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Abstract: Groundwater at trichloroethylene (TCE)-contaminated sites lacks electron donors, which
prolongs TCE’s natural attenuation process and delays treatment. Although adding electron donors,
such as emulsified oil, accelerates TCE degradation, it also causes the accumulation of hazardous
metabolites such as dichloroethylene (DCE) and vinyl chloride (VC). This study combined in situ
chemical reduction using organo-iron compounds with enhanced in situ bioremediation using emul-
sified oil to accelerate TCE removal and minimize the accumulation of DCE and VC in groundwater.
A self-made soybean oil emulsion (SOE) was used as the electron donor and was added to liquid
ferrous lactate (FL), the chemical reductant. The combined in situ chemical reduction and enhanced
in situ bioremediation achieved favorable results in a laboratory microcosm test and in an in situ bio-
logical field pilot test. Both tests revealed that SOE+FL accelerated TCE degradation and minimized
the accumulation of DCE and VC to a greater extent than SOE alone after 160 days of observation.
When FL was added in the microcosm test, the pH value decreased from 6.0 to 5.5; however, during
the in situ biological pilot test, the on-site groundwater pH value did not exhibit obvious changes.
Given the geology of the in situ pilot test site, the SOE+FL solution that was injected underground
continued to be released for at least 90 days, suggesting that the solution’s radius of influence was at
least 5 m.

Keywords: ferrous lactate; in situ chemical reduction; bioremediation; trichloroethylene (TCE); green
and sustainable remediation (GSR)

1. Introduction

The remediation of sites contaminated by dense nonaqueous phase liquid (DNAPL) is
extremely difficult, which is why the development of economic and effective remediation
technologies for DNAPL-contaminated sites is crucial. Trichloroethylene (TCE), a common
DNAPL, is used in textile processing, refrigeration, vapor degreasing, metal washing, dry
wash facilities, lubricants, and adhesives [1]. TCE is a common pollutant in sites with
contaminated groundwater. The International Agency for Research (IARC) on Cancer
listed TCE as “carcinogenic to humans” [2,3]. Thus, TCE is one of the most common and
hazardous pollutants.

Microbes can convert chlorinated pollutants into hazard-free final products through
dechlorination under an anaerobic state. However, the lack of electron donors in the envi-
ronment often prolongs the time required for microbes to degrade chlorinated pollutants.
Adding a commercial emulsified vegetable oil (CEVO) as an electron donor to accelerate
reductive dechlorination of contaminated groundwater is a frequently adopted in situ
bioremediation technology [4–6]. Direct injection of edible oil into the contamination plume
does not yield favorable remediation results because edible oil has poor transmissibility;
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therefore, large amounts of groundwater must be drawn and replaced continuously to
enable the oil to diffuse into soil pores [7]. Emulsified edible oil (emulsified vegetable oil)
has fine and evenly distributed droplets, and can thus more easily diffuse into the pores
of different types of soil [8–10]. Emulsified edible oil releases carbon sources and fatty
acid, which can stimulate anaerobic reductive dechlorination. In addition, microbes can be
applied to facilitate the complete removal of chlorine to form nontoxic chlorinated ethenes
(CEs) [11–13]. Previous studies have injected emulsified oil into contaminated aquifers to
form a bioreactor system. Through the slow release of a CEVO, microbial activity in the
aquifer is stimulated over a long period of time to achieve complete dichlorination [14] and
remove heavy metal and organic pollutants in groundwater [15,16].

Although CEVOs are favorable hydrogen-releasing substrates [17], in situ bioreme-
diation using CEVOs to stimulate anaerobic reductive dechlorination of contaminated
groundwater has a few defects. Biodegradation of a CEVO generates organic acid, which
decreases the environment’s pH value and causes soil acidification problems. In anaer-
obic environments, sulfates may form hydrogen sulfide and generate odors. Moreover,
when vinyl chloride (VC), the metabolite of reductive dechlorination of tetrachloroethylene
(PCE) and TCE, accumulates to a certain level, microbial activity may decline [18] or the
growth of microbes that can degrade VC may be partially inhibited [19]. Subsequently,
the VC degradation rate decreases and prolongs the time required for bioremediation
of the contaminated site. Adding zerovalent iron can effectively overcome these defects.
Zerovalent iron has three main mechanisms in water: (1) in anaerobic environments, it
releases electrons from its surface to facilitate the reductive dechlorination of chlorinated
organic compounds (RCl); (2) Fe2+ is oxidated into Fe3+ and releases electrons to facilitate
the reductive dechlorination of RCl; and (3) zerovalent iron is oxidated in aqueous solutions
to reduce water to H2 and OH−, and H2 can be used as the electron donor to facilitate
catalyzed hydrogenolysis with RCl, thereby achieving the goal of dechlorination [20]. Ad-
ditionally, as a zerovalent iron solution added into sulfide can generate sulfides and iron
oxides, many scholars have added zerovalent iron to biosludge from husbandry wastewa-
ter containing high concentrations of sulfides, and found that the generation of hydrogen
sulfide was significantly controlled [21,22]. This indicates that the addition of zerovalent
iron could resolve the odorous water problem caused by hydrogen sulfide. Furthermore,
a study by Herrero et al. showed the benefits of zerovalent iron on bioremediation of
PCE [23]. The study conducted remediation tests in four groups: (a) natural attenuation,
(b) addition of lactic acid, (c) addition of zerovalent iron, and (d) addition of lactic acid
integrated with zerovalent iron. The results revealed that, in the group with lactic acid
added, when the microbes degraded PCE to cis-1,2-dichloroethene (DCE), the concentra-
tion of cis-1,2-DCE could not be reduced effectively and the generation of VC was not
observed. In the zerovalent iron group, decreases in PCE and TCE concentrations were
observed; however, the cis-1,2-DCE concentration continued to increase and could not be
effectively reduced. In the group with lactic acid integrated with zerovalent iron, PCE was
gradually degraded into VC and the concentration of VC gradually decreased. Therefore,
the addition of zerovalent iron also helps overcome the bottleneck of in situ bioremediation
in degrading compounds into VC through reductive dechlorination.

Although the addition of zerovalent iron can promote the degradation of VC deriva-
tives and solve many in situ bioremediation-derived problems, such as acidification and
odors, zerovalent iron is a solid that may, after injection, be synthesized with environmental
substances and precipitate, thereby limiting the distance of transmission. Su et al. used
pneumatic injection and direct injection methods and observed the distance of transmission
of emulsified zerovalent iron after injection [24]. The results revealed that the transmis-
sion distance through pneumatic injection was approximately 2.1 m and the maximal
transmission distance through direct injection was 0.89 m. The majority of the nano-iron
contained in the chemical was converted into magnetite after 2.5 years and the particle
size varied from 35–140 nm to 0.1–1 µm. The results suggested that zerovalent iron reacts
in underground environments over time and forms coordination complexes, which have
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enlarged particle sizes and might affect the distance of transmission. Ferrous lactate (FL)
can be dissolved in water to form aqueous solutions for injection, which is convenient for
in situ operation and may have a longer distance of transmission than solid zerovalent iron.

This study evaluated the feasibility of using two types of self-made emulsions com-
bined with FL in the bioremediation of TCE-contaminated sites. First, a microcosm test
was conducted to evaluate the differences between the two types of self-made emulsions
and commercial emulsion and to evaluate if remediation effectiveness increased after the
addition of FL. Then, in situ biological field tests were conducted to understand the steps
required to implement bioremediation with self-made emulsion combined with FL. The
results can serve as a reference for in situ remediation.

2. Materials and Methods
2.1. Materials and Analytical Methods

The first emulsion used in this study was soybean oil emulsion (SOE), which was
mainly comprised of soybean oil (69.5%), sodium lactate (4%), sodium bicarbonate (1%),
simple green (10.5%), sucrose fatty acid ester (4.5%), and water (10.5%). The emulsion
was blended using a 10,000 rpm homogenizer for 30 min. The second emulsion was
fatty acid ester (FAE), which was mainly composed of oleic acid (10.4%), glycerol (5%),
ethyl lactate (5.9%), buffer solution (1%), and water (77.7%). The emulsion was blended
using a 10,000 rpm homogenizer for 5 min. The FL selected was a commercial product
from Henan Jindan Lactic Acid Technology Co., Ltd., Dancheng County, Henan, China.
During the experiment, in situ groundwater sampling and water quality analysis were
performed in accordance with the standard analysis methods of Taiwan. Volatile organic
compounds in water were detected with a gas chromatograph/mass spectrometer; total
organic carbon in water was detected with a method of peroxide pyrosulfate thermal
oxidation/infrared spectrometry; and nitrate, nitrite, and sulfate were detected by ion
exchange chromatography. The analytical methods used in the article follow National
Institute of Environmental Analysis, Taiwan EPA [25–28].

2.2. Microcosm Test

The microcosm test consisted of five test sample groups. The five test sample groups
were blank, self-made SOE, FAE, CEVO, and self-made SOE+FL (1%). Each of the groups
used 250 mL serum vials to prepare six vials of isolated microcosms. When the predeter-
mined time for analysis was up, the vials were opened one by one for analysis. Except for
the blank group, which did not have any emulsion added, each serum vial consisted of
60 g of soil (sifted through a #20 mesh net), 15 mL of emulsion, a small amount of nutrients,
and 2 mg/L of TCE. Subsequently, groundwater samples from the in situ field test location
were added to the vials until no headspace was left; then, the vials were sealed. The vial
bodies were wrapped with aluminum foil to minimize light irradiation. The total duration
of the microcosm test was 90 days. Multiple samples were prepared for each of the five test
groups using the jar test method. On days 0, 10, 25, 45, 60, and 90, a serum vial from each
group was opened for pH, oxidation-reduction potential (ORP), dissolved oxygen (DO),
electrical conductivity (EC), total organic carbon (TOC), and volatile organic compounds
(VOCs) analyses. On days 0, 10, 45, and 90, additional nitrate, nitrite, and sulfate analyses
were performed. On days 0 and 90, the blank group and the test group with the greatest
effectiveness to date were selected for real-time polymerase chain reaction analysis [29] to
evaluate the variation in the amount of representative strains of Dehalococcoides (DHC) and
Dichloroeliminans (DCA1), which are microbes that can facilitate reductive dechlorination.

2.3. In Situ Biological Field Test

The in situ field test was conducted at a metal processing plant in central Taiwan. The
plant had used TCE for surface processing without proper contamination control measures,
resulting in TCE contamination at the site. The site’s geological structure consisted of
0–1.5 m of sandy silt, 1.5–2 m of silty sand with sporadic clay, 2–4 m of silty clay with
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sandy clay, 4–5.5 m of silty medium-to-fine sand, 5.5–6 m of silty clay, and 6–10 m of silty
medium-to-fine sand with sporadic thin layers of silt. The interbedded geologic structure
was frequently observed at the site and the groundwater level was from 4 m to 5 m
below the ground surface. The groundwater flow direction was mainly in the northeast to
southwest direction. The hydraulic conductivity of the site was approximately 2.8 × 10−5

to 1.6 × 10−6 m/s. The injection well and monitoring well distribution is presented in
Figure 1. At the upstream spot 1 m away from the injection well (IW), an observation well
(OW1) was established. OW2 and OW3 were established at downstream spots 3 m and
5 m away from the IW, respectively. In addition, a contaminated monitoring well was
selected as the control well (CW) within the contamination range of the site. The CW was
approximately 30 m away from the in situ biological field test site and was free from the
effects of the in situ chemical injection.

Figure 1. In situ biological field test well distribution.

Given that the geologic structures were silty fine sand and interbedded silt and clay, the
double packer injection method was adopted. The double packer injection well structure
is depicted in Figure 2b. The outer layer of the Manchette tube was Bentonite cement
slurry. On the Manchette tube, injection holes were designed at 50 cm intervals. During
injection of the chemicals at the target depth, the double packer system was extended to
the predetermined injection depth and filled with water in the water bag at both ends to
ensure chemical exposure at each contamination depth. During injection, the injection
pressure was controlled at 2–4 bar to avoid cracks on soil pores and the formation of short-
circuiting flows. During the testing period, chemicals were injected once every 2 months.
The amount injected was adjusted according to the TOC detection results during the testing
period. During the entire testing period, water quality characteristics including TOC,
VOCs, nitrate, nitrite, ammonia nitrogen, sulfate, sulfides, total iron, and iron (II) were
periodically monitored.
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Figure 2. In situ geological structure and layered formation of the injection well: (a) in situ biological
field geologic structure; (b) double packer injection well structure.

3. Results and Discussion
3.1. Microcosm Testing Results

The effects of the addition of different slow-release substrates on environmental
parameters are depicted in Figure 3. The testing results revealed that the use of emulsion
products may accumulate organic acid, thus decreasing the pH in groundwater. The
effect was particularly substantial with the addition of SOE+FL. The microcosm was an
enclosed nonflowing space, which further increased the likelihood of acid accumulation.
Regardless, the pH value in each of the groups was higher than 5.5, falling into a range
suitable for microbial growth. The initial ORP of each group was approximately 200 mV.
After the addition of different chemicals, the ORPs were reduced to 0 mV or lower. The
greatest decrease was observed in the SOE+FL group. Because the in situ groundwater
originally contained approximately 70 mg/L TOC, the blank group (BK) also exhibited
a decreasing trend in ORP. However, the ORP of the BK group remained higher than
0 mV for the duration of the test, which was different from that of the other groups with
emulsions added. The initial DO of each group was 6.48 mg/L. The results revealed that
the CEVO and SOE+FL test groups showed lower DO levels compared with the other
groups. Moreover, the groups with emulsions added (CEVO, SOE, and SOE+FL) had
higher EC values, with the SOE+FL group having the highest EC. The higher EC in these
groups was assumed to be caused by the electron donors provided by FL. The overall
results indicated that the addition of FL accelerated ORP and DO reduction; however, the
addition of FL also caused lower pH values.

The water quality variation of each group during the testing period is depicted in
Figure 4. The initial TOC of the groundwater used in this test was 76.8 mg/L. After the
addition of various slow-release substrates, the TOC concentration in each of the non-BK
test groups was higher than 3000 mg/L. The TOC concentrations following the addition
of CEVO and self-made SOE were similar (approximately 3500 mg/L). The addition
of FL further increased the TOC concentration to 4936 mg/L, suggesting that carbon
sources in FL increased the electron donor content in emulsions. Additionally, on day
45 of the test, the chemical consumption rate of the SOE+FL group was faster than the
consumption of the pure SOE or CEVO groups. It is possible that adding FL accelerated the
environmental reduction, thereby increasing the chemical consumption rate. The nitrate
concentration in each testing group increased in the initial period of the testing, possibly
because nutrients were added in all groups. The nitrogen, phosphorous, vitamin B12, and
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other substances included in the nutrients reacted with residual DO in the vials, causing
increased concentrations of nitrate. The sulfate content in each group exhibited an overall
decreasing trend, suggesting that the later stages of the test entered an environment for
sulfate reduction.

Figure 3. Environmental parameter variation in the microcosm tests: (a) pH; (b) ORP; (c) DO; and
(d) EC.

Figure 4. Water quality parameter variation in the microcosm tests: (a) TOC; (b) nitrate; (c) nitrite;
and (d) sulfate.
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The TCE removal rates and derivative concentration variations in each group of the
microcosm test are depicted in Figure 5. The BK group exhibited a TCE removal rate of
approximately 22% on day 45 because the groundwater used contained TOC. The TCE
removal rate of the self-made SOE, CEVO, FAE, and SOE+FL groups was approximately
71%, 64%, 52%, and 94%, respectively. The results indicated that adding FL accelerated
environmental reduction and increased biodegradation efficiency. The TCE removal rates
of the self-made SOE and CEVO were similar, suggesting that the self-made SOE was as
stable as the commercial product. Moreover, the self-made SOE reached 95% and 99% TCE
removal on days 65 and 90, respectively, which were higher than the 87% and 82% TCE
removal rates, respectively, of the CEVO. According to the CEVO degradation tendency
and the approximately 2500 mg/L TOC in the CEVO group on day 90, the CEVO group
might have been able to reach 99% removal of TCE if the testing period had been extended.
The FAE group reached approximately 55% TCE removal without any further increase
in removal because of its low oil content. In summary, under the same oil content and
fixed TCE concentration, only the SOE+FL and SOE test groups could reach an eventual
TCE removal rate of 99%. The addition of FL accelerated TCE degradation. The groups
with emulsions alone required a longer time for degradation to gradually reach a reducing
condition in the environment. Adding FL shortened the time required to achieve the
reducing condition, so microbes could start anaerobic reductive dechlorination earlier.
Moreover, Figure 5b reveals that the SOE+FL group generated the highest concentration of
cis-1,2-DCE, suggesting that the SOE+FL group had the greatest reductive dechlorination
efficiency. Therefore, the subsequent in situ biological field test was conducted using
SOE+FL. On day 90, the amount of representative strains of DHC and DCA1 in the SOE+FL
group was 5.64 × 103 and 6.17 × 103 gene copies/L, respectively.

Figure 5. Effects of different emulsions on chlorinated pollutants in the microcosm tests: (a) TCE and
(b) cis-1,2-DCE.

3.2. In Situ Biological Field Test Results
3.2.1. TOC Concentration Variation

On days 0, 36, and 130 of the in situ biological field test, 40 L SOE + 5 kg FL, 230 L
SOE + 20 kg FL, and 130 L SOE + 10 kg FL were injected, respectively. The FL was
adjusted to 2% concentration with in situ groundwater before being blended with SOE.
After each chemical injection, a groundwater volume of three times the chemical volume
was injected to propel the chemicals. Layered injection was adopted. Because the TCE
contamination depth of the site was 4.5 to 12 m, a double packer system was used to inject
the chemicals to 5, 6, 7, 10, 11, and 12 m beneath the surface. The TOC concentration
variations in each monitoring well after the chemical injections are presented in Figure 6.
The results revealed that, because of the special structure of the Machette tube in the double
packer injection system, the IW retained no groundwater or chemicals. Therefore, no water
quality data were obtained in the IW. After the first injection, the TOC concentration of
each monitoring well exhibited no apparent increase, probably because the first injection
calculation underestimated the hydraulic conductivity, causing an insufficient amount of
chemicals to be injected. After adjustment, the second injection was conducted on day 36
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and TOC concentrations increased in each monitoring well. The CW TOC concentration
remained at 1–3 mg/L, suggesting that the study site lacked electron donors, which
prevented reductive dechlorination through natural attenuation of TCE. Because OW1 was
only 1 m away from the IW, a TOC increase was observed soon after each injection. The
TOC concentration in OW1 after the third injection (393 mg/L) was higher than the highest
TOC concentration (243 mg/L) observed after the second injection. These results indicated
that SOE+FL was effectively adsorbed into soil pores and continued to release electron
donors to reach effective reductive dechlorination. In addition, the TOC concentration
of 94 mg/L observed at OW1 on day 90 after the SOE+FL injection demonstrated that
SOE+FL had at least 90 days of slow-release effect. Because OW2 and OW3 were farther
from the IW, their TOC concentrations began to increase on day 90, with the increasing
slope greater at OW2 than at OW3. The maximum TOC concentration reached at OW2
and OW3 was 282 mg/L at OW2. On day 160, the TOC concentration at OW2 and OW3
was 144 mg/L. Because the TOC concentration of the IW upstream area was maintained
at 200 mg/L or higher, a decrease in OW3’s TOC concentration was not observed. These
overall results revealed that the SOE+FL transmission reached at least 5 m when a double
packer system under 2 bar pressure of injection was used.

Figure 6. TOC concentration variations before and after injection for each monitoring well in the in
situ field testing.

3.2.2. In Situ Water Quality Parameter Variation

Because OW1 was closer to the IW, OW2 and CW were selected for comparing under-
ground environments and water quality parameters before and after injection. The results
are presented in Table 1. OW2 had family vegetable gardens in its peripheral areas; thus,
the initial nitrate concentration in the groundwater was higher than that at CW. Because
the groundwater at the in situ field testing site was flowing, the pH value of OW2 after
injection did not decrease at a level comparable to the microcosm test results. The TOC
results, as stated previously, indicated that chemicals were transmitted to OW2 only after
day 90. Thus, only an ORP decrease was observed before day 90. Prior to day 90, the
nitrate and nitrite concentrations did not decrease, and the iron (II) concentration did not
increase. On day 140, the nitrate concentration of OW2 decreased substantially, the iron
(II) concentration increased to 3.6 mg/L, and sulfide was observed at a concentration of
0.22 mg/L. The results from the CW indicated that the groundwater was originally in an
anaerobic state; however, little difference in water quality was observed between day 0 and
day 140 because of the lack of electron donors.
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Table 1. Environmental water quality parameter comparison of OW2 and CW in the in situ field testing.

Well Sampling
Day pH DO

(mg/L)
ORP
(mV)

Nitrate
(mg/L)

Nitrite
(mg/L)

Fe
(II)(mg/L)

Sulfate
(mg/L)

Sulfide
(mg/L)

OW2

0 6.41 1.94 328 7.92 ND 0.09 45.7 ND
29 6.42 2.32 316 8.99 0.002 0.06 43.7 ND
61 6.41 0.52 72 9.49 ND 0.5 39.8 ND
119 6.44 1.83 85 8.62 0.005 0.18 44.1 <0.04
140 6.26 1.11 -2 0.84 ND 3.6 50.3 0.22

CW

0 6.78 1.6 -5 0.02 ND 0.08 122 ND
29 6.67 1.73 23 0.03 ND 0.35 128 ND
61 6.57 0.65 -8 0.02 ND 1.05 130 0.02
92 6.26 0.07 103 0.05 N.D. 0.02 122 0.03
119 6.45 1.38 202 0.08 0.003 0.35 127 <0.04
140 6.16 1.8 64 0.04 ND 1.98 127 ND

3.2.3. TCE and Derivatives’ Concentration Variations

The TCE concentrations monitored after injection during the in situ biological field
test are presented in Figure 7. Following the first injection, because the injection volume
was insufficient, the TCE concentrations in OW1, OW2, and OW3 did not decrease in the
first 30 days. After the second injection, the TCE concentrations in OW1, OW2, and OW3
decreased. As the CW lacked electron donors, the TCE concentration at CW remained at
0.8–1.0 mg/L, suggesting a low natural attenuation rate of TCE at the site. The distance
between OW1 and the IW was the shortest, so TOC concentrations at OW1 were higher
than those at OW2 and OW3. TCE concentrations at OW1 decreased from 0.225 mg/L to
0.033 mg/L on day 60, reaching a TCE removal rate of approximately 85%. The results of the
microcosm test revealed that SOE+FL accelerated the TCE degradation rate, corresponding
to the substantial decrease in TCE concentrations. On day 160 of the in situ field test, TCE
concentrations at OW1 were lower than 0.01 mg/L, which is lower than the TCE monitoring
standard of groundwater-related regulations. Prior to day 90, TOC concentrations at OW2
and OW3 were already substantially low, so further decreases in concentration were not
observed. After day 90, TCE concentrations at OW2 decreased observably. On day 160, TCE
concentrations at OW2 decreased from 0.164 mg/L to 0.0685 mg/L, reaching a TCE removal
rate of approximately 58%. At OW3, TOC concentrations increased slowly and, as a result,
TCE concentrations at OW3 did not decrease in a notable manner. On day 140 (OW3 was
not analyzed on day 160), the TCE concentration of OW3 decreased from 0.636 mg/L to
0.048 mg/L, satisfying the groundwater regulation standards of TCE, Taiwan Groundwater
Pollution Control Standards, as shown on Table 2 [30]; however, the removal rate was a
mere 25%. A possible cause of the low removal rate can be attributed to the long distance
between OW3 and the IW, which required a long transmission time for the chemicals to
reach OW3, thus shortening the time allotted for stabilizing the groundwater environment.
A longer testing time was required for observable effectiveness to be achieved.

Table 2. Taiwan Groundwater Control Standards.

Control Item
Control Standards (mg/L)

Class I
Groundwater

Class II
Groundwater

TCE 0.005 0.05
cis-1,2-DCE 0.07 0.7

trans-1,2-DCE 0.1 1.0
VC 0.002 0.02

Note: Class I is for groundwater in drinking water resource protection area; Class II is for groundwater outside
the Class I area.
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Figure 7. TCE concentration variation of each monitoring well in the in situ field testing.

Anaerobic reductive dechlorination of TCE derives chlorinated byproducts. Scientific
literature has indicated that microbial degradation of soybean oil may generate organic
acid and hydrogen atoms, which replace the chlorine atoms. During the reductive dechlo-
rination process, intermediates such as cis-1,2-DCE, VC, and the final product ethene are
produced [11,31]. The cis-1,2-DCE and VC concentrations of each monitoring well during
the in situ biological field tests are presented in Figures 8 and 9, respectively. The results
revealed that, although substantial TCE degradation was observed to begin on day 60 at
OW1, no apparent accumulation of cis-1,2-DCE and VC concentrations was observed. On
day 160, the cis-1,2-DCE concentration of OW1 increased from 0.012 mg/L to 0.124 mg/L,
exhibiting no considerable accumulation. VC concentrations at OW1 were lower than the
detection limit (<0.01 mg/L). At OW2, cis-1,2-DCE concentrations varied similarly to the
TCE concentration variations observed in the well. The concentrations clearly began to
decrease on day 90. The cis-1,2-DCE concentration at OW2 decreased from 2.63 mg/L to
0.742 mg/L on day 160, reaching a removal rate of 72%. The VC concentration at OW2
increased from below the detection limit (<0.01 mg/L) to 0.112 mg/L. The OW1 moni-
toring results revealed that, although the TCE concentration decreased considerably, the
metabolites did not accumulate in a notable manner. DCE concentration even decreased
rapidly after day 90. These results suggested that adding FL in emulsions accelerated
metabolite degradation and decreased metabolite accumulation. However, as the distance
from the IW increased, the FL concentration became insufficient and caused the accu-
mulation of metabolites such as VC, as observed in OW2. Sheu [32] compared PCE and
TCE degradation effectiveness in microcosm tests in 2015 using two substrates—a general
emulsified oil substrate (EOS) and a long-lasting emulsified colloidal substrate (LECS), a
combination of EOS and nanoscale zero-valent iron (nZVI). The test results indicated that
the VC concentration was about 0.5 mg/L 130 days after the EOS application. However,
VC concentration met Taiwan Groundwater Control Standards 130 days after the LECS
application. It was verified that nZVI of LECS did not result in the cumulation of metabolic
byproducts compared with EOS. Ferrous lactate used in the test had similar effectiveness
as in Sheu’s tests.
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Figure 8. cis-1,2-DCE concentration variation of each monitoring well in the in situ field testing.

Figure 9. VC concentration variation of each monitoring well in the in situ field testing.

4. Summary

This study evaluated the effect of SOE+FL on anaerobic reductive dechlorination
of TCE. The following conclusions were drawn: (1) the results of laboratory microcosm
test and pilot test revealed that SOE+FL accelerated TCE degradation and minimized
the accumulation of DCE and VC more than SOE alone; (2) a double packer injection
well, constructed using a Manchette tube, can provide surgical injection of chemicals at
contaminated intervals; (3) the in situ bioremediation pilot test results revealed that the
SOE+FL solution transported in the underground environment continued to be released
for at least 90 days, with a radius of influence of at least 5 m.
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