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Abstract: Environmental Sound Recognition has become a relevant application for smart cities.
Such an application, however, demands the use of trained machine learning classifiers in order to
categorize a limited set of audio categories. Although classical machine learning solutions have been
proposed in the past, most of the latest solutions that have been proposed toward automated and
accurate sound classification are based on a deep learning approach. Deep learning models tend to be
large, which can be problematic when considering that sound classifiers often have to be embedded
in resource constrained devices. In this paper, a classical machine learning based classifier called
MosAIc, and a lighter Convolutional Neural Network model for environmental sound recognition,
are proposed to directly compete in terms of accuracy with the latest deep learning solutions. Both
approaches are evaluated in an embedded system in order to identify the key parameters when
placing such applications on constrained devices. The experimental results show that classical
machine learning classifiers can be combined to achieve similar results to deep learning models, and
even outperform them in accuracy. The cost, however, is a larger classification time.

Keywords: machine learning; environment sound recognition; Convolutional Neural Network;
embedded system; audio feature extraction; multi-class classification; one-vs-all

1. Introduction

Environmental Sound Recognition (ESR), and more specifically urban sound recog-
nition, has been rapidly evolving over the last few years. As cities try to become smart,
ESR is a valuable sensing capability to monitor urban environments. ESR has a wide range
of applications, both inside and outside of urban environments. First of all, ESR can help
with identifying the sources of sounds responsible for sound noise pollution, which has a
negative impact on health [1,2]. These sources of noise pollution range from barking dogs
to car traffic to overflying planes. ESR helps to identify what type of noise is dominant,
allowing specific solutions for each specific situation.

Currently, Closed-Circuit Television (CCTV) is used widely to monitor street activity
in cities. However, video surveillance systems are limited in range and are expensive. ESR
is used in sound surveillance systems to reduce the amount of blind spots and to increase
the covered range. For instance, they are used to monitor urban traffic [3] or criminal
activities [4] since sounds such as gun shots, alarms, dog barks, . . . are all indicators of
possible criminal activity.

The relevance of ESR goes beyond urban environments. In agriculture, birds can
damage crops; here, the ESR system detects birds so that they can be repelled to save
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crops [5]. Repelling birds is not only important to save crops, but also for saving the lives
of the birds. Although wind farms are a green source of electricity, they have a negative
impact on bird populations. Research estimates that up to half a million birds do not
survive a collision with a wind turbine every year in the U.S. alone [6]. An ESR system
near the wind farm can activate a collision avoidance procedure when a bird is too close to
prevent a collision. Although the focus of this work is on urban sound, some of the datasets
also contain sounds that are not related to urban environments, yet, they are relevant for
other ESR applications.

ESR is often performed on embedded systems, which are deployed in the area being
monitored to perform audio recognition. Such systems provide limited computational
power and memory capacity. Moreover, they are in general battery powered, which limits
the use of complex algorithms, which can drastically reduce the autonomy of the system.
Although recent works have proposed solutions [7], these limitations have slowed the
deployment of ESR on embedded devices.

Deep Learning (DL) approaches have been proposed in recent years [8] which out-
perform the existing classical Machine Learning (ML) solutions in the field of Artificial
Intelligence (AI). However, DL models have been growing in complexity, like in number
of parameters, in order to deliver higher accuracy, leading to a higher inference time. The
authors believe that classical ML based alternatives, which present a lower complexity,
and therefore, a lower execution time, can still be competitive against DL models for ESR.
This is especially interesting considering that they are used in constrained embedded devices.

The presented work exploits classical ML by combining different well-known ML
classifiers, which is called Mesh of Sound AI-based Classifiers or MosAIc for short. This
MosAIc approach is the ultimate attempt to exploit classical ML techniques to achieve
similar or better accuracies than when using DL. Together with this novel approach,
a lightweight DL approach is also proposed to overcome the limitations of embedded
devices. Both approaches are compared and evaluated in different platforms, including
a normal PC and a popular embedded device. Several audio datasets used in the related
literature are used in order to provide a fair comparison and evaluation. Parameters such
as accuracy and execution time are used as the metrics in evaluation.

The most relevant contributions of the presented work are:

• A methodology for a windowing-based audio feature evaluation to reduce the overall
execution time;

• A novel combination of classical ML classifiers capable of outperforming DL is pro-
posed and evaluated for ESR;

• A lightweight DL-based Convolutional Neural Network (CNN) is proposed and
evaluated to be deployed on embedded devices for ESR.

This paper is organized as follows: Section 2 presents related work. The background is
set in Section 3, where the methodology used for the evaluation is also presented. Section 4
describes the evaluation flow of the experiments and the experimental setup that is used.
The evaluation of the feature extraction can be found in Section 5. Section 6 contains the
results of the experiments using classical ML techniques, including the description of the
novel MosAIc approach and the experimental results. Section 7 presents the proposed
lightweight CNN model and the experimental results of its evaluation. In Section 8 a com-
parison between both approaches is done. Finally the conclusions are drawn in Section 9.

2. Related Work

ESR has gained more and more attention over the last few years. Most of the recent
work focuses on DL approaches to improve the accuracy of the ML models. Some DL mod-
els are using the raw waveforms to identify the sound, while others use spectrograms or
Mel-Frequency Cepstrum Coefficients (MFCC) as input for the Artificial Neural Networks
(ANN) or CNN based classifiers [9–11].

The authors of [12] compare Supported Vector Machines (SVM) against two CNN
models, GoogLeNet and AlexNet, trained on spectrograms from three datasets: ESC-10,
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ESC-50 and UrbanSound8k. The authors compare not only the accuracy of the models
but also their resiliency against adversarial attacks. Adversarial attacks are attacks where
the input of the model is altered so that a human still labels the the altered input correctly
while the models fail. The authors also propose an approach for increasing the robustness
of the SVM model against such types of attacks.

A voting system to classify human activity based on sound is used in [13]. The audio
is split into frames for which the MFCCs are calculated. These MFCCs are then used by
a random forest classifier to predict the human activity on a frame by frame basis. Using
a Non-Markovian ensemble voting system these predictions over time are combined to
make a final prediction of the present activity.

A similar principle is used in [14] where a CNN is used to classify sound clips of 5 s.
The input of the CNN are raw audio clips of T-seconds long that are generated using a
sliding window. During testing, the outputs of the softmax are summed to classify the
test data, which is similar to a voting system. The authors also combined this model with
other CNN models that were trained using log mel spectrograms and/or delta log mel
spectrograms. Each model was trained individually and the outputs of the models were
averaged before applying softmax to classify the sounds.

The authors of [8] combined DL and manual feature extraction to classify urban sound.
A CNN is used to extract deep features from the spectrograms. These deep features are
then combined with manually selected features like zero crossing rate as input to a SVM or
Random Forest. Although multiple metrics are used to compare the performance of both
classifiers, they are not combined to form one classifier.

In [15] the authors combine three different ML techniques with three different sets
of features to see which combinations perform the best. However, their definition of best
performing only considers accuracy. Although accuracy is an important metric, in real-
time applications, the time to perform a prediction is also important. This is especially
true when using embedded devices such as Field-Programmable Gate Arrays (FPGAs)
or microcontrollers.

The authors of [16] do consider using embedded devices. They describe a special
function to calculate the cost of embedding the model based on the resources needed and
the price of these resources. Three different models based on Gaussian mixture models
(GMM), SVM and Deep Neural Networks were considered for classifying sounds from the
smoke alarm dataset and the baby cry dataset. The input of the models was a combination
of MFCC, spectral centroid, spectral flatness, spectral rolloff, spectral kurtosis and zero
crossing rate. The authors do not consider how much time each model needs to classify
a sound.

A novelty detector for detecting sound events using a GMM model is implemented
on a beagle bone in Reference [17]. The authors decided to use a feature similar to MFCC:
Power Normalized Cepstral Coefficients (PNCC) together with the first derivative of the
PNCC as input for the model. More recently, the authors of [18] compared performance,
training and testing time for four different machine learning techniques, SVM, k-Nearest
Neighbour (k-NN), bootstrap aggregation and Random Forest, on a Raspberry Pi (RPi)
Zero W. To train the models, 3042 audio clips from UrbanSound8k and Sound Events and
8 different classes are used. Although the SVM and k-NN had the highest accuracy, F1
score, recall and precision, they also have the highest test time with 1.99 s and 0.5 s for the
SVM and k-NN, respectively.

Microcontrollers have also been used for audio classification tasks, as in [19]. A
small CNN with only 7867 parameters was trained to classify a recording as indoor,
outdoor or in-vehicle. The network is trained using log mel spectrograms of 1024 ms
long recordings from a proprietary dataset consisting of over 29 h of recordings. The
trained model is implemented on a sensorTile development kit using 32 bit floating point
(FP) and 8 bit integer by quantizing the model. Both the 32 bit FP model and the 8 bit
integer model operate in real-time with an accuracy of 90.16% and 89.17% in 81.505 ms and
36.022 ms respectively.
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3. Methodology

In this section, the background of audio classification is first set, before being linked to
the methodology that is used in this work. After that, the selected datasets are presented,
followed by the chosen audio features, the selected ML techniques and finally the metrics
used to evaluate the classifiers.

The goal of the experiments is to compare classical ML techniques to CNN classification
and see if combining classical ML techniques can outperform CNNs. Like many other pattern
classification tasks, audio classification is made up of three fundamental components:

• Sensing: measuring the sound event or signal;
• Audio signal processing: extracting the characteristic features of the measured sound

signal; and finally,
• Classification: recognizing the context of the sound event.

The audio signal processing part mainly deals with the extraction of features from
the recorded audio signal. The various methods of time-frequency analysis developed
for processing audio signals, in many cases originally developed for speech processing,
are used. That is, feature extraction quantizes the audio signal and transforms it into
various characteristic features. This results in an N dimensional feature vector often
representing each audio frame. A classifier then takes this feature vector and determines
what it represents—that is, it determines the context of the audio event. The classification
technique has two phases: the training phase and the classification phase. During the
training phase the system receives prerecorded audio data from labeled training sets to
train a representative model. In the classification phase, the system receives its audio inputs
from different prerecorded audio data or directly from a microphone. The classification
phase uses the models generated during the training phase to match and determine the
type of audio received by the microphone. Figure 1 is a representation of this process.

Figure 1. Different steps of the audio classification.

3.1. Datasets

Sound classifiers using ML techniques are used for automatic sound recognition. To be
able to recognize a specific type of sound, these classifiers need to be trained. For such
training, audio datasets of labelled sounds are necessary.

The well-known open source datasets for ESR used in the experiments are presented in
Table 1. Not all classes in these datasets are directly urban related, but they contain enough
representative information to be used for urban sound classification. Notice that altering
these datasets by removing the audio clips that are not related to urban sounds makes
comparison with other work impossible. Furthermore, the datasets are heterogeneous
enough to be representative for realistic audio environments.
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• BDLib: This dataset consists of 12 classes representing real-life situations. It was
created by the authors in [20], collecting audio from sources like BBC Complete Sound
Effects Library, Sony Pictures Sound Effects Series and the online sound repository
called Freesound [21]. Every class contains ten different audio files of 10 s each.

• UrbanSound: This large dataset of 12 GB contains around 18.5 h of labelled audio [22].
It is composed of ten classes, all representing only urban sounds. Just like BDLib,
UrbanSound was made by manually filtering and labelling every recording from the
online sound repository called Freesound [21]. There is also a larger subset of 4-s
audio clips called UrbanSound8K, based on this dataset, but it is not considered here.

• ESC: ESC-50, presented in [23], is an annotated collection of more than 2000 short
audio clips belonging to 50 different classes. The classes of this dataset are not all
related to urban sound, but also include environmental recordings such as animal
sounds, domestic sounds or natural soundscapes. In this work, the smaller version
ESC-10 is used, which contains 10 audio categories.

Table 1. Details of the open source datasets used in the evaluation.

BDLib Dataset ESC-10 Dataset UrbanSound Dataset

Categories Total Time (s) Categories Total Time (s) Categories Total Time (s)

Airplane 100 Dog barking 200 Air conditioner 6577
Alarms 100 Baby crying 200 Car horn 4819

Applause 100 Clock tick 200 Children playing 13,454
Birds 100 Person sneezing 200 Dog bark 8399
Dogs 100 Helicopter 200 Drilling 4864

Footsteps 100 Chainsaw 200 Engine idiling 3604
Motorcycles 100 Rooster 200 Gun shot 7865

Rain 100 Fire cracking 200 Jackhammer 4328
Sea waves 100 Sea waves 200 Siren 4477

Wind 100 Rain 200 Street music 6453
Rivers 100

Thunderstorm 100

3.2. Audio Features

The use of raw audio as input for classical machine learning models is not possible.
Instead, audio features are extracted from the raw audio and serve as input. There is a
wide variety in audio features and they can be broadly classified based on their semantic
interpretation as perceptual and physical features. Perceptual features approximate proper-
ties that are perceived by human listeners such as pitch, loudness, rhythm and timbre. In
contrast, physical features describe audio signals in terms of mathematical, statistical and
physical properties. Based on the domain of representation, physical features are further
divided as temporal features and spectral features. In this section, the physical features
that are used during the implementation of these experimental studies are introduced. All
of the audio features detailed below are provided by a specialized audio library called
librosa [24].

• Zero Crossing Rate (ZCR): The ZCR is the most common type of zero crossing based
audio features [25]. It is defined as the number of time-domain zero crossings within
a processing frame and indicates the frequency of signal amplitude sign change. ZCR
allows for a rough estimation of dominant frequency and spectral centroid [26].

• Root Mean Square (RMS): The RMS value is a measure of energy in a signal. The RMS
value is defined to be the square root of the average of a squared signal [24].

• Spectral Centroid (SC): SC [25] represents the “balancing point”, or the midpoint of
the spectral power distribution of a signal. It is related to the brightness of a sound.
The higher the centroid, the brighter (high frequency) the sound is. A spectral centroid
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provides a noise-robust estimate of how the dominant frequency of a signal changes
over time.

• Spectral Bandwidth (SB): Usually defined as the second-order statistic of the signal
spectrum, it helps to discriminate tonal sounds (with low bandwidths) from noise-like
sounds (with high bandwidths) [24].

• Spectral Roll off Point (SRP): The spectral roll off point is the N% percentile of the
power spectral distribution, where N is usually 85% or 95% [27].The spectral roll off
point is the frequency below which N% of the magnitude distribution is concentrated.
It increases with the bandwidth of a signal.

• Mel Frequency Cepstral Coefficients (MFCC): MFCCs have been largely employed
in the speech recognition field but also in the field of audio classification, due to
the fact that their computation is based on a perceptual-based frequency scale in the
first stage (the human auditory model which is inspired on the frequency Mel-scale).
After obtaining the frame-based Fourier transform, outputs of a Mel-scale filter bank
are logarithmized and finally decorrelated by means of the Discrete Cosine Transform
(DCT). Only first DCT coefficients (usually from 8 to 13) are used to gather information
that represents the low frequency component of the signals spectral envelope (mainly
related to timbre) [24].

• Chroma related features (CHROMA): Chroma are an interesting and powerful rep-
resentations in which the entire spectrum is mapped into 12 cells representing the
12 semitones (or chroma) of the musical octave. It is also called a chromagram, and can
be calculated using the short-term log Fourier transform of the sound signal. Another
characteristics based on chrominance are the normalized chroma energy distribution
statistics, which are used to identify the similarity between different interpretations of
the given music [28].

• Spectral Contrast (SCT): SCT is used for extracting spectral peaks, valleys and their
differences in each sub-band while MFCCs sum up the Fast Fourier Transform (FFT)
amplitudes. Thus, the spectral contrast function represents the relative spectral
characteristics. Spectral contrast includes more spectral information than MFCCs
because MFCCs only involve average spectral information [29].

• Tonnetz (TZ): The Harmonic network or Tonnetz that are shown calculate the charac-
teristics of the tonal centroid [30]. It is a well-known planar representation of pitch
relations first attributed to Euler [31], and later widely used by 19th century music
theorists such as Riemann and Oettingen and in recent years by Neo-Riemanninan
Music theorists [31–33].

• Mel Spectrogram (MEL): The non-linear transformation of the frequency scale which
is based on the perception of locations is called the mel scale. This transformation
calculates an energy spectrogram on the mel scale [30], so that two pairs of frequencies
separated by a delta in the mel scale are perceived by humans to be equidistant [34].

For this paper, it has been decided to use the librosa package to extract useful features
from sound information. This Python package is chosen because of its support of ARM-
based processors and to be able to use the python package scikit-learn.

3.3. Classifiers

There are several classical ML techniques, which enable effective sound classifiers.
For this evaluation, supervised ML techniques, which use correctly labelled data during
the classifiers’ training, are used. They are known to deliver a good performance when
classifying acoustic events. These are the selected supervised ML techniques:

• k-Nearest Neighbour (k-NN): The key idea behind this classifier is that, given a set
of patterns (unknown feature vector), X, its k-nearest neighbors in the training set are
detected and the count of those that belong to each class is calculated. The feature
vector is assigned to the class which has the highest number of neighbors.

• Naive Bayes: The goal of this classifier is to decide which class a novel instance
belongs to, by calculating the posterior probability of each class, given the feature
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values present in the instance. The instance is assigned to the class with the highest
probability.

• Artificial Neural Network (ANN): An ANN consists of a set of processing elements,
also known as neurons or nodes, which are interconnected. It can be described as a
directed graph in which each node i performs a transfer function f i.

• Support Vector Machine (SVM): Given a set of points which belong to either of two
classes, a SVM finds a hyper plane leaving the largest possible fraction of points of
the same class on the same side, while maximizing the distance of either class from
the hyper plane. SVM performs pattern recognition between two classes by finding a
decision surface that has maximum distance to the closest points in the training set
which are termed support vectors.

• Decision Tree: The decision tree algorithm tries to solve the problem by using tree
representation. Each internal node of the tree corresponds to an attribute, and each
leaf node corresponds to a class label.

3.4. Metrics

In order to evaluate the different classifiers, several metrics are used for accuracy and
timing. On the one hand, accuracy metrics, such as F1 score [35–37], are used for a fair
comparison of the classifiers. On the other hand, additional metrics, such as the execution
time, are also considered since they are relevant for real-time applications, becoming a
critical parameter for embedded devices.

3.4.1. Accuracy

The evaluation of the accuracy uses the F1 score, which is a metric well-suited for multi-
classifiers. The F1 score is the harmonic mean of two other metrics: precision and recall,
both metrics are based on the true positives, the false positives and the false negatives.
Precision (Equation (1)) measures the ability of a classifier to identify only the correct
instances for each class and recall (Equation (2)) is the ability of a classifier to find all correct
instances per class. They are expressed as follows:

Precision =
tp

tp + fp
(1)

Recall =
tp

tp + tn
, (2)

where tp and tn are the number of true positives and true negatives respectively, while fp
is the number of false positives. Both parameters are used to obtain the F1 score as follows:

F1 score =
2 × Precision × Recall

Precision + Recall
. (3)

The value of the F1 score is normalized between 0 and 1, a score of 1 indicating a
perfect balance as precision and recall are inversely related [38]. Moreover, the F1 score takes
into account imbalanced class distribution, such as that which occurs with the one-vs-all
approach and the MosAIc approach evaluated in Section 6.

The F1 score can be averaged in three different ways: the micro average (F1-micro),
the macro average (F1-macro) and the weighted average (F1-weighted). The F1-micro
uses the individual true positives, false positives and false negatives to calculate the
performance. Since the F1-micro is not sensitive to the accuracy of individual classes, it
can be a misleading metric in cases where the class distribution is imbalanced such as the
UrbanSound dataset. A classifier obtaining a high micro average means that it performs
well overall. The F1-macro is calculated using larger groups, namely the performance of
individual classes. Therefore it is more suitable when the data have an imbalanced class
distribution. A high F1-macro indicates that the classifier performs well for each individual
class. Like the F1-macro, the F1-weighted is also calculated with the performance of
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individual classes, but it alters the result to account for label imbalance [39]. All three
different averages of the F1 score are used in this evaluation of the classifiers.

3.4.2. Timing

Faster and accurate classification are features that are desirable when looking for real-
time audio recognition. Consequently, the classification time is also used as a parameter
in the evaluation of the classifiers. This classification time is obtained by measuring the
time that is needed to predict to which class one audio sample belongs. The value has a
different range based on what type of platform is used to evaluate the classifiers, becoming
a valuable parameter when selecting the target platform.

4. Evaluation and Platforms

In this section, an overview of the pre-processing of the audio, the training process and
of the embedded platforms that are evaluated is given. The evaluation flow is depicted
in Figure 2. The BDLib, ESC-10 and UrbanSound datasets are used in this evaluation.
In order to have enough training data, a windowing technique is applied during the
feature extraction.

Figure 2. Evaluation flow detailing the steps performed for a fair comparison of classical ML-based
approaches and a DL-based approach.

The audio features are extracted per audio frame, each of which is treated individually.
The attributes belonging to the same feature are aggregated to obtain a single kind of
feature vector. In this case, the statistical means are used as aggregators. Nonetheless,
the median, the sum or GMM can also be used to perform feature aggregation. This
aggregation is done to reduce the data and to characterize each audio frame sample with a
single vector of features.

Based on the selected datasets, a feature selection is performed by identifying the
relevant features. The most relevant features are used to compare classical ML based
approaches against a DL approach. All results would then be compared to a DL approach
using a CNN-based classifier. Both approaches are further detailed and discussed in the
sections below.

4.1. Dataset Preprocessing: Windowing

The BDLib dataset contains 1800 audio files saved as wav files, ESC-10 has 400 ogg
audio files and UrbanSound 1302 audio files. The files of BDLib and ESC-10 are 10 s
long, the ones of UrbanSound are of variable length, between 1 s and several minutes.
Furthermore, the audio files in the UrbanSound dataset have different file formats such
as wav, .mp3, .ogg, . . . To facilitate the experiments, all audio files in the UrbanSound
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dataset are first converted to wav. This file format is used because most of the audio files in
UrbanSound are already stored in this format and it is lossless as opposed to mp3 format.

To generate more data from these audio files, a windowing technique is used. Figure 3
depicts how the windowing process works. An audio file is loaded and the first 4 s are
used for the windowing process. These 4 s audio are then divided into seven audio frames
of 1 s, with a 50% overlap. These frames are only saved temporarily in an array, the time
that features are extracted out of them. After that the next audio file of the dataset is loaded
and the process is repeated. This way, seven times more feature groups are generated and
assure enough training data. For example, for the ESC-10 dataset, 2800 feature groups
are obtained with windowing instead of 400 without. It should be noted that windowing
is only used to generate more training samples, and multiple feature groups are not to
combined together to generate an averaged feature group per audio file.

Figure 3. Visual representation of the windowing process to extract the seven audio frames from the
four seconds of the audio file used for training.

The audio files of the UrbanSound dataset are different from those of the other datasets,
in the sense that they are not exactly 10 s long, they can be shorter or longer, and the relevant
audio does not always start at the beginning of the audio file. Therefore, every audio file
comes with a CSV file containing the metadata of the associated audio file, including the
start time. That start time is then used as offset to define where the 4 s used for windowing
will start. For example if the start time of audio file X is 2 s, then for seconds 2 to 6 the
windowing process will be used.

One feature group is generated per frame. The feature groups coming from the first
4 s of the audio file are used for the training and the testing of the classifiers, except for the
testing of the MosAIc approach. This is due to the fact that all the feature groups coming
from the first 4 s of the audio files, are used to train the ten binary classifiers which are
used for the MosAIc approach. So in order to avoid using the same data for the training
and the testing, another part of the audio files is used as test data for the MosAIc approach:
a 4 s long audio frame starting after the fourth second of the audio file (plus a potential
offset if working with the UrbanSound dataset). This is also shown in Figure 3.
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4.2. Dataset Processing

The classification is performed by splitting the data into 80% training and 20% testing.
Notice that the feature extraction and the sound classification are operations independent
of the approaches since both use the same extracted features for the sound classification
at all stages. Therefore, the experiments in this work target the profiling of the sound
classifiers in terms of accuracy and timing.

To test the models, 5 fold cross validation was used. The CNN models were trained us-
ing four of the five folds, with an 80–20% distribution between training and validation data.

4.3. Platforms and Experimental Setup

The feature extraction is performed using the Python 2.7 package librosa 0.7.2. The
classical ML classifiers are implemented using the Python library scikit-learn 0.20.4. The
experiments are executed in two different platforms. The experiments performed in a
desktop PC are used as a reference. The desktop PC includes a 2.6 GHz Intel Core i7
running Ubuntu O.S. 18.4. Additionally, a RPi 4B+ running Raspbian GNU/Linux 10 is
used as representative of an embedded system. One of the objectives of this work is to be
able to run the MosAIc on an embedded system maintaining a high accuracy and a low
classification time while performing a fair comparison against DL approach.

5. Feature Selection for both ML Approaches

Tools for feature extraction such as librosa offer a large variety of features that can be
extracted from audio files. In reality, however, a large set of features do not necessarily
lead to an accurate prediction. In order to find the importance of each audio attribute,
algorithms for feature selection are utilized [40]. The WEKA data mining tool [41] is a
useful tool for the evaluation of the audio features. Instead of using all the attributes of the
features in the audio classification, only relevant attributes are involved. A lower number
of features reduces the processing time as well as increases the performance of the data
mining task. Therefore, features and attributes selection is performed before applying data
mining tasks such as classification, clustering and outlier analysis. The WEKA features
selection uses the ranker algorithm InformationGain, which gives the set of the most
relevant features per dataset based on their information gain or entropy with respect to
other attributes. This entropy increases with the relevance of the attribute, which can then
be used to select the most relevant feature set [7]. The ultimate objective is to achieve
the highest accuracy while using the smallest number of features as possible. For this
evaluation, only the Spectral features supported by librosa [24] are considered. The features
are: MFCCs, RMS, CHROMA, MEL, SC, SB, SCT, SRP, ZCR, and TZ.

5.1. Features Information Gain

Figure 4 contains the most relevant features of the three datasets. These features
are evaluated using the InformationGain algorithm, which uses entropy as a metric. The
entropy values are used to identify the most relevant attributes of the selected features.
For the ESC-10 dataset, a decrement below 0.3 occurs from the attribute mel 84 til a value
of 0.05 for the attribute mel 117. Similar results are achieved when evaluating the BDLiB
dataset. For that dataset, these attributes range from 0.32 up to 0.1 for the attribute mel
123. The number of relevant attributes is strongly linked to the dataset. While the ESC-10
and BDLib datasets present similar ranking for the evaluated features, the UrbanSound
dataset presents a lower number of relevant attributes. As a result, Figure 4 shows how the
relevance of valuable attributes for the ESC-10 or BDLIb datasets decreases for UrbanSound
dataset. In fact, most of the attributes present an entropy lower than 0.3. Figure 4 allows
us to conclude that there is a decrease from the attribute mel 38 in all cases, with a higher
degree of decline for the UrbanSound dataset.
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Figure 4. Information gain of the attributes for the ESC-10, BDLib and UrbanSound datasets.
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This feature analysis is used in the comparison of classifiers to evaluate the impact of
the set of features based on the classifiers and the datasets. Based on the librosa available
features, a total of up to 170 attributes can be used when ten features are considered.
Nonetheless, for a complete analysis towards its consideration for embedded systems,
a reduced set of seven features (up to 24 attributes) is also considered, expecting a reduced
feature extraction time. Figure 5 summarizes which features are used and how many
dimensions they have. All the features used are from the librosa library and are spectral fea-
tures. Even though certain features are multi-dimensional (MEL, SCT, MFCCs, CHROMA
and TZ), they are transformed into one-dimensional arrays by taking the average over the
frequencies. These one-dimensional arrays are then put together in 1 large one-dimensional
array, which represents the feature group of one audio frame. These one-dimensional ar-
rays are the input for the classifiers. Notice that each array is used as a single training or
test sample and not combined with other arrays from the same audio file to generate a
combined feature group per audio file.

Figure 5. Summary of features used when using ten features or only seven features, and the amount
of dimensions they have.

5.2. Experimental Features Extraction Time

The selection of the features can be determined by the feature extraction time. Based
on the previous feature analysis, this timing information can be used to select either
seven features or ten features. Experimental timings of the feature extraction for the
selected datasets in different platforms are depicted in Figure 6. Note the high impact
that the selection of the platform has. Due to the limited resources of embedded devices,
the feature extraction time is substantially higher when the feature extraction occurs in the
RPi. This increment is in fact, independent of the dataset, since it affects of them equally.
Similarly, it is interesting to notice how the number of features affects the feature extraction
time. As expected, the use of the 7 most relevant features is up to five times faster than using
all the ten spectral features available in librosa. Since the feature extraction affects both
evaluated ML approaches, this experimental evaluation can be used to tune the selection
of the platform and ML approaches towards the faster and most accurate approach. For
instance, this selection is used in Section 6.5 to accelerate the MosAIc approach when
ported to embedded devices. Further discussion about the selection of the features is done
in Section 8.
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Figure 6. Experimental feature extraction timings measured in different platforms.

6. Evaluation of Classical Machine Learning for ESR: The MosAIc Approach

In this section the experimental results using different classical machine learning
techniques are presented. The ultimate goal is to evaluate how classical ML techniques
can be combined to achieve a higher accuracy. A novel combination of classifiers, called
MosAIc, is proposed and evaluated for multiple datasets and platforms.

The experimental results presented in this section are divided into three parts: the
classical approach, the one-vs-all classifiers and the novel MosAIc approach. Initially,
the most common ML classifiers are evaluated for the BDlib, ESC-1 and UrbanSound
datasets. The results are compared with the performance reported in the literature. As a
second step, a one-vs-all approach is used to evaluate the potential of combining multiple
classifiers. It is well-know that the accuracy decreases when increasing the number of
categories. With the one-vs-all approach, the number of categories is reduced to a minimum
in order to achieve the highest performance. The natural evolution of the one-vs-all
approach is the MosAIc approach. The structure is described and the experimental accuracy
achieved with this novel approach are presented. Finally, all solutions are evaluated
on an embedded device. A solution for a faster MosAIc approach when embedded is
also discussed.

6.1. The Classical Approach

Classical ML solutions for ESR involve the use of well-known classifiers such as those
described in Section 3.3. These classifiers have been evaluated in [7] and the results were
compared with those reported in the literature (Table 2). The experimental measurements
are summarized in Tables 3–5 for the BDLib, ESC-10 and UrbanSound datasets respectively.
Notice that the values depicted in Table 2 are accuracy, and not F1 scores. Nonetheless,
the accuracy values can be compared to the F1-micro score. The evaluation for the BDLib
dataset reflects that the k-NN classifier outperforms not only the original accuracy reported
in the literature but also the other classifiers. Nonetheless, such a performance has a cost
reflected in its high classification time. Something similar occurs when evaluating the
classifiers for the ESC-10 dataset, where the k-NN classifier obtains the highest accuracy
but it is also the most time demanding. The SVM classifier is the classical ML technique
which offers higher accuracy when using the UrbanSound dataset. The best classifiers in
terms of accuracy and timing will be selected for the MosAIc approach.
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Table 2. Classifiers’ accuracy per dataset reported in the literature (Source: [7]).

Classifier BDLib [20] ESC-10 [23] UrbanSound [22]

k-NN 45.5% 66.7% -
Naive Bayes 45.9% - -

ANN 54.0% - -
SVM 53.7% 67.5% ≈70%

Decision Trees - - ≈48%

Table 3. F1 scores and classification time using the BDLib dataset with a classical approach and
10 features. The solution with the highest F1 score is highlighted.

Classifier Classification Time [ms] F1 Micro F1 Macro F1 Weighted

SVM 0.002 ± 0.000 0.921 0.920 0.922
Naive Bayes 0.020 ± 0.005 0.578 0.554 0.559

k-NN 0.232 ± 0.013 0.981 0.981 0.981
ANN 0.003 ± 0.001 0.928 0.927 0.928

Decision Trees 0.005 ± 0.000 0.482 0.417 0.412

Table 4. F1 scores and classification time using the ESC-10 dataset with a classical approach and
10 features. The solution with the highest F1 score is highlighted.

Classifier Classification Time [ms] F1 Micro F1 Macro F1 Weighted

SVM 0.001 ± 0.000 0.844 0.841 0.843
Naive Bayes 0.016 ± 0.000 0.516 0.512 0.514

k-NN 0.597 ± 0.023 0.876 0.872 0.873
ANN 0.002 ± 0.001 0.821 0.820 0.821

Decision Trees 0.003 ± 0.001 0.451 0.385 0.389

Table 5. F1 scores and classification time using the UrbanSound dataset with a classical approach
and 10 features. The solution with the highest F1 score is highlighted.

Classifier Classification Time [ms] F1 Micro F1 Macro F1 Weighted

SVM 0.001 ± 0.000 0.624 0.609 0.622
Naive Bayes 0.017 ± 0.000 0.250 0.251 0.252

k-NN 2.135 ± 0.132 0.932 0.935 0.932
ANN 0.002 ± 0.000 0.656 0.631 0.654

Decision Trees 0.001 ± 0.000 0.353 0.214 0.291

6.2. The One-vs-All Approach

One strategy to improve accuracy could be the reduction of the classes to be recognized.
The minimal number of classes can be reduced to only two classes, which can be used
to determine if an audio belongs to one associated class or not. This approach, called
one-vs-all [42], is evaluated here. To set this approach, the features are extracted and
labeled in a binary way: either “the-associated-class” or “not-the-associated-class”. This
is done separately for each class. The classifiers are then trained in a binary way. For
instance, the classifiers are trained to distinguish the “the-associated-class” dog bark from
the UrbanSound dataset and audio labelled as the “not-the-associated-class” no dog bark.
The number of audio samples labelled “not-the-associated-class” will be always higher
than “the-associated-class”. In the case of the ESC-10 and BDLib datasets, this number is
exactly nine times more. This creates imbalance in the training data, causing the classifier
to actually learn to recognize “not the class” instead of “this class”. Note that, due to its
original imbalance, the UrbanSound dataset is the most sensible one to suffer this effect.
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Figure 7 depicts the experimental results of F1 score using the one-vs-all approach with
the different ML techniques using the UrbanSound dataset. This dataset is selected due to
the relatively low accuracy obtained in the previous experiments. As depicted in Figure 7,
the accuracy of the classifiers using the one-vs-all approach increases in comparison to
the classical approach. As a result, the one-vs-all approach offers a major improvement in
accuracy, with the F1 scores almost doubling for every ML technique.

Due to the fact that the classifiers have to use the same set of features as in the tradi-
tional approach, their classification time is not altered. The exception is Naive Bayes, for
which the classification time is reduced to 0.011 ms, half of the classification time measured
in the previous section. Although this approach is limited to a binary classification, it
reflects how much the accuracy can increase when the number of classes are reduced.
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(e) Accuracy of Naive Bayes.

Figure 7. Accuracy of the classical classifiers for one-vs-all approach obtained using the UrbanSound dataset.

6.3. The MosAIc Approach

The idea behind the MosAIc approach is to improve classical ML techniques by
combining multiple classifiers and create, in this way, a “mosaic” of classifiers (Figure 8).
A one-vs-all approach uses one binary classifier per class, by training it with the samples
of that class as positive samples and all other samples as negatives. If a dataset with ten
classes is used for the training, ten binary classifiers are necessary for this approach. The
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MosAIc approach combines these ten classifiers with a voting system. Nonetheless, one
single type of classifier is not enough. The MosAIc approach uses three different type of
ML classifiers selected based on the previous results Because the classification times are
significantly lower than the feature extraction times, the accuracy is used as the parameter
for the selection of ML techniques for the MosAIc approach. As a result, the SVM, k-
NN and ANN techniques are the ML classifiers selected for the MosAIc approach. The
configuration of the MosAIc approach depicted in Figure 8 has three groups of one-vs-all
classifiers trained with SVM, k-NN and ANN techniques, with a one-vs-all classifier per
class in every group.

Figure 8. A schematic representation of the MosAIc approach for UrbanSound.

The MosAIc approach is the natural evolution of the one-vs-all approach. When an
audio sample is classified, this results in three predictions per class. The voting system
will then consider the prediction that has at least two votes out of the three as the final
prediction of the three binary classifiers associated with one same class. This means that
the classification of an audio sample using the MosAIc approach can result in more than
one prediction. An additional benefit of this approach is that it could identify multiple
classes in one audio sample.

Other than the improved accuracy obtained with this approach, a reason to use it is the
fact that it optimizes the usage of the time available during the feature extraction, assuming
the feature extraction and the classification are done in parallel. Feature extraction can
indeed be up to one thousand times slower than the classification.
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For the evaluation of the MosAIc approach, the same data are used to train all the
classifiers associated with the different classes. The labels of the feature groups is the only
change between the classes. With the one-vs-all approach, to select test data, a random
split is done just before the training, 80% for the training, 20% for the testing. Those 20%
are then used to measure the accuracy of the trained classifier. However in the case of the
MosAIc approach, the same audio samples are being used for all of the classes, but they
are being split differently each time. Therefore, to assure that no test audio samples are
used to train the classifiers, the test data are generated from the same audio files, but with
the features from the audio between 4 s and 8 s. For this experiment, 30 binary classifiers
work together, three per class, one SVM, one k-NN and one ANN. The voting system is
applied using the 30 predictions, isolating the majority of every group of three classifiers,
ten predictions remain per test audio, one per class. Those ten predictions represent the
classification of an audio sample. In the ideal case, if there is only one class to identify, nine
of those ten predictions are “not-the-associated-class” and one is “the associated class”. As
part of the evaluation, the total classification time of MosAIc is calculated by adding up the
classification times of the 30 binary classifiers.

As explained in Section 3, the F1 score is the metric used to evaluate the MosAIc
approach. It is a metric calculated with precision and recall, two metrics based on the
true positives, the false positives and the false negatives. It is important to use the F1
score, a metric that does not take the true negatives into account, to evaluate the MosAIc
approach, because in the ideal case, 90% of the results of this experiment should be true
negatives, which would skew the accuracy if calculated differently.

The different F1 scores obtained with this experiment can be found in Table 6. This table
highlights that F1 scores around 0.96 can be achieved combining those 30 binary classifiers
using classical ML techniques. This is the case when using the BDLib or ESC-10 datasets,
but not UrbanSound where the accuracy oddly drops back to the range of the classical
approach. As expected, the cost of combining 30 classifiers is reflected in the classification
time, which significantly increases. Nonetheless, this increment is dominated by the k-NN
ML technique, which demands significantly more time than the other techniques as shown
in previous experiments. The use of a different ML technique than k-NN, with a similar
accuracy but with a lower classification time, would lead to a faster MosAIc approach.

Table 6. Performance evaluation of MosAIc using 10 features.

Datasets Classification Time [ms] F1 Micro F1 Macro F1 Weighted

BDLib 3.249 ± 0.099 0.973 0.932 0.974
ESC-10 6.579 ± 0.057 0.964 0.871 0.959
UrbanSound 24.432 ± 1.029 0.574 0.506 0.572

6.4. Evaluation on an Embedded Platform

A high-end embedded platform, a RPi 4B+, is used to evaluate the different approaches.
The selection of this embedded platform is motivated by the fact that the experiments
performed on a PC can be replicated on this embedded platform without major modifica-
tions. This would not be possible using other embedded platforms since it would demand
the use of proprietary tools, ML support and different ML implementations if using open
source alternatives (e.g., different libraries) or simply not be supported, which is the case
for several classical ML techniques.

The main concern when porting the mentioned approaches are the accuracy and
the execution time. On the one hand, the accuracy is expected not to change, as already
demonstrated in [7]. On the other hand, the overall execution time is expected to increase
significantly. This last parameter is, in fact, crucial for real-time recognition and, partially
relevant in the selection of the audio frame size.
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6.4.1. Evaluation of the Classical Approach on an Embedded Platform

The evaluation of the standalone classical ML techniques for the considered datasets
are summarized in Tables 7–9. The values in bold correspond to the classifiers with the
highest accuracy. As expected, the achieved accuracy has minor differences when compared
to the values obtained using the PC. The classification time on the other hand, is three to
four times higher, mainly due to the limited computing power of the embedded system.

Table 7. F1 scores and classification time using the BDLib dataset with a classical approach and
10 features on a RPi. The solution with the highest F1 score is highlighted.

Datasets Classification Time [ms] F1 Micro F1 Macro F1 Weighted

SVM 0.009 ± 0.001 0.927 0.928 0.928
Naive Bayes 0.064 ± 0.004 0.560 0.542 0.544
k-NN 0.674 ± 0.034 0.981 0.981 0.981
ANN 0.013 ± 0.000 0.931 0.930 0.931
Decision Trees 0.013 ± 0.001 0.499 0.428 0.431

Table 8. F1 scores and classification time using the ESC-10 dataset with a classical approach and
10 features on a RPi. The solution with the highest F1 score is highlighted.

Datasets Classification Time [ms] F1 Micro F1 Macro F1 Weighted

SVM 0.011 ± 0.000 0.836 0.834 0.835
Naive Bayes 0.092 ± 0.043 0.518 0.515 0.516
k-NN 1.526 ± 0.038 0.872 0.870 0.870
ANN 0.014 ± 0.001 0.826 0.825 0.826
Decision Trees 0.006 ± 0.000 0.447 0.383 0.381

Table 9. F1 scores and classification time using the UrbanSound dataset with a classical approach
and 10 features on a RPi. The solution with the highest F1 score is highlighted.

Datasets Classification Time [ms] F1 Micro F1 Macro F1 Weighted

SVM 0.013 ± 0.002 0.619 0.603 0.617
Naive Bayes 0.064 ± 0.023 0.252 0.251 0.250
k-NN 5.538 ± 0.176 0.934 0.935 0.934
ANN 0.015 ± 0.002 0.653 0.629 0.652
Decision Trees 0.003 ± 0.000 0.354 0.210 0.289

6.4.2. Evaluation of the MosAIc Approach on an Embedded Platform

Similarly, the MosAIc approach is also evaluated on the embedded platform. Although
the accuracy is expected to be similar to the values on the PC, the execution time can become
prohibitive when porting the approach to an embedded device. Table 10 shows the accuracy
and classification times obtained repeating the MosAIc approach experiment on the RPi
with ten features. Here again the accuracy remains the same as the one measured on the PC,
while there is an increment in the classification time. However, unlike with the classical ML
standalone, where timings increase three to four times on RPi, the MosAIc classification
time is only two to three times higher.

Table 10. F1 scores and classification times of the different datasets with the MosAIc approach using
10 features on a RPi.

Datasets Classification Time [ms] F1 Micro F1 Macro F1 Weighted

BDLib 8.349 ± 0.008 0.968 0.917 0.969
ESC-10 14.512 ± 0.018 0.961 0.861 0.955
UrbanSound 71.781 ± 1.236 0.575 0.511 0.573
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6.5. Exploiting the Feature Selection

The overall classification time using the MosAIc approach on the embedded device
is significantly high, which can limit the support for real-time sound recognition on such
a platform. One alternative to accelerate the MosAIc approach would be to replace the
k-NN classifier by a faster ML classifier. Although it would reduce the overall time, its
impact would be limited to the classification time. A more ambitious optimization can be
considered. Based on the experimental values depicted in Figure 6, the classification time
is negligible when compared to the feature extraction time. Moreover, it is also reasonable
to expect that the classification time can be reduced if the number of features decreases.

Figure 9 depicts the classification time of the MosAIc approach on the PC and on the
RPi when the number of features is reduced. As is observed, the classification time when
using only seven features drastically decreases. In fact, although the classification time does
not change using the UrbanSound dataset, it becomes four times lower using the BDLib
dataset and seven times lower using ESC-10. Such a time reduction is especially interesting
for the RPi, achieving lower classification time using seven features than running on the
PC using ten features.

Figure 9. Classification time of the MosAIc approach based on the feature sets and the platforms.

Perhaps, the most interesting result is related to the accuracy. Figure 10 shows how
the reduction in the number of features does not lead to accuracy reduction. This fact
applies for all datasets and platforms. The feature evaluation depicted in Figure 4 provides
insights about the reasons. Through the evaluation of the relevance of the features, one can
observe how they do not contribute equally in terms of information gain. This is especially
evident for the feature evaluation done for the UrbanSound dataset. Therefore, when the
less relevant features are discarded, the accuracy does not need to drop necessarily. It is
therefore important to select the most relevant features according to the dataset used to
achieve the highest accuracy while reducing the overall feature and classification time.
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Figure 10. Accuracy (F1 micro score) of the MosAIc approach based on the feature sets and the platforms.

7. Evaluation of Deep Learning for ESR: A Convolutional Neural Network Approach

The deep CNN has experienced advancement through its use in computer vision,
recognition, and in language modeling among other fields. It is proven that the CNN-
based architecture is more efficient than the conventional methods in various classification
tasks [43]. Its use for automatic sound event recognition has lead to very good results in
recent years. Using CNNs for the classification of distinct audible sounds had a remarkable
increase in the last decade [44] and many researchers implemented their sound classification
models by using different techniques on CNNs [45,46]. In order to properly evaluate the
MosAIc approach against the state-of-the-art, a novel lightweight CNN is proposed and
evaluated using the same features for the BDlib, ESC-10 and UrbanSound datasets.

7.1. Description of the Model

Our proposed lightweight CNN model depicted in Figure 11 is designed to use the
same set of features as the MosAIc in order to provide a fair comparison in terms of
accuracy and execution time. Nonetheless, that fact implies the use of Conv1D layers.
Such a Conv1D CNNs in audio processing present one important challenge which is the
fact that the length of the input sample must be fixed while the sound captured from the
environment may have a variable duration. Therefore, it is necessary to adapt a CNN
to be used with audio signals of different lengths. Splitting the audio signal into several
frames of fixed length using a sliding window of appropriate width is a way to circumvent
this constraint imposed by the CNN input layer. In the proposed approach, an audio
frame of variable width is used to refurbish the audio signal to the 1D CNN input layer.
Furthermore, successive audio frames have a 50% of overlapping, which aim is to maximize
the use of information while preserving the frame’s independence.

Figure 11. Architecture and structure of our proposed CNN model.
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In this experiment, the remaining crucial parameters/mechanisms involved are: the
usage of the Adam optimizer, the total number of epochs is 100 for each analysis, the batch
size is 32 uniformly, the L2 norm regularizer (0.001) is used, the Rectified Linear Unit (ReLU)
activation function is used for the first three layers, and the Softmax activation function is
used for the last layer of each model. The characteristics of our proposed CNN architecture
are summarized in Table 11. The architecture is composed of the following layers:

• L1: The first layer contains 12 filters with a kernel size equal to five. The regularizer
L2 norm with a value of 0.001 is used. The activation function utilized is ReLU.

• L2: The second layer contains 28 filters with a kernel size equal to five. The L2 norm
regularizer is also used. The padding for all the feature extraction involves in this
layer is “valid” and ReLU as the activation function.

• L3: The third layer is the 1st dense layer that consists of 30 hidden units with the
ReLU activation function. A dropout rate of 0.5 is used to avoid over-fitting.

• L4: The last layer is the 2nd dense layer. It consists of the output units. These are
equal to the number of classes used in the dataset. The Softmax activation function is
used in the last layer.

Table 11. Architecture of our proposed CNN model and parameter information used in each layer.

Type of Layer Output Shape Number of Parameters

conv1d (Conv1D) (None, 166, 12) 72
conv1d_1 (Conv1D) (None, 162, 28) 1708
dense (Dense) (None, 162, 30) 870
dropout (Dropout) (None, 162, 30) 0
flatten (Flatten) (None, 4860) 0
dense_1 (Dense) (None, 10) 48,610

Total : 51,260
Trainable : 51,260
Non-trainable : 0

7.2. State-of-the-Art CNNs for ESR

Several DL approaches for ESR have been proposed in recent years. The performance
of the proposed method is compared against these state-of-the-art solutions for the same
dataset. Since most recent work has been evaluated on the ESC-10 dataset, this comparison
includes results obtained for this dataset. Nonetheless, the results for the BDLib and the
UrbanSound datasets are also included in the following section.

The classification accuracy of our proposed CNN model compared with the best
recent solutions from the literature is shown in Table 12. The highest accuracy is achieved
by the model proposed in [44], which presents a CNN without max-pooling function
and using Log-Mel audio feature extraction (CNN-Model-2 (No-maxpooling) + Log-Mel
+ augmentation). In [47], the application of the Masked Conditional Neural Networks
for sound classification (MCLNN) to the problem of music genre classification, and ESR
is presented. Both proposed models achieve high accuracy, but they are large models
demanding prohibitive memory requirements for embedded platforms. Their inference
time is also expected to be higher than the proposed solution. Slightly smaller models
are proposed in [8], where the authors present a compact and effective model capable of
characterizing different urban sounds based on deep and handcrafted features combining
two models.

The proposed model improves the classification accuracy to 90.71% with only 51 K
parameters, around 60 times lower than the number of parameters other methods. Such a
model is expected to be not only significantly faster than the state-of-the-art solutions but
also more suitable for embedded devices due to its lower memory demand.
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Table 12. Recent CNNs-based sound classifiers evaluated with ESC-10 dataset.

References Year Accuracy [%] Number of Parameters

[44] 2020 94.94 3 M
[47] 2020 85.50 3 M
[8] 2021 83.50 1.48 M
[8] 2021 80.25 1.48 M

Proposed 2021 90.71 51 K

7.3. Experimental Results

The proposed model for environmental sound classification is evaluated with a K-fold
cross-validation scheme (K = 5) on the ESC-10, BDLib and UrbanSound datasets. The single
training fold is used as the validation set for parameter tuning, following the approach
in [48]. A cross validation is performed five times over the three datasets to evaluate the
CNN’s performance. The results of this performance evaluation are shown in Table 13. The
classification time of the proposed CNN demands is relatively low, ranging from 0.156 ms
to 0.413 ms depending on the dataset. The F1 scores is relatively high for the BDLiB dataset
and the ESC-10 dataset, while lower for the Sound dataset. These results are consistent
with the accuracies measured using classical ML in the previous section.

Table 13. Evaluation of our proposed CNN model for the different datasets.

Datasets Classification Time [ms] F1 Micro F1 Macro F1 Weighted

BDLiB 0.413 ± 0.003 0.972 0.971 0.971
ESC-10 0.254 ± 0.004 0.907 0.907 0.907
UrbanSound 0.156 ± 0.001 0.830 0.837 0.830

The graphs in Figure 12 show the accuracy (F1 micro) and validation values according
to the number of epochs in the training phase of the CNN model. The accuracy of ESC-10 is
illustrated in Figure 12a, where after the 30th epoch, the model at the training stage reaches
the optimum performance approximately. However, the accuracy of BDLiB as shown in
Figure 12b reaches the optimum performance after the 50th epoch and the Accuracy of
UrbanSound presented in Figure 12c does not reach these optimal performances until the
80th epoch.

(a) ESC-10 (b) BDLiB (c) UrbanSound

Figure 12. Evaluation of the accuracy (F1 micro) for all datasets using our proposed CNN model.

7.4. Experimental Results on an Embedded Platform

For the evaluation on the embedded platform, the CNN needs to be converted to
TensorFlow Lite [49], a framework designed to deploy ML algorithms on embedded
devices. TensorFlow Lite (TFLite) converts an already trained TensorFlow model to a more
lightweight version, suitable for embedded deployment. Table 14 shows the performance
of the full-precision TFLite CNN on the RPi 4B+. Notice that the accuracy does not
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change respect to the measurements on the PC. An interesting result is the inference time.
Although it would be expected to increase due to being executed on a limited embedded
device, the experimental measurements show that the inference time slightly change. This
is justified by the fact that high-end embedded devices such as the RPi 4B+ have been
optimized in the last years to support DL-based models. As a result, there is no time or
accuracy cost when porting CNN models to such an embedded devices.

Table 14. RPi with TFLite without quantization.

Datasets Inference Time [ms] F1 Micro F1 Macro F1 Weighted

BDLib 0.381 0.976 0.976 0.976
ESC-10 0.386 0.911 0.905 0.911
UrbanSound 0.369 0.836 0.838 0.837

The converted model can be a full-precision, 32-bit floating point model, or it can
be quantized to 8-bit integers using post-training quantization. In fact, many limited
embedded devices or hardware accelerators (e.g., TensorFlow Processing Units) only sup-
port quantized models. Such a quantized models have the advantage to be smaller and
potentially faster than their non-quantized counterparts. However, during the quantiza-
tion process, some information is inevitably lost that can influence the resulting accuracy.
Table 15 shows the performance when our proposed model is quantized to 8-bit inte-
gers. Although there is a minor accuracy drop after quantization, the speedup is a minor
acceleration compared to the non-quantized TFLite models.

Table 15. RPi with TFLite and post training quantization (using 8bit).

Datasets Inference Time [ms] F1 Micro F1 Macro F1 Weighted

BDLib 0.275 0.970 0.970 0.970
ESC-10 0.275 0.909 0.903 0.909
UrbanSound 0.275 0.830 0.831 0.831

8. Discussion

The MosAIc approach demonstrates how the combination of different classical classi-
fiers can lead to high accuracy for environmental sound classification when compared to an
equivalent DL approach such as the one proposed in Section 7. Figure 13 summarizes the
achievable accuracies for both approaches for two different platforms. Notice the strong
dependence on the dataset. While the MosAIc approach achieves the highest accuracy for
ESC-10 dataset, the novel lightweight CNN outperforms the classical ML approach for the
UrbanSound dataset. Nonetheless, both perform similarly for the BDLib dataset.

The cost to achieve such an accuracy with classical ML is reflected in the classification
time. Figure 14 depicts the classification time and the inference time for the classical
ML and the DL approach respectively. The time cost of the MosAIc approach to achieve
such an accuracy is significantly high, especially when considering embedded platforms,
reaching up to 28 times higher than our proposed lightweight CNN. Besides such a timing
difference, the overall execution time for audio recognition, the feature extraction time plus
the classification or the inference time, is still dominated by the feature extraction time
as shown in Figure 6. The lowest feature extraction time is several times higher than the
maximum MosAIc classification time.
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Figure 13. Accuracy (F1 micro score) of the MosAIc approach vs. our proposed lightweight CNN
based on the feature sets and the platforms.

The overall execution time has a direct impact in the selection of the audio frame
size when windowing. Assuming that the execution of the audio recognition is done in
streaming and an overlap of 50% between each audio frame due to windowing, based on
the experimental timings, the feature extraction time defines the minimum windowing. In
fact, based on the timings in Figures 6 and 14, the feature extraction time for ten features on
the RPi is higher than an audio frame of 500 ms, which is the condition when considering
audio frames as short as 1 s. As a result, short audio frame sizes are defined by the feature
extraction time and the selected platform. Nonetheless, from the embedded perspective,
larger audio frame size can lead to power savings since the feature extraction time and the
classification or inference time would be lower than the audio frame size, enabling the use
of power saving modes present on embedded devices.

Figure 14. Classification time of the MosAIc approach vs. Inference time of our proposed lightweight
CNN based on the feature sets and the platforms.
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9. Conclusions

The proposed MosAIc approach demonstrates that classical machine learning can
be competitive in terms of accuracy for environmental sound recognition, and is capable
of outperforming DL approaches for certain datasets. The cost, however, is a higher
classification time. Although such a time cost is affordable on non-embedded platforms, it
drastically scales when considering computational constraints for devices such as a RPi.
As a solution, our lightweight CNN model drastically reduces the number of parameters of
the model, with an inference time in orders of microseconds and is suitable for embedded
devices due to its resources demand. Nonetheless, our experiments have shown that the
overall execution time for the audio classification is dominated by the feature extraction
time, which can determine the length of the audio frame when applying windowing. As
a result, the classification of the inference time of the classical ML approach or the DL
approach becomes negligible when compared to the feature extraction time.
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