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Abstract: This paper reviews the state of the art of fiber Bragg gratings (FBGs) as analog all-optical sig-
nal processing units. Besides the intrinsic advantages of FBGs, such as relatively low cost, low losses,
polarization insensitivity and full compatibility with fiber-optic systems, they have proven to deliver
an exceptional flexibility to perform any complex band-limited spectral response by means of the
variation of their physical parameters. These features have made FBGs an ideal platform for the
development of all-optical broadband filters and pulse processors. In this review, we resume the main
design algorithms of signal processors based on FBGs, and we revisit the most common processing
units based on FBGs and the applications that have been presented in the literature.

Keywords: optical signal processing; pulse shaping; fiber Bragg gratings; design methods; synthesis
algorithms; ultrafast photonic processors

1. Introduction

The discovery of fiber Bragg gratings (FBGs) about four decades ago entailed a
revolution in the field of telecommunications [1]. FBGs appeared as an all-optical device
component capable of performing signal processing with low loss, relatively low cost
and full-compatibility with fiber optic systems. FBGs immediately attracted much of
researchers’ attention, being a fruitful field of research with widespread application in
a number of scientific and industrial fields [2–4]. FBGs are considered as basic building
blocks in photonic circuits aimed at ultrafast information transmission and computing,
as they deliver broadband operation (even greater than 1 THz) while avoiding inefficient
electro-optical and opto-electronic (EO/OE) conversions [5].

A Bragg grating in a light-guiding medium such as an optical fiber is a periodic
perturbation of its refractive index, causing certain reflectance and phase change in a
wavelength range nearby that accomplishing the Bragg condition, i.e., λB = 2πΛ, where
λB is the Bragg wavelength and Λ is the period of the refractive index perturbation [6].

Nowadays, two of the more prominent areas of application of FBGs are optical sens-
ing [7,8] and optical signal processing [9,10]. In optical sensing, the Bragg wavelength
of FBGs is highly sensitive to variations in temperature and strain, offering a precise
transducer to these effects. This fact, together with their low weight, low size, easiness to
multiplex and easiness to embed fiber in different materials have made FBG a widespread
photonic sensing solution of high interest in an increasing number of fields such as civil engi-
neering, medicine, aerospace, and more [11–16]. As optical signal processors, FBGs operate
as broadband, linear filtering devices. In the 2000s, the versatility of FBGs to implement
any desired linear filtering operation (bandpass, bandstop, customized phase filtering,
etc.) was unveiled [6]. For this purpose, FBG design techniques consisting in engineering
the apodization profile (i.e., the envelope of the periodic refractive index modulation of
the fiber) and/or the grating period were developed. Hence, different types of optical
filters and optical signal processing units (such as differentiators, integrators, pulse shapers,
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etc.) were implemented with bandwidths ranging from tens of GHz to THz [17]. Recently,
the rapid growth of semiconductor technologies and silicon-based photonics integrated
circuits (PICs) has speeded up the interest in translating the functionalities attained by
FBGs to integrated platforms (i.e., the so-called waveguide Bragg gratings), aimed at the
realization of entire functionalities on a chip [18–20]. Besides, recent prospects foster a low
cost for massive production using CMOS technology.

In this review, we focus on the application of FBG as signal processing units. First,
we review the algorithms employed to analyze and synthesize FBG as linear filters, from ap-
proximate methods to “exact” analytical solutions. Then, we revisit the research on signal
processors based on FBG carried out in the past two decades, discussing the design method-
ology employed and their applications. Finally, we provide insight for potential future
lines of work in this area.

2. Review of Design Methods for Fiber Bragg Gratings

Fiber Bragg Gratings (also known as short-period gratings) are distributed reflectors
that couple light from a forward-propagating core-mode (E+(z, f )), to the same counter-
propagating mode (E−(z, f )) in an optical fiber, as represented in Figure 1. For simplicity,
single mode operation can be generally assumed, since a single co- and counter-propagating
mode intervenes in the coupling process [6]. This coupling dominates at a particular
wavelength, specified by the grating period (typically in the sub-micrometer) via the Bragg
phase-matching condition [6]. Mathematically, an FBG can be modeled as the modulation
of the effective refractive index of the guided mode of interest along the fiber length z as:

nFBG(z) = ne f f (z) + ∆n(z) · cos
(∫ z

0

2π

Λ(z′)
dz′
)

(1)

where ne f f (z) is the effective refractive index for the fundamental mode, ∆n(z) is the
apodization profile, i.e., the envelope of the refractive index modulation, Λ(z) is the period
variation (also defined as the chirp function) along the grating length, which is assumed to
be L (Figure 1).
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Figure 1. Nomenclature for the parameters of an arbitrary FBG of length L and for the electromagnetic
optical fields at the two extremes (the grating period of the perturbation has been increased for
illustrative purposes).

As previously mentioned, FBGs behave as linear, passive filters. They have a linear
and time invariant (LTI) spectral response and hence, diverse signal processing functions
can be generated by using techniques from Fourier analysis [21]. FBGs can work in both
reflection and transmission, depending on whether the target output is attained at the same
fiber end where the input is launched or in the opposite end. Their frequency responses (or
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spectral transfer functions) in reflection and transmission, HR( f ) and HT( f ), respectively,
and the corresponding temporal impulse responses, hR(t) and hT(t) are defined as:

HR( f ) =
E−(z = 0, f )
E+(z = 0, f )

∣∣∣∣
E−(z=L, f )=0

; hR(t) = =−1[HR( f )] (2)

HT( f ) =
E+(z = L, f )
E+(z = 0, f )

∣∣∣∣
E−(z=L, f )=0

; hT(t) = =−1[HT( f )] (3)

where=−1 denotes inverse Fourier transformation, t is the time variable, and f is the optical
frequency variable. The spectral response of the grating in reflection and transmission, also
defined as reflective and transmissive field coefficients, are generally complex functions.
Along this work, we will define these spectral responses as HR( f ) = |HR( f )| · exp{jφR( f )}
and HT( f ) = |HT( f )| · exp{jφT( f )}, respectively. The reflectivity of the FBG is then
obtained as R( f ) = |HR( f )|2, while the transmissivity is T( f ) = |HT( f )|2.

In linear regime, the reflective coefficient of an FBG acts as an optical band-pass filter,
while the transmissive coefficient defines a band-stop filter. When operating in reflection,
FBGs offer an extraordinary flexibility to achieve almost any desired complex-valued
spectral filtering response, fundamentally constrained by practical fabrication limitations.
In transmission, however, their response is minimum-phase [22], i.e., the imaginary part,
Im[HT( f )] of the FBG’s spectral response in transmission is uniquely determined by the
real part, Re[HT( f )] through the Kramers-Kronig relationship [23,24]. To achieve a user-
defined spectral response, the Bragg grating can be engineered, e.g., by changing its length
L, modulating its envelope, ∆n(z), or modulating its grating period, Λ(z) [6]. Researchers
have intensively worked on the development of algorithms that predict the reflective
and transmissive spectral responses, HR( f ) and HT( f ), from the refractive index profile
nFBG(z) of the grating, and vice versa, i.e., algorithms that determine the nFBG(z) that
would lead to a desired HR( f ) or HT( f ). These algorithms are known as analysis [25–33]
and synthesis algorithms [34–42], respectively.

For the development of the FBG design algorithms, two hypotheses are to be consid-
ered. First, the refractive index modulation, nFBG(z), is regarded as a one-dimensional
parameter. Secondly, the electric fields propagating along the grating, E+(z, f ) and E−(z, f ),
are assumed to be ideal monochromatic plane waves. In this Section, we briefly describe
the existing algorithms with special emphasis in the more precise solutions, which are
nowadays widely employed in the design of efficient FBG-based optical signal processors.

2.1. Approximate Methods

Before exact analytical solutions to the analysis and synthesis of FBGs were developed
(around the 2000s), the parameters of the grating were engineered to achieve the target
functionality based on approximations. A well-known approximation to that end is the
first-order Born approximation [26], which relies on the use of weak-coupling gratings.

2.1.1. First-Order Born Approximation

The first-order Born approximation has been used as a grating design tool to either
determine the grating amplitude and phase profiles required to obtain a target reflective
spectral response HR( f ), or to anticipate the HR( f ) that will produce a certain grating
profile. In particular, this approximation establishes that under weak-coupling conditions
(i.e., when the maximum reflectivity is max[R( f )] = Rmax � 1), an estimation of the
reflective impulse response of an FBG, hR,est(t), is directly related to the spatial profile of
the refractive index perturbation, nFBG(z), by [26]:

hR,est(t) =
− dnFBG(z)

dz
2 · nFBG(z)

∣∣∣∣∣
z= t

2 ·
c

nav(z)

; nav(z) =
∫ z

0
n
(
z′
)
dz′ (4)
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where nav(z) is the average refractive index from the grating input to the location z, and c
is the speed of light in a vacuum. Under the Born approximation, the estimation of the
reflection impulse response, hR,est(t), is proportional to the spatial index-modulation profile
of the grating in amplitude and phase. Therefore, the estimation for the reflection frequency
response is directly obtained by:

HR,est( f ) = =[hR,est(t)] (5)

This simple approach can be readily employed to implement the analysis and synthesis
of a wide variety of FBGs operating on waveforms with picosecond resolutions. However,
this approximation starts to fail for strong-coupling gratings. The reason is that the Born
approximation is strictly valid when |κ|L� 1, where κ is the coupling coefficient, which is
proportional to the index modulation amplitude, i.e., |κ| = π · ∆n/λ (λ is the wavelength).
The parameter κ provides the relative amount of power coupled between two modes per
unit length. Longer gratings are associated to weak ∆n, since the coupling coefficient needs
to be sufficiently low so that the electromagnetic field maintains certain magnitude to
penetrate the full grating length.

2.1.2. Space-to-Frequency-to-Time Mapping

Another approach for the design of FBG-based optical signal processors based on
the Born approximation was later presented, leveraging the space-to-frequency-to-time
mapping [39].

This technique consists of designing the apodization function of a linearly chirped
FBG, working in the weak-coupling regime (i.e., |κ|L� 1). If the grating’s chirp induced
dispersion

..
Φ(s2), defined as

..
Φ = ∂2φR(t)/∂t2, accomplishes that

..
Φ� ∆t1

2/8π, with ∆t1
being the temporal duration of the impulse response for the optical signal processor, a time-
to-frequency mapping occurs. Then, the amplitude of the impulse response in reflection,
hR(t), is proportional to the amplitude of the reflective field coefficient of the filter, HR( f ).
Additionally, by operating under the Born approximation, there is a space-to-frequency
mapping process, in which the magnitude of HR( f ) is approximately proportional to ∆n(z).

Consequently, in this situation, the amplitude of the grating apodization profile
directly determines the magnitude of both the grating’s impulse response and the spectral
transfer function. A waveform proportional to the target temporal -or spectral- response
only needs to be spatially “recorded” in the apodization mask to be employed in the grating
writing process. Since it works under the Born approximation, this grating design technique
presents the same limitation in energy efficiency (related to the required low reflectivity)
as the previous one here described. Besides, the use of a linearly chirped FBG imposes
a quadratic phase in the reflective spectral response, limiting the applicability of this
approach to amplitude-only optical signal processors. On the other hand, the processing
bandwidth is restrained to tens of GHz, limited by the physically attainable fiber-grating
length, which is typically shorter than ~40 cm.

The general design of FBGs as optical signal processors, including high-reflectivity
gratings (leading to increased energy efficiency), involves the use of more exact analysis
and synthesis algorithms, which are described in what follows.

2.2. Analysis of Fiber Bragg Gratings

The analysis of FBGs provides the reflection HR( f ) and transmission HT( f ) spectral
responses obtained from a particular grating structure, nFBG(z). In this section, we describe
analytically the Coupled Mode Theory and Multilayer methods for the analysis of FBGs.

2.2.1. Coupled-Mode Theory (CMT)-Based Analysis Method

The Coupled-mode theory is a widespread technique that relates counter-propagating
electromagnetic waves within the grating structure using coupled differential equa-
tions [25,27,28]. CMT directly provides an analytic solution for the propagation of the
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electromagnetic fields through a uniform FBG, which is a grating with constant ∆n(z) and
Λ(z) along its length. In particular,

nFBG(z) = ne f f + ∆nmax · cos
{

2π

Λ

}
(6)

where ne f f , ∆nmax and Λ are all constant values. The reflective and transmissive coefficients
of the uniform FBG are given by [6,27]:

HR( f ) =
−jκ∗sinh(κL)

γ cosh(κL) + j(∆β/2)sinh(κL)
(7)

HT( f ) =
γ · exp(−jβ0L)

γ cosh(κL) + j(∆β/2)sinh(κL)
(8)

where ∗ stands for complex conjugation, the optical waveforms E+(z, f ) and E−(z, f )
involved in these expressions are defined in Figure 1, the propagation constant is β0 = π/Λ,
and γ is defined as γ = |κ|2 − (∆β/2)2. The parameter ∆β = β − β0. The coupling
coefficient κ is defined as κ = −jπ f ∆nmax/c.

Now, let us assume the analysis of a non-uniform FBG. The induced refractive index
can be expressed following Equation (1). In this equation, we have written the phase of
the refractive index modulation as a function of the grating period variation (Λ(z)). In this
case, the coupling coefficient varies along the grating’s length and is given by:

κ(z) = −j
π f ∆n(z)

c
exp

{
−j2π

∫ z

0

(
1

Λ(z′)
− 1

Λ0

)
dz′
}

(9)

where Λ0 is a specific grating period for reference.
The CMT-based algorithm leverages the transfer-matrix method (TMM) to implement

a discretization process of a non-uniform grating [31,33], as shown in Figure 2. Thus,
the entire grating is split into N layers of length δLi, with i ∈ [1, N], each of them containing
few periods. In each layer, we assign constant values to the parameters γ, κ and ∆β,
e.g., by selecting their values at the center of the section. Hence, the different grating
layers are approximated as uniform structures [2,27], which can be readily described by
the transfer matrix of a uniform FBG [6,27] of length δLi, i.e.,[

E+(zi, f )
E−(zi, f )

]
=

[
Mi,11( f ) Mi,12( f )
Mi,21( f ) Mi,22( f )

][
E+(zi + δLi, f )
E−(zi + δLi, f )

]
= [MU,i]

[
E+(zi + δLi, f )
E−(zi + δLi, f )

]
(10)
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The elements of the matrix MU,i are derived from the CMT as

Mi,11( f ) =
γ cosh(γ · δLi) + j(∆β/2)sinh(γ · δLi)

γ
exp(jβ0 · δLi) (11)

Mi,12( f ) =
jκsinh(γ · δLi)

γ
exp(−jβ0 · δLi) (12)

Mi,21( f ) =
jκ∗sinh(γ · δLi)

γ
exp(jβ0 · δLi) (13)

Mi,22( f ) =
γ cosh(γ · δLi)− j(∆β/2)sinh(γ · δLi)

γ
exp(−jβ0 · δLi) (14)

Eventually, the total grating response is obtained by multiplying the matrices of the
different layers in the appropriate order:

[MFBG] = [MU,1] · [MU,2] · . . . · [MU,i] · . . . · [MU,N−1] · [MU,N ] (15)

The grating’s reflection and transmission spectral responses are obtained as:

HR( f ) =
E−(z = 0, f )
E+(z = 0, f )

∣∣∣∣
E−(z=L, f )=0

=
MFBG,21( f )
MFBG,11( f )

(16)

HT( f ) =
E+(z = L, f )
E+(z = 0, f )

∣∣∣∣
E−(z=L, f )=0

=
1

MFBG,11( f )
(17)

The number of layers (N) selected to implement the piecewise calculation is estab-
lished by the required accuracy. However, it is important to note that the section lengths
must accomplish that δLi � Λmax, with Λmax the longer period found along the grating.
Otherwise, the approximations considered in the CMT to attain Equations (7) and (8) will
start to fail [6,27]. This analysis method delivers an accurate outcome for the broad majority
of FBGs of practical interest, i.e., those containing an arbitrary apodization profile, arbitrary
period profile and even those including phase shifts, with relatively low computational
time. For gratings incorporating phase shifts in their period, also known as phase-shifted
gratings [6], a phase-shift matrix

[
Mps,i

]
=
[

exp
{

jφp/2
}

0 ; 0 exp
{
−jφp/2

} ]
is to

be inserted in the adequate location in Equation (15), where φp is the shift in the phase of
the refractive index modulation [6]. Yet, CMT-TMM is not valid for the analysis of specific
grating profiles including superimposed FBGs or gratings based on superstructures.

2.2.2. Multilayer-Based Analysis Method

The algorithm of multi-layer (ML) represents an accurate solution to analyze any arbi-
trary FBG. ML-based algorithm also leverages the transfer-matrix method [31,33]. In this
case, ML-TMM sections the whole grating into layers whose length δli is sufficiently short
so that the refractive index variation within the layer can be regarded as constant. Typically,
δli � Λmin, with Λmin being the shorter period in the grating [29,30] (see Figure 3).

The resulting arrangement can be seen as a multi-layer structure that alternates
two elements, namely, a dielectric medium of constant refractive index and the interface
between two dielectric media of different refractive indexes. Considering the propagation
of a plane wave, the transfer matrix that characterizes a lossless medium with constant
refractive index ni and length δli is

[MM,i] =

[
exp(jk0ni · δli) 0

0 exp(−jk0ni · δli)

]
(18)

where k0 = 2π f /c is the wavenumber in a vacuum.
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Assuming normal incidence on an interface between two dielectric media of different
refractive indexes ni and ni+1, the transfer matrix of this interface is [29,30]:

[MI,i] =
1

2ni

[
ni + ni+1 ni − ni+1
ni − ni+1 ni + ni+1

]
(19)

Hence, the transfer matrix of the whole grating MFBG can be obtained from the
multiplication of the 2 × 2-transfer matrices characterizing the sequence of those simpler
elements, as

[MFBG] = [MI,1] · [MM,1] · . . . · [MI,i] · [MM,i] · . . . · [MI,N ] · [MM,N ] · [MI,N+1] (20)

The first and last transfer matrices characterize the interface between the unperturbed
fiber core and the first/last layer of the grating. Finally, the grating’s reflection and transmis-
sion spectral responses HR( f ) and HT( f ) are readily obtained from the elements of MFBG
using the Equations (16) and (17). As previously stated, ML-TMM is a general algorithm
useful for the characterization of any arbitrary grating profile, including a non-cosenoidal
or even non-periodic refractive index perturbation. However, due to the required high
sampling rate, the computation workload required in ML-TMM becomes extremely heavy
for FBGs longer than a few cm.

2.3. Synthesis of Fiber Bragg Gratings from a Targeted Reflection Specifications

The design of FBG generally starts from the specifications of the target reflective
spectral response HR( f ) and pursue the generation of the refractive index modulation
(Equation (1)) required to produce such response. This problem is generally known as the
inverse scattering or grating synthesis problem [34].

2.3.1. CMT-Based Synthesis Method

The synthesis method based on CMT delivers the local coupling coefficient κ(z)
from the specification of the target reflection spectral response HR( f ). As previously seen,
the resulting κ(z) provides the needed information to write the grating structure on the fiber,
i.e., the refractive index envelope ∆n(z) and the period variation Λ(z) (see Equation (9)).
This method has a straightforward description, since it makes use of the direct solution of
exactly the same coupled-mode equations of the grating analysis [35–37].

Once again, the propagation problem has to be discretized. Hence, the entire grating is
virtually divided in a series of N sections of length δL, which shall be modeled by uniform
FBGs. N is selected so that each section contains several periods, δL� Λ0 (recall that the
grating period for reference, Λ0, can be obtained from the central frequency of the target
spectral response and the Bragg condition). The transfer matrix of a uniform Bragg grating
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is MU,i, which is given by Equations (11)–(14). The fields before the first section (z1 = 0)
are given by [36]: [

E+(z = 0, f )
E−(z = 0, f )

]
=

[
1

HR( f )

]
(21)

From the matrix MU,i, it is possible to define a discrete, complex reflection coefficient
associate to each segment, which is related to the coupling coefficient as [37]

ρ = −tanh(|κ|L)κ∗

κ
(22)

From Fourier analysis, we know that the reflection coefficient of the first layer is

ρ1 = hR(t = 0) =
1
N

∫ ∞

0
HR( f )d f (23)

The reason is that the impulse response for t = 0 coincides with the case where
only the first reflector is present. The coupling coefficient of the first layer κ1 is obtained
from Equation (23). At this point, we can generate the first matrix MU,1, which provides
information of the grating structure from z = 0 to z = δL. The spectral response yielded
from the remaining grating is obtained by substituting Equation (21) into Equation (10),
and calculating [36]

HzL
R ( f ) =

E−(z = δL, f )
E+(z = δL, f )

=
−MU,1,21 + MU,1,11 · HR( f )
MU,1,22 −MU,1,12 · HR( f )

(24)

Next, the reflection coefficient of the next layer is obtained following the same rea-
soning as in Equation (23), using the spectral response of the remaining grating structure
HzL

R ( f ),

ρ2 =
1
N

∫ ∞

0
HzL

R ( f )d f (25)

These steps are employed successively until the entire grating structure is determined.
This algorithm embodies a computationally efficient layer-peeling algorithm for the de-
sign of the broad majority of fiber gratings of practical interest, including long gratings
(e.g., tens of cm).

2.3.2. ML-Based Synthesis Method

The ML-TMM-based synthesis algorithm offers the advantages of generality and
accuracy over the previously described CMT-based method. This method delivers the
required refractive index profile, nFBG(z), (instead of the coupling coefficient) from the
specified response in reflection. Its high sampling rate makes this method a practical tool
to synthesize gratings with discontinuities or local defects of the order of the local period,
or even to detect defects in a fabricated device.

In particular, the spatial resolution of the recovered local refractive index nFBG(z)
is below the local period (δl � Λ) [29,30]. This minimum discretization step impedes
working with an equivalent low-pass spectral response, forcing us to work with a spectral
response HR( f ) defined from f = 0 to f = c/

(
4ne f f δl

)
. The maximum value of the optical

frequency is given by the sampling rate of the impulse response of the grating in reflection,
∆t, which is equal to half the round-trip delay in a layer of length δl, ∆t = ne f f δl/c
(see Figure 4a). The sampled reflection impulse response, hRS(p) (targeted reflection
specifications) is obtained as:

hR(t) = =−1{HR( f )} =
∞

∑
p=0

hRS(p) · δ(t− 2p∆t) (26)
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Figure 4. (a) Scheme of the division into layers of the FBG and the space-time paths contributing to the total sampled
impulse response; (b) Decomposition of the space-time paths into the recursive path and the non-recursive path. The value
of the refractive index of each layer is calculated from the non-recursive component of the impulse response in that layer,
where the total impulse response and the non-recursive component are known.

The steps to obtain the required grating’s refractive index modulation are the follow-
ing [35]. Let us assume n0 as the refractive index of the unperturbed waveguide. The value
of n1 is calculated from the first sample of the impulse response hRS(0):

n1 = n0

(
1− hRS(0)
1 + hRS(0)

)
(27)

Observing Figure 4a, we have that

hRS(1) = t01 · r12 · t10 (28)

where txy and rxy represent the field transmission and reflection coefficients (respectively)
for the transition between the dielectric media x and y, assuming normal incidence. The co-
efficient r12 can be then calculated from the sampled impulse response in reflection as

r12 =
hRS(1)
t01 · t10

=
(n0 + n1)

2hRS(1)
4n0n1

(29)

The refractive index in the second layer n2 is obtained as

n2 = n1

(
1− r12

1 + r12

)
(30)

As represented in Figure 4b, it must be noted that, from the third coefficient of the
sampled impulse response, hRS(2), hRS(p) can be split into a recursive contribution (left
part) and a non-recursive one (right part) [35]. The non-recursive part can be written as

hnr
RS(2) = t01t12r23t21t10 = r23

1

∏
i=0

(
4nini+1

(ni + ni+1)
2

)
(31)

where the only unknown factor is r23 which is needed to obtain n3 since

n3 = n2

(
1− r23

1 + r23

)
(32)

Considering that the grating structure finishes at the second layer, i.e., the second
layer is infinitely long; the recursive part hr

RS(2) can be readily calculated by applying the
ML-TMM analysis technique. Then, r23 is obtained as

r23 =
hnr

RS(2)
1

∏
i=0

(
4nini+1

(ni+ni+1)
2

) =
hRS(2)− hr

RS(2)
1

∏
i=0

(
4nini+1

(ni+ni+1)
2

) (33)
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From r23, the value of n3 is solved using Equation (32). This last step must be repeated
until the last sample of hRS(N).

Of course, in the literature, we can find numerous references where variants of the here
described approaches have been proposed [32,40]. Nevertheless, the described methods
are found to have a straightforward, simpler description and are useful for any designer to
implement any arbitrary optical filter based on FBG.

2.4. Synthesis of Fiber Bragg Gratings from a Targeted Transmission Specifications

Although FBGs mainly operates in reflection mode, FBGs working in transmission
possess appealing advantages, such as the fact that no additional elements (e.g., an optical
circulator) are required to detach the grating output from the input signal, hence reducing
the cost and size of the processor unit. Besides, FBGs operating in transmission are more
robust against errors induced in the fabrication process. This is due to the weak interaction
between the propagating electromagnetic field and the grating when the electromagnetic
field is simply transmitted. It has been observed that, in this case, imperfections in the
grating structure are not “impressed” on the propagating wave [38]. On the other hand,
the processing bandwidth of transmissive FBGs has been found to reach more than one
order of magnitude that attained by reflective configurations. In reflection, the device band-
width is restricted by the attainable spatial resolution of grating fabrication technologies for
tailoring the apodization profile. To give a quantitative example, if the apodization profile
is written with sub-millimeter resolution (which is typically feasible), the resulting FBG
is limited to temporal resolutions of several picoseconds. In terms of spectral bandwidth,
this corresponds to a few hundreds of GHz [5]. As explained in this section, FBGs in trans-
mission permit a relaxation of the spatial resolution of the attainable grating apodization
profile in a tailored fashion, enabling the synthesis of THz-bandwidth signal processors.

The synthesis process for a targeted FBG operating in transmission starts from the
specification of the target transmissive coefficient, HT( f ), (it may also start from the
specification of the required transmission impulse response, hT(t)), and must produce the
required refractive index perturbation.

2.4.1. Minimum-Phase Transmissive Transfer Function

As previously mentioned, the transmission spectral response of an FBG is necessarily
minimum-phase (MP). In addition, as per the principle of conservation of energy, the trans-
missivity and reflectivity must accomplish T( f ) = 1− R( f ). In this scenario, the given
specifications of |HT( f )| directly determine φT( f ) and |HR( f )|. Hence, the design problem
reduces to the synthesis of an FBG whose reflection amplitude spectral response is |HR( f )|,
while the reflection spectral phase φR( f ) appears as a degree of freedom to achieve the
simplest grating implementation [38,41]. For instance, if a quadratic spectral phase is
considered (i.e., a linear chirp), the FBG reflection spectral response to be synthesized can
be mathematically expressed by [41]:

HR( f ) = W( f )
√

Rmax

(
1− |HT( f )|2

)
· exp

{
j
(

1
2

βd2(2π f )2 + (2π f )τd

)}
(34)

where Rmax is the maximum reflectivity; βd2 =
..
Φ/L (s2/m) is the slope of the group-delay

as a function of the angular frequency per unit length; W( f ) is a windowing function
employed to attain a band-pass response in reflection; and τd is a time delay introduced
to produce a causal response. The parameter βd2 determines the minimum grating length
L as

βd2 =
ne f f L
πBc

(35)

being B the full-width (e.g., at 99% of the maximum) reflection bandwidth of the device
(Hz). Hence, βd2 is a fundamental design parameter, which can be suitably designated
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to guarantee that the synthesized grating apodization has a resolution attainable by the
available fabrication method.

From HR( f ) given in Equation (34), which is obtained from targeted |HT( f )| specifica-
tions, the synthesis algorithms presented in Section 2.3 can be applied to obtain the desired
nFBG(z). Results will show that a higher dispersion value, βd2, leads to a more relaxed
spatial resolution and a lower peak of the refractive index profile, at the cost of producing
a longer device. In general, any optical processing functionality can be implemented using
this configuration provided that its transfer function is minimum-phase [38]. The syn-
thesized grating profile obtained from this design approach is much simpler than that
obtained from previous approaches (based on space-to-time-to-frequency mapping [39])
and readily feasible, even for a strong coupling grating.

2.4.2. Non Minimum-Phase Transmissive Transfer Function

In principle, signal processors whose transfer functions are not a minimum-phase
function, HNMP( f ), would not benefit from the possibility of being implemented by an
FBG operating in transmission. However, few years ago, a general approach was presented,
capable of synthesizing any arbitrary linear optical pulse processor, including those requir-
ing a non-MP filtering response, using a MP transfer function HMP( f ) [42]. This approach
relies on the property described and demonstrated in [24] that establishes that “any causal
temporal function with a dominant peak around or close to the origin will be either a
MP function or close to one”. Hence, the presented design scheme starts from the target
non-MP transmisive temporal impulse response, hNMP(t) = =−1[HNMP( f )], and converts
it into a MP response by just introducing an instantaneous component, e.g., a Dirac delta
function δ(t) [42], in the following fashion

hMP(t) = K1 · δ(t) + K2 · hNMP(t− τG) (36)

where τG is the time delay between the two terms and Ki, i = 1, 2, are their amplitudes,
which regulate the distribution of the input energy at the grating output. The corresponding
spectral transfer function will be MP and can be expressed as

HMP( f ) = K1 + K2 · HNMP( f ) · exp(−2π f τG) (37)

Note that Equation (37) defines an interferometric response where the phase of
HNMP( f ) is encoded in the phase of the resulting cosine-like spectral shape (a partic-
ular example of the described spectral profile is shown later in Section 3.4). HMP( f ) can
be readily synthesized by following the algorithm presented in previous Section 2.4.1.
Hence, HT( f ) must approximate HNMP( f ) over the grating operation bandwidth. The se-
lection of the values of K1 and K2 is restrained by the grating physical constraints. First,
the maximum transmissivity is limited to Tmax = 1 and hence [42]

|HT( f )| ≤
√

Tmax → K1 + K2 ≤ 1 (38)

Besides, the maximum reflectivity Rmax attained imposes that

|HT( f )| ≥
√

1− Rmax → K1 − K2 ≤
√

1− Rmax (39)

This inequality becomes strict when Rmax = 1 to avoid singular points in HMP( f ).
However, this situation is not usually attained in practice (Rmax < 1), and hence Equa-
tions (38) and (39) can be solved using the equal signs. This fact enables optimizing the
energy transfer to the non-MP component of the output signal. Note that the maximum
signal energy transferred to the non-MP portion will be of about 50%, attained when Rmax
approaches 1. The described approach can be applied provided that the target impulse
response is restricted to a well-defined, finite temporal window.
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3. Survey of Signal Processing Units based on FBGs

The development of the design tools described above, and especially the synthesis
tools, triggered a vast development of linear optical signal processors based on FBGs.
Since the FBG implements an LTI filter, the design of the targeted optical signal processor
requires the knowledge of the spectral responses of both the input signal X( f ) and the
target output Y( f ) [43]. Hence, the transfer function of the processor is determined by
H( f ) = Y( f )/X( f ), being the impulse response h(t) = =−1[H( f )], its inverse Fourier
transform, as depicted in Figure 5.
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The performance of the FBG-based optical signal processor has been typically evalu-
ated by three parameters [17]: the energy efficiency, the cross-correlation coefficient, CC;
and the Time-Bandwidth Product (TBP). The energy efficiency is obtained as the output-
to-input waveform energy ratio. The CC coefficient measures the processing error and is
given by

CC[%] =

∫ +∞
−∞ y(t) · yideal(t) · dt√∫ +∞

−∞ y2(t)dt ·
√∫ +∞
−∞ y2

ideal(t)dt
× 100 (40)

where y(t) and yideal(t) are the actual and ideal output waveforms, respectively. This CC
coefficient provides a precise estimation of the similarity between the obtained waveform
and the ideal waveform, thus allowing calculating the TBP of the proposed design. Finally,
the TBP is calculated as the ratio between the maximum and the minimum input pulse 3
dB-bandwidth with CC higher than a fixed value, e.g., 95%.

In this section, we describe different signal processing units that have been pre-
sented in the literature along the past two decades, as well as the method employed for
their design.

3.1. Amplitude and Phase Optical Filters

The straightforward application of FBGs is that of amplitude and/or phase optical
filters. A very popular application of FBGs as an amplitude filter is that of add-and-
drop optical multiplexers for DWDM systems [44]. For a finer selection/suppression
of channels, the leading and trail edges of the grating spectral response should be as
sharp as possible. This has led researchers to seek ways to efficiently suppress the typical
lobes that appear in the spectral response of uniformly apodized FBGs (i.e., FBG with a
rectangular-like refractive index envelope) [6]. Several proposals were reported based on
analysis algorithms, based on particular apodization profiles such as Gaussian, hyperbolic
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tangent, etc. [45]. Later, by means of synthesis algorithms, optical filters with rectangular-
like amplitude spectral response and linear phase response (i.e., with no dispersion),
were attained, which represent an optimized filter spectral response for add-and-drop
multiplexers in ultra-dense DWDM systems [40,46,47].

As phase filters, linearly-chirped FBGs have been widely exploited for dispersion
compensation. A linear variation of the grating period along its length translates into a
linear group delay [48]. Nowadays, commercially available linearly-chirped FBGs modules
are implemented to compensate for dispersion along several hundreds of km of G.652 fiber
(i.e., conventional single-mode fiber) with very small form factor (e.g., Figure 6 shows the
measured reflection spectral characteristic for a commercial linearly-chirped FBG).
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Finally, linearly-chirped FBGs have been also proposed as a real-time Fourier trans-
former [49], following the time-space duality [50]. Using the temporal analog of spatial
Fraunhofer diffraction, the linearly-chirped FBG act as dispersive media in reflection mode,
providing at its output a signal, y(t), proportional to the Fourier transform of the input
signal envelope, x(t), at the angular frequency ω = t/

..
Φ:

y(t) ∝ {=[x(t)]}
ω=t/

..
Φ

(41)

where
..
Φ(s2) is the dispersion coefficient for the linearly-chirped FBG (i.e., the linear group

delay as a function of the angular frequency). The FBG-based real-time Fourier transformer
constitutes a key component for creating time-domain equivalents of well-known spatial
optical signal processing systems [51].

3.2. Optical Differentiators

An optical differentiator obtains the derivative of the complex envelope of an input
optical signal [52]. Therefore, the transfer function of an arbitrary order differentiator can
be written as

y(t) ∝
dN x(t)

dtN → Hdi f f ( f ) ∝ (j · ( f − f0))
N (42)

where j is the imaginary unit and N is the differentiator order. Applications of optical
differentiators in the literature include the generation of arbitrary-order Hermite-Gaussian
(HG) optical pulses [53], which can be employed as advanced coding for network access
applications. Besides, optical differentiators can be applied for solving differential equa-
tions (ODEs) in analog computing systems. These equations play a fundamental role in
practically any field of science or engineering, and the possibility of performing these
computations all-optically implies potential processing speeds well beyond the reach of
present electronic computing systems [5].

Several approaches for first- and high-order optical differentiators have been proposed
in the literature based on FBGs, providing either different operation bandwidth or spectral
resolution, still within the practical limitations of the technology [52–63]. First approaches
proposed multiple-phase-shifts FBGs operating in reflection for first- and high-order differ-
entiation, but with a limited bandwidth around 20 GHz [54,55]. Afterwards, an alternative
design approach based on the use of especially apodized linearly-chirped FBG operated
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in transmission (following the space-to-frequency-to-time mapping design method) were
proposed and experimentally demonstrated increasing the operation bandwidths to a few
hundreds of GHz [56,57,60].

Finally, optical differentiators have been also proposed in a transmissive configuration
based on synthesis algorithms, as Hdi f f ( f ) is a minimum-phase function. A first-order
all-optical differentiator with a 2 THz bandwidth (full-width at 0.1% of the maximum
amplitude) has been designed using a linearly chirped FBG and following the synthesis
algorithm described in Section 2.4.1 [41]. The obtained apodization profile is plotted in
Figure 7a. The synthesized grating device was readily feasible with existing fabrication
methods, in terms of effective length, maximum refractive index modulation and average
spatial resolution of the ripples in the apodization profile. A comparison between the
fabrication-constrained spectral response in amplitude and phase with the originally
defined response is shown in Figure 7b.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 25 
 

 

where (s2) is the dispersion coefficient for the linearly-chirped FBG (i.e., the linear 

group delay as a function of the angular frequency). The FBG-based real-time Fourier 

transformer constitutes a key component for creating time-domain equivalents of well-

known spatial optical signal processing systems [51]. 

3.2. Optical Differentiators 

An optical differentiator obtains the derivative of the complex envelope of an input 

optical signal [52]. Therefore, the transfer function of an arbitrary order differentiator can 

be written as 

  
y t  µ

d N x t 
dt N

® H
diff

f  µ j  f  f
0  

N

 

(42)

where  j  is the imaginary unit and  N  is the differentiator order. Applications of optical 

differentiators in the literature include the generation of arbitrary-order Hermite-Gauss-

ian (HG) optical pulses [53], which can be employed as advanced coding for network ac-

cess applications. Besides, optical differentiators can be applied for solving differential 

equations (ODEs) in analog computing systems. These equations play a fundamental role 

in practically any field of science or engineering, and the possibility of performing these 

computations all-optically implies potential processing speeds well beyond the reach of 

present electronic computing systems [5]. 

Several approaches for first- and high-order optical differentiators have been pro-

posed in the literature based on FBGs, providing either different operation bandwidth or 

spectral resolution, still within the practical limitations of the technology [52–63]. First 

approaches proposed multiple-phase-shifts FBGs operating in reflection for first- and 

high-order differentiation, but with a limited bandwidth around 20 GHz [54,55]. After-

wards, an alternative design approach based on the use of especially apodized linearly-

chirped FBG operated in transmission (following the space-to-frequency-to-time mapping 

design method) were proposed and experimentally demonstrated increasing the opera-

tion bandwidths to a few hundreds of GHz [56,57,60]. 

Finally, optical differentiators have been also proposed in a transmissive configura-

tion based on synthesis algorithms, as 
 
H

diff
f   is a minimum-phase function. A first-or-

der all-optical differentiator with a 2 THz bandwidth (full-width at 0.1% of the maximum 

amplitude) has been designed using a linearly chirped FBG and following the synthesis 

algorithm described in Section 2.4.1 [41]. The obtained apodization profile is plotted in 

Figure 7a. The synthesized grating device was readily feasible with existing fabrication 

methods, in terms of effective length, maximum refractive index modulation and average 

spatial resolution of the ripples in the apodization profile. A comparison between the fab-

rication-constrained spectral response in amplitude and phase with the originally defined 

response is shown in Figure 7b. 

 

Figure 7. First-order optical differentiator based on a transmissive FBG: (a) Grating period (black 

dashed line) and apodization (red solid line) profiles considering linearly chirped phase mask and 

representative spatial resolution (0.3 mm); (b) Targeted transmission spectral response, phase 

(dotted green line) and amplitude (dotted blue line) and corresponding spectral response limited to 

fabrication constraints, in phase (solid black line) and amplitude (solid red line). 

Figure 7. First-order optical differentiator based on a transmissive FBG: (a) Grating period (black dashed line) and
apodization (red solid line) profiles considering linearly chirped phase mask and representative spatial resolution (0.3 mm);
(b) Targeted transmission spectral response, phase (dotted green line) and amplitude (dotted blue line) and corresponding
spectral response limited to fabrication constraints, in phase (solid black line) and amplitude (solid red line).

Figure 8 presents the output temporal characterization for the first-order optical
differentiator as well as their performance based on the correlation coefficient and the TBP.
Thus, Figure 8a shows the comparison between the ideally expected output waveform and
the output from an FBG tailored to typical fabrication constraints. The two curves show
an excellent match. Besides, Figure 8b shows the comparison in performance between the
original designed spectral response and the fabrication-constrained spectral response.
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correlation coefficient as a function of the 3 dB-bandwidth of the input pulse for the original design (blue dashed line) and
the design tailored to fabrication constraints (red solid line).
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The FBG-based optical differentiator performance is mainly degraded for inputs
whose bandwidth is below 0.5 THz, while preserving an excellent behavior for input
pulses with a 3 dB-bandwidth ranging between 0.78 and 1.55 THz. This fact translates
into a TBP~2 calculated as the ratio between the maximum and the minimum input
pulse 3dB-bandwidth with CC higher than 99.5%). This degradation is predominantly
attributed to imperfections of the fabrication-constrained device spectral response nearby
the transmission resonance notch.

Higher order (up to N = 4) optical differentiators with optical bandwidth of 2 THz
were also designed based on the same technique [61]. Results are depicted in Figure 9.
Numerical simulations are employed to assess the output temporal waveforms when an
input pulse, Gaussian-like, with 850 fs-FWHM is considered. The first- to-fourth order
derivatives of the input pulse are shown in Figure 9b, where the output of the ideal
differentiators are also depicted in black, validating their excellent operation.
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Figure 9. (a) Apodization profiles of the gratings required to implement Nth-order (up to N = 4) optical differentiators
based on FBGs in transmission considering realistic spatial resolution (0.5 mm); (b) Intensity outputs from the obtained
FBG devices.

High-order differentiators and fractional-order differentiators (i.e., those in which
the parameter N is not an integer number) have been also presented based on FBGs in
transmission, but obtaining a smart-engineered apodization phase modulation, based on a
two-step nonlinear optimization algorithm, instead of a linear chirp [62,63].

3.3. Optical Integrators

FBG technology has served as a platform to implement another important all-optical
signal processor, namely the optical integrator [64]. An optical integrator provides the
cumulative time integral of the complex temporal envelope of an input optical signal.
Its transfer function is

y(t) ∝
t∫

τN=−∞

, · · · ,
τ2∫

τ1

x(τ1)dτ1dτ2 · · · dτN → Hint( f ) ∝
1

(j · ( f − f0))
N (43)

Among the applications of FBG-based optical integrators proposed in the literature,
we can highlight the implementation of unit-step time-domain waveforms and the genera-
tion of flat-top pulse shapers, enabling re-configurability of their temporal width. Addi-
tionally, they are also key components for solving ODEs, with much better performance in
terms of high-frequency noise than optical differentiators [5]. Generally speaking, an op-
tical integrator can be interpreted as the light-wave equivalent of an electronic capacitor.
The main drawback of any passive temporal integrator is that it necessarily operates over a
limited time window, due to practical design and fabrication constraints [65].
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Significant efforts have been devoted to the implementation of broadband, high-
resolution arbitrary order (Nth) optical integrators. Solutions based on passive and active
configurations have been theoretically proposed based on FBGs in reflection and transmis-
sion, while some of them have been also experimentally demonstrated [64–71]. The first
approach was based on FBG analysis algorithms using a phase-shifted FBG in transmission
as an optical temporal integrator [64] with operation bandwidths in the order of tens of
GHz. Subsequently, from temporal specifications and based on the first-order Born approx-
imation, an uniform FBG operating in reflection was proposed as a first-order temporal
integrator over a limited time window [65]. This implementation was later generalized
to high-order temporal integrators using a weak-coupling uniform FBG with a proper
apodization function [67–69]. Finally, these FBG-based optical integrator designs operating
in reflection were optimized by means of strong-coupling uniform FBGs (using FBG synthe-
sis algorithms), increasing their energy efficiency and processing accuracy. Experimental
results were presented in [70,71].

3.4. Photonic Hilbert Transformers

FBG-based photonic Hilbert transformers (PHT), also known as phase shifters,
have been also proposed and experimentally demonstrated based on FBGs working in
reflection [72–77] and transmission [78,79]. A PHT is a pulse processor that delivers the
Hilbert transform of an input optical pulse. The transfer function of a general PHT is
defined as

y(t) ∝ H(P)[x(t)]→ HPHT( f ) ∝ cos(ϕ) + sin(ϕ)× (−j · sign( f − f0)) (44)

where H represents Hilbert transformation, ϕ = P ·π/2, and P is the fractional order, being
P a real number. The PHT is called integer when P = 1. PHTs are important components for
a high number of applications in the fields of computing and communications. As optical
signal processors, PHTs have been employed in the generation of phase-shifted pulse
doublets, where the PHT order allows one to define the amplitude ratio between the pulse
lobes. They have been also proposed to implement single side-band modulation from
amplitude modulation formats [76].

The first approach to the design of an FBG-based integer PHT was based on a weak-
coupling uniform FBG (using the first-order Born approximation) with a properly de-
signed amplitude-only grating apodization profile incorporating a single phase shift in
the middle of the grating length [72]. The generalization for higher- and fractional-order
PHTs were proposed based on strong-coupling uniform FBGs using grating synthesis
algorithms [74,75]. Practical fabrication constraints imposed operation bandwidths typi-
cally in the order of 200 GHz.

To overcome this bandwidth limitation, FBG-based PHTs in transmission mode
have been proposed taking into account that the PHT transfer function in not minimum
phase [42]. By following the design approach presented in Section 2.4.2, two Hilbert trans-
formers with an operation bandwidth of 3 THz, i.e., an integer, i.e., P = 1 and a fractional
one, P = 0.81, were experimentally demonstrated [78]. As in previous processors based on
FBGs in transmission, the grating profile (apodization and phase) were readily feasible,
even for a relatively strong-coupling grating. Figure 10a,b shows the reflectivity and group
delay in reflection of the integer HT, comparing the ideal and the experimentally measured
curves. The reflectivity follows the anticipated interferogram-like profile described in
Section 2.4.2. In particular, the target discrete shift in the phase spectral response of the
PHT is encoded as the phase shift in the middle of the sinusoidal interferogram profile,
while the all-pass PHT filter response imposes the nearly uniform interferogram envelope.
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The signal at the output of the PHTs are represented in Figure 10c,d. The experimen-
tally obtained Hilbert-transformed output component of the fabricated devices when the
input pulse is Gaussian-like and has an FWHM (Full-Width Half-Maximum) of 0.88 ps
are presented in Figure 10c,d, with the corresponding simulated outputs for comparative
purposes, showing a fairly good match in both cases. Some deviations are attributed to the
low signal-to-noise ratio of the measured signals as a result of the application of a Fourier
transform spectral interferometry procedure for the pulse characterization [42].
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ideal output (dashed pink line) for an input Gaussian pulse with 0.88 ps-FWHM.

3.5. Optical Pulse-Shapers

Optical pulse shapers are devices that synthesize the user-defined shape of the
complex-valued time-domain envelope of an optical wave. Pulse shapers play a fun-
damental role in computation and communication systems [80]. The more direct approach
of using FBGs as a pulse-shaping processor consists of employing the first-order Born
approximation [81–85]. As significant examples of this design approach, we can mention
the implementation of flat-top [81,82], saw-tooth (triangular) [83], parabolic [84] and an-
tisymmetric Hermite-Gauss [85] pulse shapers. These kinds of pulse-shaping processors
permit the synthesis of a wide variety of important ultra-fast optical signal processing oper-
ations. Among them, we can mention the following: flat-top waveforms can be employed
as all-optical control signals in nonlinear switching procedures; parabolic pulses can be
used as pump signals in all-optical non-linear implementations of time-lens processes or
pulse retiming; triangular waveforms can be used to implement tunable delay lines, time-
domain add-and-drop multiplexers, wavelength converters, or doubling of optical signals;
sinc-shape are used in optical time division multiplexing (OTDM) systems with Nyquist
pulse shaping; and the generation of high-order modulation codes are necessary for optical
code-division multiple access (OCDMA) and optical-label-switching communications.

Based on grating analysis algorithms, applications of ultrashort pulse propagation
in FBG were proposed for DWDM and OCDMA [86]. Different approaches have been
proposed in the literature. For example, arrays of uniform FBGs have been utilized for
generation of bipolar codes. In addition, schemes relying on superstructured FBGs, or step-
chirped FBGs were also presented, representing more compact solutions [87–91]. Based on
grating synthesis algorithms, a flat-top pulse-shaper based on uniform FBG operating in
transmission was proposed with an operation bandwidth in the order of tens of GHz (but
with a very complex refractive index profile with high peaks and several precisely dis-
tributed phase shifts) [92]. Later, rectangular, parabolic and triangular pulse shapers based
on phase-modulated FBGs in transmission have been proposed using grating synthesis
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algorithms and numerical optimization [93]. More in particular, a method is employed that
is based on finding a suitable period profile Λ(z) that attains the target transmissive spec-
tral response from the FBG, while the apodization profile remains constant. This technique
implies a simpler grating writing process, as the coupling strength remains constant along
most of the device length. However, the complexity is transferred to the fabrication of the
phase mask, which now needs to have a user-defined, relatively complex shape.

The aforementioned implementations for FBG-based all-optical pulse shapers present
a limited operation bandwidth (i.e., of hundreds of GHz, as explained in Section 2.4).
The implementation of optical pulse shapers using FBG operating in transmission, follow-
ing the design approach presented in Section 2.4.1, raised particular interest for increasing
the operation bandwidth. In general, any pulse shaping functionality can be implemented
using this configuration provided that its transfer function is minimum-phase. By using this
configuration, a 5 THz bandwidth flat-top pulse shaper has been experimentally demon-
strated [94]. The synthesized grating profile obtained from this design approach, shown
in Figure 11a, is much simpler than that obtained from previous approaches and readily
feasible, even for a strong coupling grating. Figure 11c shows the measured spectrum of
the input optical pulse. Figure 11d presents the measured transmissive power spectral
response for the FBG-based pulse shaper, and Figure 11e the corresponding measured
spectral phase response.
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Figure 11. Apodization profile (a) and period (b) of a rectangular pulse-shaper implemented on an FBG in transmission.
The curves obtained from the synthesis algorithm are in blue, while smoothed profiles adapted to the restrictions of the
fabrication method (sub-mm resolution) are in red; (c) Spectrum of the experimental input signal; (d) transmissivity and (e)
ideal phase of the spectral response in transmission (blue line), analytical response restrained to fabrication limitations (red
line) and experimentally measured response (dotted black line).

For the FBG-based pulse shaper temporal characterization, the output signal is mea-
sured in amplitude and phase via Fourier transform spectral interferometry. The input
(a 400 fs-FWHM Gaussian pulse) and the output time-domain signals are plotted in
Figure 12. The experimentally obtained data and the ideally expected data are compared
in that figure, showing high similarity and hence verifying the ability of the fabricated FBG
to attain the target ultrafast pulse-shaping application.

More recently, it has been presented the possibility of using FBGs with orthogonal
impulses responses to perform coding operations aimed at implementing multidimensional
quantum key distribution (QKD) protocols overcoming the low secret-key rate for quantum
information processing [95].
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Figure 12. Ideal temporal input pulse (blue line) and pulse employed in the characterization of a
flat-top pulse shaper implemented on a FBG in transmission (green line); Ideal temporal output (black
line) and experimentally measured output (red line). The output signal from the input employed
in the experimental test (green line) and the ideal device response is also plotted (magenta line), to
show deviations from the ideal output owing to the employed pulse.

4. Discussion

In the past two decades, much research has been carried out in the development of
all optical signal processors with high bandwidth (even up to the THz regime), aimed at
replacing the currently employed electronic processors. Methods for performing analysis
and synthesis of FBG enabled the development of a myriad of different filters and optical
pulse processors based on FBG technology. This research line was highly fruitful along the
first 15 years of this century. From 2016, the research interest in FBG as signal processors
started to decrease. The use of optical processors in a fiber platform is currently limited to
dispersion compensation devices based on linearly-chirped FBGs, and band pass filtering
components (i.e., those described in Section 3.1). Nowadays, the interest on these process-
ing components is mainly focused on the development of Bragg gratings in integrated
platforms. In particular, the need for particular filtering operations to implement complete
functionalities on a chip, e.g., in microwave photonics processors, beamforming networks,
arbitrary waveform generation, etc. is widely recognized [18–20,96]. The development
of optical processors on integrated Bragg gratings is following a similar path to the one
that occurred in fiber platforms. At present, most of the implemented functionalities have
been developed via approximations. Recently, analysis tools have been formulated with
the aim to predict the effect of particular apodization or period variations on the grating
spectral response prior the fabrication of the devices [97]. The next natural step is the
development of synthesis tools that enable the design of energy efficient, high precise
spectral filtering responses in integrated waveguide Bragg gratings. The design tools
described in this review paper can serve as a baseline for the development of the required
tools in integrated platforms.

Through the years, one of the most criticized features of FBG has been the difficulty
in producing reconfigurable processors. When talking about reconfigurability, we not
only mean the processing operation, but also the features related to their performance,
e.g., the fact that the processor can be employed to produce output waveforms with
different temporal features. The only parameter that is relatively simple to alter is the
central frequency of operation, which is dependent on the temperature or the strain on
the structure. Based on the possibility of altering the operation frequency of the grating,
there have been attempts to attain programmable and reconfigurable components [98–100].
An example is the development of a second order optical differentiator based on linearly
chirped FBG and a digital thermal print head [100]. Advances towards reconfigurable
structures are being researched nowadays through the use of innovative methods for
modifying the grating physical parameters in a programmable means or by using static
FBGs in more complex interferometric schemes, even in integrated platforms [101].
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5. Conclusions

In this work, we have presented a wide revision of the literature on fiber Bragg
gratings for their use as analog all-optical signal processors. Two main objectives have been
pursued in the preparation of this manuscript. First, to collect the different approaches
to perform the design of optical linear filters based on FBG technology. For this purpose,
we have classified the existing methodologies into analysis and synthesis tools, and we
have described their fundamentals, including those based on coupled-mode theory and
on multi-layer methods. Then, we have revisited the main optical processing units that
have been implemented via FBGs, providing a brief idea of their potential applications.
Of course, optical fiber technology has been nothing but a platform for the development
of these optical signal processors. Current trends move towards the headway of these
processors on Bragg gratings in integrated platforms. The ultimate goal is the replacement
of electronic-based processors, hence avoiding the operation bandwidth bottlenecks and
the inefficient OE-EO conversion associated with their use.
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