000




	
Worst

	
38.524

	
38.120

	
56.432

	
79.084

	
98.278

	
0.339

	
0.000

	
62.001

	
0.000




	
STD

	
19.9206

	
39.5109

	
31.5467

	
36.5097

	
42.1808

	
48.2541

	
54.0918

	
57.903

	
50.7356
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Table 6. Estimation accuracy and STD for nine targets at SNR = −10 dB.
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Actual Angles

	

	
     θ 1    = 20     

	
     θ 2    = 40     

	
     θ 3    = 60     

	
     θ 4    = 80     

	
     θ 5    = 100     

	
     θ 6    = 120     

	
     θ 7    = 140     

	
     θ 8    = 160     

	
     θ 9    = 170     






	
FPA

	
Best

	
18.168

	
38.385

	
59.174

	
79.491

	
101.673

	
119.234

	
140.863

	
158.025

	
170.230




	
Mean

	
0.000

	
32.733

	
58.255

	
77.206

	
101.260

	
117.178

	
127.036

	
148.510

	
169.016




	
Worst

	
11.230

	
38.897

	
61.967

	
79.402

	
100.536

	
119.506

	
143.753

	
2.138

	
0.000




	
STD

	
11.5865

	
15.2439

	
15.913

	
15.1088

	
15.3368

	
13.0878

	
13.8784

	
12.2759

	
11.0899




	
PSO

	
Best

	
0.371

	
36.758

	
59.827

	
79.031

	
97.880

	
120.000

	
120.000

	
106.209

	
0.000




	
Mean

	
29.041

	
41.913

	
59.563

	
80.782

	
102.079

	
119.840

	
73.947

	
0.000

	
0.000




	
Worst

	
37.783

	
37.524

	
59.243

	
78.662

	
99.615

	
58.886

	
0.000

	
0.000

	
0.000




	
STD

	
19.9239

	
39.508

	
40.2039

	
36.9535

	
42.1866

	
48.3715

	
55.2631

	
58.0799

	
51.2382
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Table 7. Estimation accuracy and STD for eleven targets at SNR = 0 dB.
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Actual Angles

	

	
     θ 1    = 20     

	
     θ 2    = 35     

	
     θ 3    = 50     

	
     θ 4    = 65     

	
     θ 5    = 80     

	
     θ 6    = 95     

	
     θ 7    = 110     

	
     θ 8    = 120     

	
     θ 9    = 135     

	
     θ 10    = 150     

	
     θ 11    = 165     






	
FPA

	
Best

	
20.399

	
34.092

	
50.469

	
66.942

	
80.878

	
95.569

	
109.970

	
118.790

	
134.319

	
150.301

	
160.555




	
Mean

	
17.832

	
20.145

	
40.542

	
55.367

	
73.083

	
89.377

	
104.883

	
115.665

	
124.661

	
145.335

	
149.661




	
Worst

	
2.486

	
28.774

	
44.332

	
58.798

	
74.446

	
89.797

	
103.624

	
118.702

	
136.652

	
148.535

	
0.257




	
STD

	
12.8879

	
13.0721

	
9.6502

	
10.2882

	
10.2654

	
10.3802

	
10.0996

	
8.9518

	
9.696

	
9.9422

	
12.3896




	
PSO

	
Best

	
33.810

	
45.343

	
60.019

	
73.433

	
82.736

	
92.641

	
112.055

	
120.000

	
101.111

	
0.000

	
0.000




	
Mean

	
1.489

	
32.933

	
54.975

	
65.939

	
75.908

	
97.667

	
110.797

	
119.215

	
85.444

	
42.657

	
0.000




	
Worst

	
0.653

	
38.887

	
39.501

	
63.090

	
83.131

	
74.659

	
96.677

	
114.281

	
55.525

	
0.489

	
0.276




	
STD

	
19.8683

	
34.3679

	
23.1016

	
23.4132

	
27.2577

	
30.5871

	
34.19

	
33.4794

	
37.3056

	
39.7499

	
45.8505
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Table 8. Estimation accuracy and STD for eleven targets at SNR = −5 dB.
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Actual Angles

	

	
     θ 1    = 20     

	
     θ 2    = 35     

	
     θ 3    = 50     

	
     θ 4    = 65     

	
     θ 5    = 80     

	
     θ 6    = 95     

	
     θ 7    = 110     

	
     θ 8    = 120     

	
     θ 9    = 135     

	
     θ 10    = 150     

	
     θ 11    = 165     






	
FPA

	
Best

	
23.21

	
34.09

	
51.73

	
66.56

	
80.511

	
94.689

	
109.868

	
121.81

	
136.79

	
150.969

	
165.004




	
Mean

	
2.178

	
31.737

	
48.094

	
67.517

	
83.290

	
98.378

	
112.733

	
121.49

	
137.75

	
143.524

	
180




	
Worst

	
2.998

	
34.678

	
40.895

	
60.643

	
76.488

	
93.857

	
107.342

	
115.7

	
127.69

	
143.557

	
0.603




	
STD

	
11.2746

	
10.9455

	
9.9859

	
9.763

	
9.5543

	
9.17

	
7.709

	
6.8242

	
8.9132

	
10.3684

	
11.8853




	
PSO

	
Best

	
0.000

	
32.31

	
41.51

	
68.749

	
80.010

	
94.0313

	
106.08

	
120

	
114.28

	
57.657

	
0.977




	
Mean

	
0.601

	
32.904

	
55.206

	
66.032

	
77.191

	
90.0479

	
112.28

	
119.11

	
101.44

	
40.682

	
0.703




	
Worst

	
38.766

	
38.310

	
57.192

	
64.507

	
82.03

	
96.142

	
114.12

	
73.873

	
2.232

	
1.491

	
0.000




	
STD

	
19.7599

	
34.0793

	
18.3588

	
25.726

	
25.3566

	
29.5459

	
33.0406

	
29.977

	
33.9386

	
37.9637

	
45.2615
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Table 9. Estimation accuracy and STD for eleven targets at SNR = −10 dB.
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Actual Angles

	

	
     θ 1    = 20     

	
     θ 2    = 35     

	
     θ 3    = 50     

	
     θ 4    = 65     

	
     θ 5    = 80     

	
     θ 6    = 95     

	
     θ 7    = 110     

	
     θ 8    = 120     

	
     θ 9    = 135     

	
     θ 10    = 150     

	
     θ 11    = 165     






	
FPA

	
Best

	
19.25

	
36.78

	
51.86

	
64.31

	
79.67

	
96.18

	
110.49

	
120.45

	
135.79

	
153.02

	
166.20




	
Mean

	
28.37

	
34.49

	
55.83

	
72.93

	
88.82

	
104.98

	
116.67

	
125.51

	
144.95

	
153.74

	
179.04




	
Worst

	
29.76

	
37.34

	
55.15

	
72.85

	
89.77

	
106.00

	
0.25

	
121.24

	
143.21

	
146.09

	
0.000




	
STD

	
12.1514

	
11.0382

	
10.2101

	
10.6042

	
11.3763

	
11.875

	
7.0773

	
7.7574

	
9.3693

	
10.463

	
11.8565




	
PSO

	
Best

	
0.00

	
30.76

	
40.60

	
65.41

	
83.42

	
95.62

	
106.44

	
120

	
114.23

	
74.80

	
55.77




	
Mean

	
0.00

	
34.07

	
39.52

	
64.19

	
84.78

	
99.33

	
111.87

	
117.29

	
73.77

	
53.86

	
0.00




	
Worst

	
38.82

	
38.12

	
38.20

	
60.94

	
75.77

	
58.90

	
111.06

	
117.28

	
0.13

	
0.26

	
0.41




	
STD

	
19.7866

	
33.973

	
21.9043

	
25.7832

	
28.1443

	
31.7251

	
36.0186

	
33.9977

	
34.4507

	
38.2707

	
46.2669
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