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Abstract: During the process of satellite capture by a flexible base–link–joint space robot, the base, joints,
and links vibrate easily and also rotate in a disorderly manner owing to the impact torque. To address
this problem, a repetitive learning sliding mode stabilization control is proposed to stabilize the system.
First, the dynamic models of the fully flexible space robot and the captured satellite are established,
respectively, and the impact effect is calculated according to the motion and force transfer relationships.
Based on this, a dynamic model of the system after capturing is established. Subsequently, the system
is decomposed into slow and fast subsystems using the singular perturbation theory. To ensure that
the base attitude and the joints of the slow subsystem reach the desired trajectories, link vibrations are
suppressed simultaneously, and a repetitive learning sliding mode controller based on the concept of the
virtual force is designed. Moreover, a multilinear optimal controller is proposed for the fast subsystem
to suppress the vibration of the base and joints. Two sub-controllers constitute the repetitive learning
sliding mode stabilization control for the system. This ensures that the base attitude and joints of the
system reach the desired trajectories in a limited time after capturing, obtain better control quality, and
suppress the multiple flexible vibrations of the base, links and joints. Finally, the simulation results
verify the effectiveness of the designed control strategy.

Keywords: flexible-base; flexible-link; flexible-joint; space robot; capturing satellite; singular
perturbation theory; vibration suppression; repetitive learning sliding mode stabilization control

1. Introduction

The use of robotic systems to carry out on-orbit operations is highly desirable because
it limits the need for astronaut intervention in extreme environments, meaning missions can
be executed within shortened timescales and with higher levels of human safety. Therefore,
the study of related theories and technologies has received considerable attention [1–6],
etc. The first space robot is the “Canadian Arm” developed in Canada. In the early
1980s, it began to work in space. It is used for loading and unloading loads from the US
space shuttle, capturing floating loads, inspecting the space shuttle’s insulating outer layer,
and providing mobile platforms for astronauts. Until 2011, when the space robot retired
and stopped working, five identical robotic arms completed 34 different tasks in space,
including assisting astronauts in repairing the Hubble Telescope. In the 1990s, Canada
developed two more space robots. One is the Canadian two-arm (also known as SSRMS or
Canadarm2) mainly used to assemble the International Space Station, and the other is the
Canadian dexterous arm (also known as SPDM or DEXTRE) for repairing the space station.
With the gradual development of space manipulators, the structure and performance of
space robots are also becoming mature. The space robot is mainly composed of a floating
base and robotic links. To expand its working range and improve the work efficiency,
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a parallel guide rail is usually installed on the base of the space robot. The robotic links
move on the guide rail, which vibrates easily [7]. To reduce the launch cost and improve the
dexterity of work, the robotic link is usually designed into a lightweight, slender structure
that is driven by harmonic flexible wheels. The slender link easily causes vibrations at
the end effector [8]. The flexible driver causes asynchrony between the rotation angle of
the motor rotor and the actual rotation angle of the joint, resulting in joint vibration [9].
Therefore, it is of practical significance to consider the flexibility of the base, joints and
links of the space robot.

The application scope of space robots mainly includes repairing or recycling ineffective
satellites, adding fuel to target satellites, building space stations, and cleaning orbital
garbage. More and more space junk is being left as a result of space exploration. According
to NASA statistics, there are about 500,000 spacecraft fragments larger than a marble, and
about 20,000 larger than a baseball. At present, space junk is still being produced. For
example, the collision between Iridium 33 and the Cosmos-2251 satellite in 2009 created
another wave of hazardous waste. When performing the above tasks, which include
capturing space junk, the end effector of the robotic link inevitably has to have a contact
collision with the target. The impact effect causes the vibration of the base, joints, and links
of the space robot, which causes instability in the base attitude and joint, and even damage
to the structure of the space robot. The collision impact and post-capturing motion control
of the system are complex processes. Das et al. [10] mainly studied the effect of collision
distance before robot collision on the safe motion of robots, but did not explain the force
transfer relationship during capture. Somov et al. [11] mainly discussed the guidance and
control methods of space robots when approaching non-cooperative spacecraft, but did not
analyze stable control after capturing. In this study, the process of capturing the satellite is
broadly divided into three stages: the pre-capturing stage of robots and the satellite, the
capturing persistence stage, and the system stage after capturing. The motion analysis
of the space robot and satellite in the first two stages provides theoretical support for the
modeling and motion control of the system after capturing.

Many control algorithms have been proposed for the robot base attitude and joint
trajectory tracking control. Wang et al. [12] presented the terminal sliding mode control of
a robot sliding perturbation observer; however, the convergence rate was not considered.
Madani et al. [13] presented a fast terminal sliding mode control without higher tracking
quality for repetitive tasks. Verrelli [14] proposed an exponentially stable repetitive learning
algorithm, and Califano et al. [15] demonstrated the repetitive control method for minimum
phase nonlinear systems, which is complex and inapplicable in the aerospace field. In this
study, the desired signal is a Fourier series approximated by combining the idea of repetitive
control. Considering that most signals account for a large proportion of power in the middle
and low frequency bands, the analytical periodic signals were finite-dimensional Fourier
series, which, when combined with the exponential approach law sliding mode algorithm
and finite-dimensional repetition learning algorithm, enable the design of a repetitive
learning sliding mode controller applicable in the space industry. The model uncertainty
and its disturbance in the structural estimation system connected parallel to the N linear
oscillators and an integrator differed from the traditional internal model-based repetitive
controller [16,17]. The repetitive learning sliding mode controller can effectively avoid
strict stability conditions and slow convergence problems with simple control law, because
it is not completely dependent on model information, has high control accuracy, and is
easy to realize.

The base attitude and joints of the system can reach the desired position after capturing
using a repetitive learning sliding mode controller; however, in the capture operation, the
collision easily leads to the vibration of the base, joints, and links of the space robot with
different amplitudes. Particularly, in an undamped space environment, the attenuation
is slow, and the vibration of each component may cause instability in the system after
capturing. Thus, it is necessary to restrain the vibration of all flexible members of the
system. Yang et al. [18] discussed the motion control problem of ground flexible base robots
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and verified the effectiveness of the augmented method in the design of adaptive output
feedback control. Yu et al. [19] discussed the problem of the robust control of flexible joint
space robots, and Pradhan et al. [20] discussed the problem of the adaptive control of flexible
link robots. The above studies provide a theoretical basis for the study of flexible robots;
however, they only consider the influence of the single structural flexibility of the base, joint,
or links. Zhang et al. [21] considered the flexibility of the joint and introduced flexible links
into the system for analysis, and Yu [22] considered the influence of a flexible vibration of
the base and joints when analyzing the motion control of a space robot. However, the above
studies did not involve the capture operation. Wu et al. [23] discussed the dynamics and
control of the robot capture of tumbling satellites, Zhao et al. [24] discussed the minimum
base disturbance control of the visual servo pre-capture process of free-floating space robots,
and Liu et al. [25] studied the trajectory planning and coordinated control of space robots
in the post-capture stage. Although various problems of space robot capture have been
addressed, the effect of flexible vibration has not been considered.

In this study, the process of satellite capture by a fully flexible space robot is analyzed
by considering the influence of the flexibility of the base, joints, and links of the space robot,
and a dynamic model of the system after capturing is established. To address the problems
of disordered movement, tumbling, and multiple vibration coupling in the system after
capturing, this study designed a repetitive learning sliding mode controller to stabilize the
base attitude and joint motion, proposed the linear quadratic optimal controller to inhibit
the flexible vibration of the base and the joint, and used the hybrid trajectory method
based on the virtual force concept to inhibit the vibration of the links. Three algorithms
constituted the repetitive learning sliding mode stabilization controller (RSSC) to realize
the stabilization control of the movement and vibration of the system. The numerical simu-
lation shows that the proposed control scheme can suppress combination base vibration
within 0.5 mm, combination joint 1 vibration within 0.05 rad, combination joint 2 vibration
within 0.05 rad, combination B1 link first mode within 0.05 mm, combination B1 link second
mode within 0.05 mm, combination B2 link first mode within 0.2 mm, and combination B2
link second mode within 0.02 mm. At the same time, the controller can make the system
move according to the desired trajectory within 10 s.

The paper is organized as follows: In Section 2, the kinematic relationships of the
flexible space robot and satellite are established. In Section 3, the dynamic models of the
flexible space robot and satellite are established. On this basis, the dynamic model of the
system is established. In Section 4, the system is decomposed into slow and fast subsystems
by using the singular perturbation method. In Section 5, a repetitive learning sliding mode
stabilization control is proposed to achieve the stabilization control of motion vibration. In
Section 6, numerical simulations are carried out to validate the control strategy. Finally, the
conclusions are given in Section 7.

2. System Kinematics Analysis

The structure of the flexible-base flexible-link and flexible-joint space robot and the
satellite are shown in Figure 1. The space robot comprises a base B0, a flexible link B1 near
the base, and a flexible link B2 away from the base. The center of mass of the base is O0, the
center of the hinge connecting the base and link B1 is O1, the center of the hinge connecting
link B1 and B2 is O2, and the center of mass of the captured satellite is O3. XOY is the
inertial coordinate system, and xiOiyi(i = 0, 1, 2, 3) is the local coordinate system of Bi. θ0
is the attitude angle of the base, and θj(j = 1, 2) is the rotation angle of link Bj. θm1 and
θm2 are the rotor angles of the motor, and θ3 is the attitude angle of the satellite. P and P’
are the capture points of the space robot end effector and satellite, respectively. r0, rP, rP′

and r3 represent the position vectors of the mass center of the base, the capture point of
the space robot end effector, the captured point of the satellite and the mass center of the
satellite in the inertial coordinate system, respectively. rj is the position vector of any point
on link Bj in the inertial coordinate system. Let xj be any distance in the symmetry axis
direction of the link Bj, and let vj(j = 1, 2) be the elastic deformation of link Bj at time t.
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Figure 1. Structure of the flexible-base, flexible-joint and flexible-link space robot and the satellite.

According to the hypothesis of Spong [26], the flexible base and joint are assumed to be
a massless linear telescopic spring and linear torsion spring, respectively. The flexible links
are equivalent to the Euler Bernoulli simply supported beam. The elastic coefficients of the
base, joints and bending rigidity of the links are fixed, which are expressed as kb, kmj and

EIj(j = 1, 2), respectively. The deformation of link Bj is vj
(
xj, T

)
=

n
∑

k=1
φjk
(
xj
)
δjk(t), where

φjk and δjk represent the kth-order modal function and coordinates of link Bj, respectively,
and n is the number of reserved modes (n = 2 in the paper).

The captured satellite is assumed to be a single rigid body system. According to the
geometric position relationship of the system, the position vectors r0, r1, r2, rP, r3 and rP′ are:

r0 = (x0, y0)
T

r1 = r0 + (l0 + xb)e0 + x1e1 + v1e′1, 0 ≤ x1 ≤ l1
r2 = r0 + (l0 + xb)e0 + l1e1 + x2e2 + v2e′2, 0 ≤ x2 ≤ l2
rp = r0 + (l0 + xb)e0 + l1e1 + l2e2

r3 = (x3, y3)
T

rP′ = r3 + l3e3

(1)

where (x0, y0) are the base centroid coordinate, l0 is the distance between the rotation
centers O0 and O1, xb is the base flexible deformation, (x3, y3) are the satellite centroid
coordinate, l3 is the distance between the rotation centers O3 and P′, e0, ej, e′j (j = 1, 2) and
e3 are base vectors.

Taking the differentiation of Equation (1) with respected to time t leads to:

.
r0 =

( .
x0,

.
y0
)T

.
r1 =

.
r0 +

.
xbe0 + (l0 + xb)

.
e0 + x1

.
e1 +

.
v1e′1 + v1

.
e′1.

r2 =
.
r0 +

.
xbe0 + (l0 + xb)

.
e0 + l1

.
e1 + x2

.
e2 +

.
v2e′2 + v2

.
e′2.

rp =
.
r0 +

.
xbe0 + (l0 + xb)

.
e0 + l1

.
e1 + l2

.
e2

.
r3 =

( .
x3,

.
y3
)T

.
rP′ =

.
r3 + l3

.
e3

(2)

According to the 4th and 6th equations of Equation (2), the kinematic expressions of
the space robot and satellite are as follows:{

Vp = J
.
qz

VP′ = J3
.
q3

(3)
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where Vp =
[ .

xp,
.
yp, ωp

]T
, ωp =

.
θ0 +

.
θ1 +

.
θ2, and J ∈ R3×12 is the Jacobian matrix

of the flexible space robot.
.
qz =

[ .
qb,

.
xb,

.
q,

.
δ,

.
qm

]T
, qb = [x0, y0]

T, q = [θ0, θ1, θ2]
T,

δ = [δ11, δ12, δ21, δ22]
T

, and qm = [θm1, θm2]
T. J3 ∈ R3×3 is the Jacobian matrix of the satellite.

Vp′ =
[ .

xp′ ,
.
yp′ , ωp′

]T
and ωp′ =

.
θ3,

.
q3 =

[ .
x3,

.
y3,

.
θ3

]T
.

3. System Dynamics Analysis
3.1. Flexible Space Robot and Satellite Dynamics Modeling

The kinetic energy of the flexible space robot is mainly composed of the kinetic energy
of the base, links and motor rotors [27], as follows:

T =
1
2

m0
.
r2

0 +
1
2

J0
.
θ

2
0 +

2

∑
j=1

1
2

∫ lj

0
ρj

.
r2

j dxj +
2

∑
j=1

1
2

Jmj
.
θ

2
mj (4)

where J0 and Jmj are the inertia moment of the base and the j-th motor rotor, respectively,
and ρj is the linear density of link Bj(j = 1, 2).

The potential energy of a flexible space robot is mainly composed of a flexible base,
flexible joints, and flexible links, as follows:

U =
1
2

kbx2
b +

1
2

2

∑
j=1

2

∑
k=1

kδjkδ2
jk +

2

∑
j=1

1
2

kmj
(
θmj − θj

)2 (5)

where kδjk = EIj
∫ lj

0

(
..
φ

2
jk
(
xj
))

dxj, (j, k = 1, 2).

Substituting Equations (4) and (5) into the Lagrange equation yields the space robot
dynamic model first equation of Equation (6). Using the Newton–Euler method to calculate
the satellite dynamics model the second equation of Equation (6), we have:

DN
..
qz + HN

.
qz +



02×1
kbxb

0
−Kmσ

Kδδ
Kmσ

 =


03×1

τ0
06×1
τm

+ JTFP

D3
..
q3 = JT

3 FP′

(6)

where Km = diag(km1, km2), σ = qm − qj, qj = [θ1, θ2]
T, qm = [qm1, qm2]

T,

Kδ = diag(kδ11, kδ12, kδ21, kδ22), δ = [δ11, δ12, δ21, δ22]
T, DN =

[
D10×10 010×2
02×10 Jm

]
, D is

a symmetric positive definite mass matrix, Jm = diag(Jm1, Jm2), HN =

[
H10×10 010×2
02×10 02×2

]
,

H is the matrix of centrifugal force and Coriolis force, τ0 and τm are the control torque of
the base and motor rotor, FP ∈ R3×1 is the force on the end point P of the robot, FP′ ∈ R3×1

is the force on the satellite point P′, and D3 = diag(m3, m3, J3).

3.2. Analysis of the Impact Response of the Flexible Space Robot and Satellite

When capturing the satellite, we ignore the effects of other external forces and only
consider the impact of the collision. The forces at point P of the space robot end and point
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P′ of the satellite are opposite to each other, that is, FP = −FP′ . When solving the system
dynamics model in a collision process from Equation (6), one obtains:

DN
..
qz + HN

.
qz +



02×1
kbxb

0
−Kmσ

Kδδ
Kmσ

 =


03×1

τ0
06×1
τm

− JT
(

JT
3

)−1
D3

..
q3 (7)

During the capture process, the space robot collides with the satellite at time t0, and
the capture is completed in a very short time ∆t. Then, the end effector of the space robot
tightly connects to the satellite capture point, and the two constitute a system. Because the
contact and collision occur instantaneously, the generalized coordinates of the space robot
and the satellite do not change significantly in time [t0, t0 + ∆t], but the collision impact
causes a sudden change in the generalized velocity and acceleration. According to the
analysis above, Equation (7) is integrated in the period [t0, t0 + ∆t] that leads to:

DN
[ .
qz(t0 + ∆t)− .

qz(t0)
]
+ JT

(
JT

3

)−1
D3
[ .
q3(t0 + ∆t)− .

q3(t0)
]
= 012×1 (8)

After capturing, the end effector of the robot will have the same speed as the target
capture point. Based on Equation (3), we have:

.
q3(t0 + ∆t) = J−1

3 J
.
qz(t0 + ∆t) (9)

Substituting Equation (9) into Equation (8) yields:

.
qz(t0 + ∆t) =

[
DN + JT

(
JT

3

)−1
D3J−1

3 J
]−1[

.
qz(t0) + JT

(
JT

3

)−1
D3

.
q3(t0)

]
(10)

The above equations represent the impact effect of the space robot in the process of
capturing the satellite. The analysis shows that the generalized speed of the space robot at
time t0 + ∆t can be obtained only by contacting the motion state of the space robot and the
satellite before the collision.

3.3. System Dynamics Modeling

After the flexible space robot captures the satellite, it will form a system, and the speed
of the space robot end effector and the satellite are equal, that is, Vp = VP′ . Taking the
differentiation of that equation, we have:

..
q3 = J−1

3 J
..
qz + J−1

3

( .
J−

.
J3J−1

3 J
) .

qz (11)

Substituting Equation (11) into the second equation of Equation (6), we have FP′ .
FP = FP′ . Substituting FP into first equation of Equation (6), we have:

Dz
..
qz + Hz

.
qz +



02×1
kbxb

0
−Kmσ

Kδδ
Kmσ

 =


03×1

τ0
06×1
τm

 (12)



Appl. Sci. 2021, 11, 8077 7 of 16

where Dz = DN + JT(JT
3
)−1D3J−1

3 J and Hz = HN + JT(JT
3
)−1D3J−1

3

( .
J−

.
J3J−1

3 J
)

. For
the convenience of later analysis, Dz and Hz are written in the form of a block matrix,
as follows:

Dz =

 Dz11 Dz12 02×2
Dz21 Dz22 08×2
02×2 02×8 Jm

, Hz =

 02×2 Hz12 02×2
08×2 Hz22 08×2
02×2 02×8 02×2

.

Based on controller design needs, Equation (12) is rewritten as:

[
Dz11 Dz12
Dz21 Dz22

]
..
qb..
xb..
q
..
δ

+

[
02×2 Hz12
08×2 Hz22

]
.
qb.
xb.
q
.
δ

+


02×1
kbxb

0
−τ
Kδδ

 =

 03×1
τ0

06×1

 (13)

Jm
..
qm + Kmσ = τm (14)

τ = Kmσ (15)

After calculating
..
qb from the first formula of Equation (13) and substituting it into the

second formula, we have:

DM


..
xb..
q
..
δ

+ HM


.
xb.
q
.
δ

+

 kbxb
03×1
Kδδ

 =


0
τ0
τ

04×1

 (16)

where DM = Dz22 −Dz21(Dz11)
−1Dz12, HM = Hz22 −Dz21(Dz11)

−1Hz12, and DM and HM
are written in the form of a block matrix, as follows:

DM =

[
DM11 DM12
DM21 DM22

]
, HM =

[
HM11 HM12
HM21 HM22

]
4. Singular Perturbation Decomposition of the System

The flexible space robot after capturing the satellite is a complex nonlinear rigid-
flexible coupling system. Using the singular perturbation method, the system is decom-
posed into a slow subsystem including a base, joint motion, and link vibration. The fast
subsystem involves base vibration and joint vibration. The control torque of the joint motor
is designed as follows:

τm = (I + Kc)τn −Kcτ (17)

where Kc is a joint flexibility compensator and τn is composed of a slow sub-controller τns
and a fast sub-controller τn f .

Let N =

[
N11 N12
N21 N22

]
=

[
DM11 DM12
DM21 DM22

]−1

. We define T f = T/
√

µ as the fast-

changing timescale, and µ = 1/min(kb, km1, km2) as the singular perturbation factor. The

state variables of the system under a fast timescale are q f =
[
q f 1, q f 2, qT

f 3, qT
f 4

]T
, where

q f 1 = xb f − xb f , q f 2 =
√

µxb f , q f 3 = σ f − σ f , and q f 4 =
√

µ
.
σ f . ∗ is a new expression of ∗

when µ tends to zero, and ∗ f is a new variable of ∗ under a fast timescale. From the above
variables and Equations (14)–(17), the slow subsystem of the system is obtained as follows:

[
Q11 Q12
Q21 Q22

][ ..
q
..
δ

]
+

[
R11 R12
R21 R22

][ .
q
.
δ

]
+

 0
02×1
Kδδ

 =

 τ0
τns

04×1

 (18)
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where Q11 ∈ R3×3, Q12 ∈ R3×4, Q21 ∈ R4×3, Q22 ∈ R4×4, R11 ∈ R3×3, R12 ∈ R3×4,

R21 ∈ R4×3, R22 ∈ R4×4,
[

Q11 Q12
Q21 Q22

]
= DM22 +

 0 01×2 01×4

02×1 (I + Kc)
−1Jm 02×4

04×1 04×2 04×4

, and

[
R11 R12
R21 R22

]
= HM22.

The fast subsystem of the system is as follows:

dqf/dtf = Afqf + Bfτnf (19)

where Bf =
[
0T

4×2,
[
J−1
m (I+Kc)

]T]T
and Af =


0 1 01×2 01×2

−N11kbf 0 N∗12Kmf 01×2
02×1 02×1 02×2 I2×2
02×1 02×1 −J−1

m (I+Kc)Kmf 02×2


By introducing the second equation of Equation (18) into the first equation, the rigid

model of the slow subsystem is obtained [28,29] as follows:

M(q, δ)
..
q + C(q, δ,

.
q,

.
δ)

.
q + ξ(q, δ,

.
q,

.
δ) = u (20)

where M = Q11 − Q12Q−1
22 Q21, C = R11 − Q12Q−1

22 R21, ξ =
(

R12 −Q12Q−1
22 R22

) .
δ −

Q12Q−1
22 Kδδ, u =

[
τ0, τT

ns
]T, and C(x, y) meet C(x, y)z = C(x, z)y, ∀y, z ∈ R3×1.

5. Controller Design
5.1. Controller Design of the Slow Subsystem
5.1.1. Repetitive Learning Sliding Mode Control

For the slow subsystem rigid model Equation (20), define the continuous reference
signal with period T as qd = [θd0, θd1, θd2]

T and substitute it into Equation (20) to get:{
ud = M(qd)

..
qd + C

(
qd,

.
qd
) .
qd + ξ

(
qd,

.
qd
)

ud(t) = ud(t + T)
(21)

Expand the periodic function ud with an infinite-dimensional Fourier series as:

ud = ∂0 +
∞

∑
k=1

[
∂k cos(kωt) + βk sin(kωt)

]
(22)

where ω = 2π/T is the fundamental frequency, and ∂0, ∂k and βk are the unknown constant
vector.

After defining the trajectory tracking error e = qd − q, the exponential approach law
sliding mode vector s ∈ R3×1 is:

s =
.
e + ae + be(q/p) (23)

where a, b, p and q are positive constants.
Equation (23) takes the derivative of time t to get:

.
s =

..
e + a

.
e + b

q
p

e(
q
p−1) (24)

Multiply both sides of Equation (24) to the left by M at the same time, and we obtain
the error equation of the open loop system as follows:

M
.
s = −Cs + Y + aM

.
e + b

q
p

Me(
q
p−1)

+ ud − u (25)
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Y = M
..
qd + C

( .
qd + ae + be(q/p)

)
+ ξ − ud (26)

From Equation (26), we have:

Y ≤ κ1‖h‖+ κ2‖h‖2 (27)

where κ1 and κ2 are positive constants, h =

[(
ae + be(q/p)

)T
, sT
]T

.

Design the repetitive learning sliding mode control algorithm as follows:

u = Q0z0 +
N

∑
k=1

Qk
.
zk + KM

(
a

.
e + b

q
p

e(
q
p−1)

)
+ η (28)

..
zk = Qks− k2ω2zk, k = 1, · · ·N (29)

.
z0 = Q0s (30)

where Sgn(s) =
[
sgn
(
s1
)
, sgn(s2), sgn(s3)

]T , N is the number of harmonic oscillators, and

η =
(

K1‖a
.
e + b q

p e(
q
p−1)‖+ K2‖h‖+ K3‖h‖2 + Kd

)
Sgn(s).

Define variables as follows:
z̃k = zk − z∗k , k = 0, 1, · · ·N
z∗0 = Q−1

0 ∂0

z∗k = (kω)−1Q−1
k

[
βk cos(kωt)− ∂k sin(kωt)

] (31)

Substituting Equations (28)–(31) into Equation (25), we have:

M
.
s = −Cs−Q0z̃0 −

N
∑

k=1
Qk

.
z̃k + aM

.
e + b q

p Me(
q
p−1)

+Y− η−

KM

(
a

.
e + b q

p e(
q
p−1)

)
+

∞
∑

k=N+1

[
∂k cos(kωt) + βk sin(kωt)

] (32)


..
z̃k = Qks− k2ω2z̃k.
z̃0 = Q0s

k0 =
∞
∑

k=N+1

[
∂k cos(kωt) + βk sin(kωt)

] (33)

Theorem 1. For the rigid model equation (Equation (20)) of the slow subsystem, if the controller
gain satisfies the condition shown in the following equation (Equation (34)), the proposed repetitive
learning sliding mode control can guarantee lim

t→∞
e = 0 and lim

t→∞

.
e = 0.

‖M−KM‖ ≤ K1, κ1 ≤ K2, κ2 ≤ K3, ‖d‖ < λm(Kd) (34)

where d =
∞
∑

k=N+1

[
∂k cos(kωt) + βk sin(kωt)

]
.

Proof. Selecting Lyapunov function as:

V =
1
2

sTMs +
1
2

N

∑
k=1

.
z̃

T
k

.
z̃k +

1
2

ω2
N

∑
k=1

k2z̃T
k z̃k +

1
2

z̃T
0 z̃0 (35)
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Taking the differentiation of Equation (35) with respected to time t, and substituting
into Equations (27), (32) and (33) and η, we have:

.
V = sT

(
aM

.
e + b q

p Me(
q
p−1)

)
− sTKM

(
a

.
e + b q

p e(
q
p−1)

)
+

sT
∞
∑

k=N+1

[
∂k cos(kωt) + βk sin(kωt)

]
+ sTY− sTη

≤ −‖s‖(K1 − ‖M−KM‖)‖a
.
e + b q

p e(
q
p−1)‖ − ‖s‖(K2 − κ1)‖h‖−

‖s‖(K3 − κ2)‖h‖2 − (λm(Kd)− ‖d‖)‖s‖

(36)

when the controller parameters satisfy the stability condition Equation (34),
.

V < 0 is
obtained from Equation (36), so the system is stable. �

5.1.2. Repetitive Learning Sliding Mode Control based on the Concept of Virtual Force

The rigid model of the slow subsystem has the effect of link elasticity. This section
uses the principle of virtual control force to improve the originally desired trajectory and
generate a hybrid trajectory. The improved repetitive learning sliding mode control is
designed to realize the dual functions of trajectory tracking and link elastic vibration sup-
pression. The virtual force F ∈ R3×1 is defined by the second-order instruction generator
..
eh + a

.
eh + beh = F, where eh = qd − qh and qh is the hybrid trajectory.

Define the hybrid error er = qh − q and the hybrid exponential sliding mode variable

as sr =
.
er + aer + be(q/p)

r , modify qd in Equations (28)–(30) to qh, and design a repetitive
learning sliding mode control based on the concept of virtual force as:

ur = Q0z0r +
N

∑
k=1

Qk
.
zkr + KM

(
a

.
er + b

q
p

e
(

q
p−1)

r

)
+ ηr (37)

..
zk = Qksr − k2ω2zkr, k = 1, · · ·N (38)

.
z0r = Q0sr (39)

where ηr =

(
K1‖a

.
er + b q

p e
(

q
p−1)

r ‖+ K2‖hr‖+ K3‖hr‖2 + Kd

)
Sgn(sr).

Let Ws =

[
δT, eT,

.
δ

T
,

.
eT
]T

. After substituting the controller equations

(Equations (37)–(39)) into Equation (20), and then taking the resulting equation into the
derivative of Ws, we have: .

Ws = AsWs + BsF + Ls (40)

where As =


04×4 04×3 I4×4 04×3
03×4 03×3 03×4 I3×3
−Q−1

22 Kδ −Q−1
22 Q21b −Q−1

22 R22 −Q−1
22 Q21a

03×4 −b 03×4 −a

, Bs =


04×3
03×3

Q22Q21
I3×3

,

and Ls =


04×1
03×1

Q−1
22 Q21

(
G− ..

qd
)
−Q−1

22 R21
.
q

G

.

Select virtual force F as:
F = −Q−1

s BT
s PsWs (41)

where Ps is the solution of the Riccati equation.
When F takes the value shown in Equation (41), Equation (40) is stable. Stability proof

refers to Lee et al. [30].
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5.2. Controller Design of the Fast Subsystem

The above two sections mainly design the controller for the slow subsystem. In this
section, based on the fast subsystem, Equation (19), the control scheme to suppress the
flexible vibration of the base and joint is designed. The performance index function is
constructed as follows:

Jqf =
1
2

∫ ∞

0

(
qT

f Qfqf + τT
nfRfτnf

)
dtf (42)

where Qf ≥ 0 and Rf > 0.
Design the linear quadratic optimal dual damping controller as:

τnf = −R−1
f BT

f Pfqf (43)

where Pf is the solution of the following Riccati equation:

PfAf + AT
f Pf − PfBfR

−1
f BT

f Pf + Qf = 0 (44)

6. Simulation Results

Taking the process of a satellite captured by a flexible-base, flexible-link and flexible-
joint space robot as an example, as shown in Figure 1, and t0 as the initial time, the simulation
studies are carried out. The physical parameters of the flexible-base, flexible-link and
flexible-joint space robot system and satellite are: l0 = l1 = l2 = 1.5 m and l3 = 1 m.
The mass, moment of inertia, and linear density of the flexible link are selected as m0 =
40 kg, m3 = 3 kg, J0 = 30 kg ·m2, Jm1 = Jm2 = J3 = 0.1 kg ·m2, ρ1 = 3.5 kg/m, and
ρ2 = 1.1 kg/m. The bending stiffness of the flexible link and the elastic coefficients of the
base and joints are selected as EI1 = EI2 = 100 N/m2, kb = 500 N/m, and km1 = km2 =
50 Nm/rad. Before collision, the space robot is in a static waiting state, and its initial state is
qz(t0) = [0m, 0m, 0m,2rad, 1rad,−2rad, 0m, 0m, 0m, 0m, 1rad,−2rad]T. The satellite flies
to the robot end effector with a movement speed of

.
x3 = 0.5 m/s,

.
y3 = 0.5 m/s and roll

speed
.
θ3 = 0.5 rad/s. The collision occurs at time t0, lasts for a very short time ∆t, and

is tightly locked after time t0 + ∆t to form a system. Then, the controller is turned on to
stabilize the base attitude and joints of the system in the following expected states:

qd = [1.7 rad, 0.7 rad,−1.4 rad]T

In order to compare and illustrate the stabilization control effect of the designed
controller for the unstable system, this study carries out simulation analysis in two cases.

(1) After contact and collision, the motion control of the system is carried out without
vibration suppression, that is, turning off the fast sub-controller and virtual control force.
The repetitive learning sliding mode control without vibration suppression (RSC-NV) is
composed of Equations (17) and (28)–(30). RSC-NV simulation is used to reveal the impact
of collision on the vibration and motion of the base, joint and links of the space robot.

(2) After contact and collision, the stabilization control of the motion and vibration
of the system is carried out, that is, turning on the fast sub-controller and virtual control
force. The repetitive learning sliding mode stabilization control (RSSC) is composed of
Equations (17), (37)–(39), (41) and (43). RSSC is used for simulation, to verify the effective-
ness of the system stabilization control.

The relevant parameters of the controller are selected as a = 1, b = 1, q/p = 2,
K1 = [1000, 0.1, 1]T, K2 = [1, 1, 1]T, K3 = [1, 1, 1]T, Kd = [1, 1, 1]T, KM = [1, 1, 100]T,
Kc = [104, 72]T, Q0 = [1, 1, 1]T, Qk = [1, 1, 1]T, and N = 3.

The trajectory tracking curves of the system base attitude under two control algorithms
shown in Figures 2–4 are the trajectory tracking curves of the system joint O1 and joint O2
under two control algorithms.



Appl. Sci. 2021, 11, 8077 12 of 16
Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17 
 

0 20 40 601.65

1.7

1.75

1.8

1.85

1.9

1.95

2

t/s

θ 0/ra
d

 

 

actual trajectory
desired trajectory

0 10 20 301.69

1.7

1.71

 

 

 
0 20 40 601.65

1.7

1.75

1.8

1.85

1.9

1.95

2

t/s

θ 0/ra
d

 

 

actual trajectory
desired trajectory
hybrid trajectory

0 10 20 301.69

1.7

1.71

 

 

 

(a) RSC-NV (b) RSSC 

Figure 2. Trajectory tracking curve of the system base attitude. 

0 20 40 60

0.65

0.7

0.75

0.8

0.85

0.9

0.95

t/s

θ 1/ra
d

 

 

actual trajectory
desired trajectory

0 10 20 30
0.65

0.7

0.75

 

 

 
0 20 40 60

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t/s

θ 1/ra
d

 

 

actual trajectory
desired trajectory
hybrid trajectory

0 10 20 30
0.65

0.7

0.75

 

 

 
(a) RSC-NV (b) RSSC 

Figure 3. Trajectory tracking curve of the system joint 1O . 

0 20 40 60
-2

-1.8

-1.6

-1.4

-1.2

t/s

θ 2/ra
d

 

 

actual trajectory
desired trajectory

0 10 20 30-1.5

-1.4

-1.3

 

 

 
0 20 40 60

-2

-1.8

-1.6

-1.4

-1.2

t/s

θ 2/ra
d

 

 

actual trajectory
desired trajectory
hybrid trajectory

0 10 20 30-1.5

-1.4

-1.3

 

 

 
(a) RSC-NV (b) RSSC 

Figure 4. Trajectory tracking curve of the system joint 2O . 

From Figures 2–4, we can observe that the RSC-NV algorithm makes the base atti-
tude and joint of the system stable in the desired trajectories. However, owing to the 
mutual coupling of the system motion and vibration, the uninhibited vibration of the 
base, links, and joints will lead to different amplitude vibrations of the base attitude and 
joint of the system, which will affect the control accuracy. Under the RSSC control algo-
rithm, it can be seen that the convergence time of the base attitude stabilization and the 
tracking control of the joints is within 10 s. However, the convergence time under the 
RSC-NV algorithm is more than 30 s. The RSSC algorithm has a faster convergence speed 

Figure 2. Trajectory tracking curve of the system base attitude.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17 
 

0 20 40 601.65

1.7

1.75

1.8

1.85

1.9

1.95

2

t/s

θ 0/ra
d

 

 

actual trajectory
desired trajectory

0 10 20 301.69

1.7

1.71

 

 

 
0 20 40 601.65

1.7

1.75

1.8

1.85

1.9

1.95

2

t/s

θ 0/ra
d

 

 

actual trajectory
desired trajectory
hybrid trajectory

0 10 20 301.69

1.7

1.71

 

 

 

(a) RSC-NV (b) RSSC 

Figure 2. Trajectory tracking curve of the system base attitude. 

0 20 40 60

0.65

0.7

0.75

0.8

0.85

0.9

0.95

t/s

θ 1/ra
d

 

 

actual trajectory
desired trajectory

0 10 20 30
0.65

0.7

0.75

 

 

 
0 20 40 60

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t/s

θ 1/ra
d

 

 

actual trajectory
desired trajectory
hybrid trajectory

0 10 20 30
0.65

0.7

0.75

 

 

 
(a) RSC-NV (b) RSSC 

Figure 3. Trajectory tracking curve of the system joint 1O . 

0 20 40 60
-2

-1.8

-1.6

-1.4

-1.2

t/s

θ 2/ra
d

 

 

actual trajectory
desired trajectory

0 10 20 30-1.5

-1.4

-1.3

 

 

 
0 20 40 60

-2

-1.8

-1.6

-1.4

-1.2

t/s

θ 2/ra
d

 

 

actual trajectory
desired trajectory
hybrid trajectory

0 10 20 30-1.5

-1.4

-1.3

 

 

 
(a) RSC-NV (b) RSSC 

Figure 4. Trajectory tracking curve of the system joint 2O . 

From Figures 2–4, we can observe that the RSC-NV algorithm makes the base atti-
tude and joint of the system stable in the desired trajectories. However, owing to the 
mutual coupling of the system motion and vibration, the uninhibited vibration of the 
base, links, and joints will lead to different amplitude vibrations of the base attitude and 
joint of the system, which will affect the control accuracy. Under the RSSC control algo-
rithm, it can be seen that the convergence time of the base attitude stabilization and the 
tracking control of the joints is within 10 s. However, the convergence time under the 
RSC-NV algorithm is more than 30 s. The RSSC algorithm has a faster convergence speed 

Figure 3. Trajectory tracking curve of the system joint O1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17 
 

0 20 40 601.65

1.7

1.75

1.8

1.85

1.9

1.95

2

t/s

θ 0/ra
d

 

 

actual trajectory
desired trajectory

0 10 20 301.69

1.7

1.71

 

 

 
0 20 40 601.65

1.7

1.75

1.8

1.85

1.9

1.95

2

t/s

θ 0/ra
d

 

 

actual trajectory
desired trajectory
hybrid trajectory

0 10 20 301.69

1.7

1.71

 

 

 

(a) RSC-NV (b) RSSC 

Figure 2. Trajectory tracking curve of the system base attitude. 

0 20 40 60

0.65

0.7

0.75

0.8

0.85

0.9

0.95

t/s

θ 1/ra
d

 

 

actual trajectory
desired trajectory

0 10 20 30
0.65

0.7

0.75

 

 

 
0 20 40 60

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t/s

θ 1/ra
d

 

 

actual trajectory
desired trajectory
hybrid trajectory

0 10 20 30
0.65

0.7

0.75

 

 

 
(a) RSC-NV (b) RSSC 

Figure 3. Trajectory tracking curve of the system joint 1O . 

0 20 40 60
-2

-1.8

-1.6

-1.4

-1.2

t/s

θ 2/ra
d

 

 

actual trajectory
desired trajectory

0 10 20 30-1.5

-1.4

-1.3

 

 

 
0 20 40 60

-2

-1.8

-1.6

-1.4

-1.2

t/s

θ 2/ra
d

 

 

actual trajectory
desired trajectory
hybrid trajectory

0 10 20 30-1.5

-1.4

-1.3

 

 

 
(a) RSC-NV (b) RSSC 

Figure 4. Trajectory tracking curve of the system joint 2O . 

From Figures 2–4, we can observe that the RSC-NV algorithm makes the base atti-
tude and joint of the system stable in the desired trajectories. However, owing to the 
mutual coupling of the system motion and vibration, the uninhibited vibration of the 
base, links, and joints will lead to different amplitude vibrations of the base attitude and 
joint of the system, which will affect the control accuracy. Under the RSSC control algo-
rithm, it can be seen that the convergence time of the base attitude stabilization and the 
tracking control of the joints is within 10 s. However, the convergence time under the 
RSC-NV algorithm is more than 30 s. The RSSC algorithm has a faster convergence speed 

Figure 4. Trajectory tracking curve of the system joint O2.

From Figures 2–4, we can observe that the RSC-NV algorithm makes the base attitude
and joint of the system stable in the desired trajectories. However, owing to the mutual
coupling of the system motion and vibration, the uninhibited vibration of the base, links,
and joints will lead to different amplitude vibrations of the base attitude and joint of the
system, which will affect the control accuracy. Under the RSSC control algorithm, it can be
seen that the convergence time of the base attitude stabilization and the tracking control
of the joints is within 10 s. However, the convergence time under the RSC-NV algorithm
is more than 30 s. The RSSC algorithm has a faster convergence speed than the RSC-NV
algorithm. Therefore, the system has better control performance under the RSSC algorithm
than the RSC-NV control method.
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In order to show the effectiveness of the proposed algorithm for base and joint vi-
bration suppression, the following simulation is carried out. Among them, Figure 5
shows the elastic vibration curves of the system base of under two control conditions, and
Figures 6 and 7 show the elastic vibration curves of joint O1 and joint O2 of the system
under two control conditions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17 
 

than the RSC-NV algorithm. Therefore, the system has better control performance under 
the RSSC algorithm than the RSC-NV control method. 

In order to show the effectiveness of the proposed algorithm for base and joint vi-
bration suppression, the following simulation is carried out. Among them, Figure 5 
shows the elastic vibration curves of the system base of under two control conditions, 
and Figures 6 and 7 show the elastic vibration curves of joint 1O  and joint 2O  of the 
system under two control conditions. 

0 20 40 60-0.1

-0.05

0

0.05

0.1

t/s

x b/m 56 58 60-1
0
1 x 10-3

 
0 20 40 60-0.1

-0.05

0

0.05

0.1

t/s

x b/m

56 58 60-5
0
5 x 10-4

 
(a) RSC-NV (b) RSSC 

Figure 5. Elastic vibration curve of the system base. 

0 20 40 60-0.2

0

0.2

0.4

0.6

t/s

σ 1/ra
d 56 58 60-0.1

0
0.1

 
0 20 40 60-0.2

0

0.2

0.4

0.6

t/s

σ 1/ra
d 56 58 60-0.05

0
0.05

 
(a) RSC-NV (b) RSSC 

Figure 6. Elastic vibration curve of joint 1O . 

0 20 40 60-4

-2

0

2

4

t/s

σ 2/ra
d

56 58 60-1
0
1

 
0 20 40 60-2

-1

0

1

t/s

σ 2/ra
d

56 58 60-0.05
0

0.05

 
(a) RSC-NV (b) RSSC 

Figure 7. Elastic vibration curve of joint 2O . 

From Figure 5, one can observe that the amplitude of the base is 1 mm under the 
RSC-NV algorithm. However, it can be seen that the base amplitude is 0.5 mm under the 
RSSC algorithm. The amplitude of joint 1O  is 0.1 rad under the RSC-NV algorithm, and 

the amplitude of joint 1O  is 0.05 rad under the RSSC algorithm, as show in Figure 6. 

Figure 7 shows that the amplitude of joint 2O  is 1 rad under the RSC-NV algorithm, the 

Figure 5. Elastic vibration curve of the system base.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17 
 

than the RSC-NV algorithm. Therefore, the system has better control performance under 
the RSSC algorithm than the RSC-NV control method. 

In order to show the effectiveness of the proposed algorithm for base and joint vi-
bration suppression, the following simulation is carried out. Among them, Figure 5 
shows the elastic vibration curves of the system base of under two control conditions, 
and Figures 6 and 7 show the elastic vibration curves of joint 1O  and joint 2O  of the 
system under two control conditions. 

0 20 40 60-0.1

-0.05

0

0.05

0.1

t/s

x b/m 56 58 60-1
0
1 x 10-3

 
0 20 40 60-0.1

-0.05

0

0.05

0.1

t/s

x b/m

56 58 60-5
0
5 x 10-4

 
(a) RSC-NV (b) RSSC 

Figure 5. Elastic vibration curve of the system base. 

0 20 40 60-0.2

0

0.2

0.4

0.6

t/s

σ 1/ra
d 56 58 60-0.1

0
0.1

 
0 20 40 60-0.2

0

0.2

0.4

0.6

t/s

σ 1/ra
d 56 58 60-0.05

0
0.05

 
(a) RSC-NV (b) RSSC 

Figure 6. Elastic vibration curve of joint 1O . 

0 20 40 60-4

-2

0

2

4

t/s

σ 2/ra
d

56 58 60-1
0
1

 
0 20 40 60-2

-1

0

1

t/s

σ 2/ra
d

56 58 60-0.05
0

0.05

 
(a) RSC-NV (b) RSSC 

Figure 7. Elastic vibration curve of joint 2O . 

From Figure 5, one can observe that the amplitude of the base is 1 mm under the 
RSC-NV algorithm. However, it can be seen that the base amplitude is 0.5 mm under the 
RSSC algorithm. The amplitude of joint 1O  is 0.1 rad under the RSC-NV algorithm, and 

the amplitude of joint 1O  is 0.05 rad under the RSSC algorithm, as show in Figure 6. 

Figure 7 shows that the amplitude of joint 2O  is 1 rad under the RSC-NV algorithm, the 

Figure 6. Elastic vibration curve of joint O1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17 
 

than the RSC-NV algorithm. Therefore, the system has better control performance under 
the RSSC algorithm than the RSC-NV control method. 

In order to show the effectiveness of the proposed algorithm for base and joint vi-
bration suppression, the following simulation is carried out. Among them, Figure 5 
shows the elastic vibration curves of the system base of under two control conditions, 
and Figures 6 and 7 show the elastic vibration curves of joint 1O  and joint 2O  of the 
system under two control conditions. 

0 20 40 60-0.1

-0.05

0

0.05

0.1

t/s

x b/m 56 58 60-1
0
1 x 10-3

 
0 20 40 60-0.1

-0.05

0

0.05

0.1

t/s

x b/m

56 58 60-5
0
5 x 10-4

 
(a) RSC-NV (b) RSSC 

Figure 5. Elastic vibration curve of the system base. 

0 20 40 60-0.2

0

0.2

0.4

0.6

t/s

σ 1/ra
d 56 58 60-0.1

0
0.1

 
0 20 40 60-0.2

0

0.2

0.4

0.6

t/s

σ 1/ra
d 56 58 60-0.05

0
0.05

 
(a) RSC-NV (b) RSSC 

Figure 6. Elastic vibration curve of joint 1O . 

0 20 40 60-4

-2

0

2

4

t/s

σ 2/ra
d

56 58 60-1
0
1

 
0 20 40 60-2

-1

0

1

t/s

σ 2/ra
d

56 58 60-0.05
0

0.05

 
(a) RSC-NV (b) RSSC 

Figure 7. Elastic vibration curve of joint 2O . 

From Figure 5, one can observe that the amplitude of the base is 1 mm under the 
RSC-NV algorithm. However, it can be seen that the base amplitude is 0.5 mm under the 
RSSC algorithm. The amplitude of joint 1O  is 0.1 rad under the RSC-NV algorithm, and 

the amplitude of joint 1O  is 0.05 rad under the RSSC algorithm, as show in Figure 6. 

Figure 7 shows that the amplitude of joint 2O  is 1 rad under the RSC-NV algorithm, the 

Figure 7. Elastic vibration curve of joint O2.

From Figure 5, one can observe that the amplitude of the base is 1 mm under the
RSC-NV algorithm. However, it can be seen that the base amplitude is 0.5 mm under the
RSSC algorithm. The amplitude of joint O1 is 0.1 rad under the RSC-NV algorithm, and the
amplitude of joint O1 is 0.05 rad under the RSSC algorithm, as show in Figure 6. Figure 7
shows that the amplitude of joint O2 is 1 rad under the RSC-NV algorithm, the amplitude
of joint O2 is 0.05 rad under the RSSC algorithm. It is proved that the RSSC algorithm is
effective at suppressing the vibration of the base and joints of the disturbed system.

At the same time, the influence of the links vibration cannot be ignored. Figures 8 and 9
show the first and second modal coordinates of flexible link B1, respectively. Figures 10 and 11
show the first and second modal coordinates of flexible link B2.
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Figure 11. The second mode coordinates of the flexible link B2.

The first mode coordinates of the flexible link B1 are 2 mm under the RSC-NV algorithm,
and they are 0.05 mm under the RSSC algorithm, as depicted in Figure 8. Figure 9 shows
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that the second mode coordinates of the flexible link B1 are 0.5 mm under the RSC-NV
algorithm, and they are 0.05 mm under the RSSC algorithm. Meanwhile, from Figure 10,
one can see that the first mode coordinates of the flexible link B2 is 1 mm under the RSC-NV
algorithm, and it is 0.2 mm under the RSSC algorithm. Figure 11 shows that the second
mode coordinates of the flexible link B2 is 0.2 mm under the RSC-NV algorithm, and it is
0.02 mm under the RSSC algorithm. All of the mode coordinates are obviously suppressed
under the RSSC, which illustrates the effectiveness of the control schemes in the vibration
suppression of system links.

7. Conclusions

The dynamic models of the fully flexible base–link–joint space robot and satellite were
established by using the Lagrange equation and the Newton–Euler method, which provided
the theoretical basis for the study of the capture process. With the help of the geometric
position relationship and force transfer relationship between the contact points of the robot
and the satellite, the impact effect on the collision was calculated, and the dynamic model
of the system after capturing was established. Using the singular perturbation method, the
system was decomposed into a slow subsystem (containing a base, joint rigid motion, and
flexible link vibration) and a fast subsystem (containing a flexible base and joint vibration).
A repetitive learning sliding mode controller based on the virtual force for the slow sub-
system and an optimal controller for the fast subsystem were proposed. The simulation
results show that the proposed control strategy can suppress the vibration of the disturbed
system base attitude within 0.5 mm, the vibration of both joints within 0.05 rad, the first
mode coordinates of both links within 0.2 mm, and the second mode coordinates of the two
links within 0.05 and 0.02 mm, respectively. It can not only effectively suppress the elastic
vibration of the base, joint and links of the system, but it can also realize the stable tracking
of the desired signal through only one control input within 10 s.
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