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Abstract: This paper presents research on 3D scanning by taking advantage of a camera array
consisting of up to five adjacent cameras. Such an array makes it possible to make a disparity map
with a higher precision than a stereo camera, however it preserves the advantages of a stereo camera
such as a possibility to operate in wide range of distances and in highly illuminated areas. In an
outdoor environment, the array is a competitive alternative to other 3D imaging equipment such
as Structured-light 3D scanners or Light Detection and Ranging (LIDAR). The considered kinds
of arrays are called Equal Baseline Camera Array (EBCA). This paper presents a novel approach
to calibrating the array based on the use of self-calibration methods. This paper also introduces a
testbed which makes it possible to develop new algorithms for obtaining 3D data from images taken
by the array. The testbed was released under open-source. Moreover, this paper shows new results
of using these arrays with different stereo matching algorithms including an algorithm based on a
convolutional neural network and deep learning technology.

Keywords: stereo camera; camera array; depth sensor; disparity map; depth map; 3D vision; camera
array calibration

1. Introduction

This paper presents research on a camera array which consists of a central camera and
up to four side cameras equally distant from a central one. Such an array has a function
of a 3D vision system. The array was called Equal Baseline Camera Array (EBCA). It is
derived from a stereo camera [1,2].

In general, researchers improve the quality of 3D data obtained from a stereo camera by
designing more precise algorithms for processing pairs of images. The research presented
in this paper is focused on improving 3D vision by taking advantage of a greater number
of cameras. EBCA preserves benefits of a stereo camera while it provides a higher quality
of data. The comparison of the considered array with other 3D imaging techniques such as
structured light 3D scanning is presented in Section 2.1.

The main application of the research presented in this paper is the development of 3D
vision systems for autonomous robots operating in outdoor environments. The research is
derived from agricultural applications in which 3D vision sensors were applied to robotic
fruit harvesting [2–5]. However, the array described in this paper can also be used with
other kinds of autonomous machines including self-driving cars or unmanned underwater
vehicles (UUVs). Section 7 lists applications in which the array can be used.

The paper also presents a method for calibrating cameras in the array including
its intrinsic and extrinsic parameters [6–8]. We propose a hybrid method combining
self-calibration techniques with a calibration based on taking images of a predefined
patterns. The method is adjusted to distinctive features of the array as presented in
Sections 2.4, 4 and 6.
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Another original contribution of this paper is the description of the testbed which was
released for testing stereo matching algorithms intended to use with the considered array.
The testbed was released under an open-source (https://github.com/alkaczma/ebca (ac-
cessed on 9 August 2021)). It is suitable for analyzing the improvement in the quality of
results with regard to the number of side cameras in the array in the range between one and
four. The testbed presented in this paper is inspired by well-known testbeds for evaluating
stereo matching algorithms designed for obtaining disparity maps and depth maps using
stereo cameras. The most popular this kind of testbeds are Middlebury Stereo Evaluation
(http://vision.middlebury.edu/stereo/ (accessed on 9 August 2021)) [9,10] and KITTI Vi-
sion Benchmark (http://www.cvlibs.net/datasets/kitti/ (accessed on 9 August 2021)) [11].
In general, there is a lack of openly available testbeds for algorithms using camera arrays.
This paper addresses this field of research. This topic is covered in Sections 2.2 and 5.

Moreover, the paper describes the usage of Exception Excluding Merging Method
(EEMM) with the proposed testbed [3]. This method was designed for obtaining 3D data on
the basis of images taken by EBCA. Experiments presented in the paper verify the effects
of changing values of parameters which are used in the method. This paper also shows
how the quality of results depends on the number of cameras included in the camera array
when the EEMM method is used. Section 6 describes tests of the method with four stereo
matching algorithms including the algorithm which takes advantage of convolutional
neural network (CNN) [12].

The original research presented in this paper includes the following. (1) The design
and experiments with the calibration method for EBCA. (2) The description of the testbed
designed for testing 3D imaging algorithms using the array. (3) Experiments with the
EEMM method considering the selection of its parameters and the influence of the number
of cameras on the quality of results. (4) Results of using Equal Baseline Camera Array with
a stereo matching algorithm based on convolutional neural network.

2. Related Work

There is a large variety of technologies designed for 3D scanning—a recent compar-
ison can be found in [13] and locating objects in 3D space. However, an appropriately
calibrated camera array has remarkable advantages in comparison to alternative methods
for acquiring 3D data.

2.1. 3D Vision Technologies

A 3D data acquisition is possible with the use of the following technologies:

• Structured-light 3D scanners scan a 3D shape by emitting precisely defined light
patters such as stripes and recording distortions of light on objects [14].

• Light Detection and Ranging (LIDAR) measures distances to a series of distant points
by aiming a laser in different directions [15].

• Time-of-flight cameras (TOF) operate on a similar principle as LIDAR however instead
of redirecting a measuring laser the entire measurement of distances is performed
using a single light beam [16].

• Structure from motion and multi-view stereo technologies record a 3D shape of an
object by analyzing numerous images taken from different points of view located
around the object [17] or by moving the object in front of a camera [18].

• Stereo cameras resemble 3D imaging with the use of a pair of eyes. Stereo cameras
record relative differences between locations of objects in images taken from two
constituent cameras. The extent of these disparities depends on distances between
a stereo camera and objects located in the field of view. The closer the object is,
the greater is the disparity [3].

• Camera arrays operate on similar principles as stereo cameras, however it takes
advantage of a greater number of cameras [19,20].

3D imaging technologies have different features. None of these methods is the most
suitable one in all circumstances. This paper contributes to development of methods for

https://github.com/alkaczma/ebca
http://vision.middlebury.edu/stereo/
http://www.cvlibs.net/datasets/kitti/
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acquiring 3D data on the basis of a set of images obtained from a camera array. As far
as camera based systems are concerned there are applications in which this equipment is
especially valuable. Main advantages of a camera array are the following.

• It can be used in highly illuminated areas. It is not possible to use structured-light 3D
scanners in intensive natural light because external light sources interfere with the
measurement performed by this kind of a sensor.

• An array provides dense data concerning distances to parts of objects visible in the
3D space. In contrast to LIDARs and TOF cameras which can provide only sparse
depth maps.

• The technology of camera arrays can be flexibly used for measuring both small and
large distances depending on a size of used cameras and types of their lens. Such a
functionality is very limited when other kinds of 3D imaging devices are used.

• 3D imaging with the use of array does not require relocating the imaging device to
different positions. It is necessary when the technology of structure from motion or
multi-view stereo (MVS) is used.

• An array is a compact device which can be inexpensive if low-cost cameras are used.
• The weight of an array constructed from small-sized cameras is low, therefore it can

be mounted on moving parts of an autonomous robot (e.g., robotic arms) without
putting much load on servos or other mechanisms driving the robot.

These advantages apply to both arrays and stereo cameras. The major disadvantage of
a stereo camera is such that the quality of its results is lower than the quality obtained from
other 3D imaging devices. This problem is reduced if camera arrays is used, in particular
the kind of an array described in this paper (Section 3).

Another disadvantage of camera-based systems is such that it is time-consuming to
process images from cameras in order to retrieve 3D data. This problem is even more
serious in the case of using an array, as the number of cameras is greater. However, taking
into account a rising speed of computer devices a greater number of computations is a
reasonable cost of improving the quality of 3D imaging. A disadvantage of an array in
comparison to a stereo camera is also the price of a greater number of constituent cameras.
However, as in case of greater computational requirements, it is not a significant cost of
obtaining a higher quality of 3D data.

Camera Arrays

Wang et al. presented a study on camera arrays and their applications [21]. They
described using arrays both for depth recovery and for other applications such panoramic
imaging. Manta presented a survey on preparing 3D videos on the basis of multiple
cameras [22]. The usage of camera arrays for providing 3D vision in robotic applications
was discussed by Nalpantidis and Gasteratos [23]. Camera arrays are widely used in
astronomy for space observations. Ackermann et al. wrote a survey on this subject [24].

Wilburn et al. performed a study at Stanford University on constructing arrays from a
large number of cameras. They built an array of 100 cameras in the 10 × 10 configuration
and they applied it for making high quality images and videos [20]. Another significant
camera array called PiCam was constructed by Venkataraman et al [25]. It was an ultra-thin
array consisting of 16 cameras distributed uniformly over a square grid. The size of the
array was similar to a size of a coin. The paper describing PiCam contains also an in-depth
review on camera arrays usage. Okutomi and Kanade are the authors of a very influential
research paper concerning arrays in which cameras are placed along a straight line [19].
Ge et al. proposed the usage of a sliding camera resembling a linear camera array [26].

A construction with a moving camera was also proposed by Xiao, Daneshpanah and
Bahram Javidi [27]. They constructed a synthetic aperture integral imaging (SAII) by using
a camera moving in two dimensions, making it possible to acquire images as if a camera
array was used. Such a technique cannot be used for even slowly moving objects because
the scene would be changing while subsequent images are taken. Authors applied their
method for detecting and removing occlusions of objects in images.



Appl. Sci. 2021, 11, 8464 4 of 26

Arrays containing only a few cameras are also constructed and used. Such arrays can
be used for 3D imaging instead of stereo cameras without a substantial increase in the size
of data which need to be processed due to the increase in the number of images. Park and
Inoue proposed the usage of a five-camera array [1]. The array contained a central camera
and side cameras. This kind of an array is also considered in this paper, and it is further
described in Section 3. Hensler described a similar kind of an array which was constructed
from four cameras with three side cameras placed on vertices of an isosceles triangle and a
central camera located in the middle [28].

Ayache and Lustman wrote in 1991 a highly influential paper regarding trinocular
vision [29]. They used the array for identifying contours visible in images and building a
three-dimensional description of the environment. The performance of trinocular vision
systems were also researched by Mulligan, Isler and Daniilidis [30,31]. Andersen et al. also
used a trinocular stereo vision for navigating a robot [32]. Williamson and Thorpe applied
trinocular vision to detect obstacles on highways [33].

Wang Xiao and Javidi performed research on using an array with unknown poses
of cameras placed on a flexible surface [34]. The major advantage of this solution is the
ease of construction. However, in case of such an array, there is also a necessity to identify
locations of cameras. This process is performed on the basis of images for which a disparity
map is obtained. When an array with predefined poses of cameras is used, then the step of
resolving cameras locations is completed before using the array in the target environment.
It speeds up the process of acquiring 3D data. Moreover, predefining locations makes it
possible to place cameras in the most advantageous positions providing the highest quality
of data.

2.2. Testbeds

Testbeds for testing 3D vision algorithms used with stereo cameras are widely used
for improving the stereo vision technology. As mentioned in the introduction, Middlebury
Stereo Evaluation is one of the most important sources of data for testing stereo vision
algorithms [10,35]. As of 6 August 2021, there are in total 71 datasets in the testbed. Each
dataset consists of a pair of images and ground truth reflecting real values of disparities
for all objects visible in images. The testbed was prepared by Middlebury College and
Microsoft Research in cooperation with US National Science Foundation. Apart from test
datasets, the project releases a ranking of stereo matching algorithms. The current, third
version of the ranking evaluates over 100 algorithms.

KITTI Vision Benchmark Suite is another evaluation system for stereo matching
algorithms [36]. Datasets included in the benchmark consist of images taken from a stereo
camera mounted on a car moving along streets. The testbed is foremost intended for
selecting algorithms which are the most suitable for obtaining 3D data in autonomous
cars. KITTI presents also a ranking of stereo matching algorithms. As of 6 August 2021,
the ranking considers 316 algorithms.

There is also a test data set called NYU Depth Dataset V2 (https://cs.nyu.edu/
silberman/datasets/nyu_depth_v2.html (accessed on 9 August 2021)) [37]. The set con-
tains images of indoor sites. Apart from testing the quality of depth estimation results the
set was prepared for evaluating image segmentation algorithms.

Moreover, the evaluation of stereo matching algorithms is possible with the use of
ETH3D Benchmark (https://www.eth3d.net/ (accessed on 9 August 2021)) [38]. The bench-
mark provides image pairs taken in different sites including indoor and outdoor areas.
The benchmark also presents the ranking of matching methods.

As far as test datasets for camera arrays are concerned, this kind of resources is only
provided by the ETH3D Benchmark in a form of videos made with the use of a camera
array consisting of 4 cameras placed along a line (https://www.eth3d.net/ (accessed on 9
August 2021)) [38]. The rig was constructed from two stereo cameras placed side by side.
Authors of ETH3D used the rig to prepare 10 videos of different locations. A sample set

https://cs.nyu.edu/silberman/datasets/nyu_depth_v2.html
https://cs.nyu.edu/silberman/datasets/nyu_depth_v2.html
https://www.eth3d.net/
https://www.eth3d.net/
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of four images taken with the use of the rig is presented in Figure 1. ETH3D is the only
testbed currently available for testing algorithms taking advantage of camera arrays.

Figure 1. A sample set of images taken by a four camera rig (two stereo cameras placed side by side)
used in ETH3D Benchmark, (a) the left image from the left stereo camera, (b) the right image from
the left stereo camera, (c) the left image from the right stereo camera, (d) the right image from the
right stereo camera

There are also benchmarks for testing algorithms which obtain 3D scans from either a
video recorded by moving camera or a set of images taken by a single camera from different
points of view (multi-view stereo). Developing algorithms for these and other kinds of
image processing is a subject of Robust Vision Challenge (http://www.robustvision.net/
(accessed on 9 August 2021)). The challenge is supported by leading companies such as
Intel, Google, Apple, Bosch and Daimler. However, neither the challenge nor other sources
of data for 3D vision make it possible to perform tests with camera arrays presented in
this paper.

2.3. Stereo Matching Algorithms

Tests presented in this paper considered four stereo matching algorithms considered in
Middlebury and KITTI rankings. These are the following algorithms: Efficient Large-scale
Stereo Matching (ELAS) [39], Stereo Semi-Global Block Matching (StereoSGBM) [40,41],
Graph Cut with Expansion Moves [42] and MC-CNN [12]. Open-source implementations
of these algorithms were used in the experiments.

ELAS was designed for real-time processing of high-resolution images from stereo
cameras [39]. The algorithm is intended for use with autonomous cars. StereoSGBM is the
main algorithm provided with the OpenCV library which is one of the most important
programming libraries in the field of image processing [41]. The GC Expansion algorithm
was also included in experiments because the previous research on EBCA showed that
adapting this algorithm to EBCA results in obtaining the best quality of disparity maps.
The implementation of GC Expansion is provided by the Middlebury Stereo Evaluation
project [9]. GC Expansion is a kind of a stereo matching algorithm which takes advantage
of global optimization using Markov Random Fields (MRF) [43].

There are also stereo matching algorithms derived from deep learning technology
which proved to be successful in solving a variety of algorithmic problems [44]. Zbontar
and LeCun prepared an influential paper describing their stereo matching algorithm called
MC-CNN which takes advantage of convolutional neural networks (CNN) [12]. They
trained the network using stereo images and ground truth provided by the Middlebury
Stereo Vision project and the KITTI benchmark. These authors used two kinds of network
architecture. There was a fast network particularly dedicated for obtaining results in real-
time and an accurate network focused on maximizing the quality of results. Each of these

http://www.robustvision.net/
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networks was trained with three different input data sets. These were training data sets
from images released in the KITTI benchmark in 2012, another set was based on images
from the KITTI set released in 2015 and the third data set was based on images available in
Middlebury project. As a result Zbontar and LeCun obtained six trained networks marked
as: KITTI 2012 fast, KITTI 2012 accurate, KITTI 2015 fast, KITTI 2015 accurate, Middlebury
fast and Middlebury accurate. Moreover, their algorithm was released under open-source
license making it possible for other researchers to rerun their experiments.

2.4. Calibration Methods

Camera calibration is the process of estimating the parameters of pinhole camera
model, which ideally represents a camera taking an image. Here, one distinguishes intrinsic
and extrinsic camera parameters [6]; for multi-view imaging, bundle adjustment [7,45] is
applied for an image rectification.

2.4.1. The Math behind openCV’s Calibration

The notation complies with the camera model introduced in OpenCV Toolbox [41] and
builds on the openCV toolbox. The intrinsic camera model has 9 degrees of freedom: two
focal lengths fx, fy; two principal point coordinates cx, cy; three radial distortion parameters
k1, k2, k3; and two tangential distortion coefficients p1, p2, which comprise the distortion
parameters d = (k1, k2, p1, p2, k3). This vector d encodes the influence of the camera lens.
The most evident this kind of a distortion is such that straight edges of real objects are
depicted as bows in images. It is particularly visible when wide angle lens are used. These
non-linear parameters are part of the geometric calibration, but will not be discussed
further here, cf. [41]

The basic calibration transformation is presented as

s

x
y
w


︸︷︷ ︸

p

=

 fx 0 cx
0 fy cy
0 0 1


︸ ︷︷ ︸

A

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


︸ ︷︷ ︸

[R|t]


Xw
Yw
Zw
1

 (1)

where A is the intrinsic matrix encoding 4 of the 9 intrinsic parameters, and R and t are
rotation and translation matrix, respectively. There are 6 degrees of freedom for extrinsic
camera parameters [R|t], which comprise position and rotation of the camera in a global
coordinate system. NB, this matrix has 12 entries, but only 6 d.o.f., as the parameters rij
denote a rotation. s is a scaling factor. This form can be abbreviated as

sp = A[R|t]Pw (2)

It transforms every uncalibrated point Pw to new coordinates p in a calibrated image
with reduced distortions. The modification of this equation for the purpose of calibrating
EBCA is presented in Section 4.1. In practice, one takes a pattern—openCV works with
different types, but the most common is a checkerboard pattern that needs to be fully
visible to the camera and presents it under different angles to the camera. openCV rou-
tines are used to extract the points of the pattern (say, the corners of the checkerboard).
Furthermore, the user needs to input the dimensions of the checkerboard array (e.g., 6 by
8) and the distances between corners in some unit (e.g., mm) to the calibration algorithms,
which outputs matrix A and for each image the calibration pattern the rotation R and
translation t. This information (together with the computed distortion parameters d) allow
for undistorting the images acquired by this camera into rectified views.

2.4.2. AIT Pattern vs. openCV’s Checkerboard

As a first step in every calibration method, a calibration target is presented in front of
a camera and images of this target are acquired with every camera.
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In order to facilitate better quality calibration with fewer acquisitions of the calibra-
tion target, the authors of [46] have developed a new central marker consisting of three
asymmetric dots printed on an off-the-shelf high precision regular dot pattern calibration
target (see Figure 2).

The main advantage of a calibration target with such a central element is that its
markers may fill the entire field of view of the camera as long as the central element is
readable. Moreover, this central marker is designed to be robust and easy to recognize
while providing information about image mirroring.

In contrast, a typical checkerboard pattern is reflection symmetric, thus no information
about mirroring is available. Furthermore, the openCV algorithm requires that the whole
pattern is visible and that the user enters the dimensions of the board. In case of several
cameras looking at the same scene such as the EBCA, it is particularly useful to have a
pattern where only parts of the pattern need to be visible.

Figure 2. AIT’s dot pattern calibration target with 3-dot central element (left: abstract representation,
right: actual acquisition with one of EBCA’s caneras). Note that this pattern is the smallest possible
asymmetric configuration on a regular grid and three distinct marks (the different color is for
illustration only) suffice to estimate an affine transformation, which approximates the more general
perspective transformation needed to unwarp the image, c.f. [46] for details.

AIT’s pattern (see Figure 2) can been used in different sizes and for different resolu-
tions. The central element (the three blue dots in Figure 2) should always be visible as well
as one surrounding row of black dots, making 5 by 6 dots (as shown in the illustration)
the smallest configuration for a stable detection. As a minimum requirement, the smaller
dots should be resolved such that their diameter is at least 25 pixels wide, therefore the
maximum number of black dots is only limited by the camera’s number of pixels. The
distance between two dots should be at least a single dot’s diameter to allow for a stable
distinction between neighboring dots.

2.4.3. Other Patterns

Other calibrating patterns have also been developed. Tao et al. proposed a pat-
tern based on phase-shifting wedge grating (PWG) arrays which resembled annuluses in
grayscale with varying light intensity [47]. They developed a feature detection algorithm
for identifying centers of annuluses. They also applied a liquid crystal display for showing
the pattern instead of a printed board.

2.4.4. Multi-Camera Calibration

Algorithms for performing calibration on a set of many cameras were proposed by
Kang and Ho [48], Yang et al. [49] and Sun [50]. As far as calibration of stereo cameras
is concerned there is a commonly used technique available in the OpenCV library [41].
OpenCV provides a calibration based on the Hartley’s rectification method [51]. This
method was also adapted by authors of this paper for performing calibration on the
EBCA array.

As opposed to pairwise stereo calibration like the standard openCV method, which
usually requires one central camera to which all other cameras are calibrated; the work in [8]
showed a multi-camera array calibration pipeline that fulfills all associated requirements.
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The bundle adjustment [7] is a nonlinear method for refining extrinsic and intrinsic
camera parameters, as well as the structure of the scene. For a set of n cameras with index i,
it is characterized by minimizing the reprojection error by a standard least-squares approach

E(C, P) =
n

∑
i=1

∑
w

dist(piw, Ci(Pw)))
2, (3)

where Ci(Pw) = C(Ai, Ti, di, Pw) is the reprojected point as defined in Equation (2), i.e.,
the image of a point Pw as observed by the i-th camera, which depends on the intrinsic
matrix Ai, the camera pose Ti and the distortion parameters di. Furthermore, piw is the
corresponding detected point of the calibration pattern and dist(piw, Ci) is the point’s
reprojection error. For the details on this approach, please refer to the work in [8], where it
is shown that the minimization of Equation (3) yields better reprojection errors and thus a
higher 3D reconstruction quality than standard pairwise stereo approaches.

Bundle adjustment is designed for retrieving camera poses for the purpose of process-
ing images with the use of multi-view stereo or structure from motion methods described
in Section 2.1 [7]. Similarly as in camera calibration and rectification methods, in bundle
adjustment points representing the same parts of objects are identified on different images.
The identification of corresponding points is based on descriptors such as SIFT.

However, bundle adjustment has a different application than stereo camera calibration
and rectification, because bundle adjustment is foremost performed to identify in a common
3D space camera poses from which images were taken. It is used when images are taken
from different points of view located around viewed object and there is no need to make
cameras parallel to each other. In the MVS technology, there is also a problem of taking
images from proper positions. Hosseininaveh et al. addressed this issue in a case in
which the number of images taken for the purpose of processing them using MVS is
redundant [52]. They proposed a method for selecting suitable images.

Bundle adjustment generates some error in estimating camera poses in 3D space. This
error needs to be considered in relation to distances between cameras. The impact of the
error is not critical when cameras are not adjacent to each other. However, in case of using
adjacent cameras such as those in a stereo camera it is crucial to perform calibration with
higher precision using predefined patterns such as chessboards.

Stereo camera and camera array calibration is dedicated not only to a case when
cameras are located close to each other, but also they are aimed at the same direction and
there is a selected reference camera which is a point of view of the entire set. The purpose
of stereo camera calibration and rectification is to transform 2D images in order to reduce as
closely as possible any differences from the ideal case in which camera are parallel to each
other without any inaccuracy. Stereo cameras and camera arrays has a function of depth
camera. Such devices are used when it is hard or even impossible to take images from
around an object in order to retrieve its 3D structure. Stereo camera calibration converts 2D
images so that they are sufficient for processing with the use of stereo matching algorithms.
Bundle adjustment operates directly on 3D space. Disparity maps obtained from stereo
matching algorithms can be converted to distances between a reference camera and objects
visible in images [19]. The quality of a resulting depth map depends on the quality of
obtained disparity maps.

2.5. Self-Calibration

Another approach to reducing distortions in images is based on self-calibration also
called autocalibration. Self-calibration results in rectifying images without the use of any
predefined, exemplary pattern. Images are transformed only on the basis of their content.
Self-calibration is performed in stereo cameras mainly to reduce extrinsic distortions caused
by the fact that side camera is aimed at slightly different direction than a reference one and
side camera may be rotated with respect to a reference one.

Algorithms for performing self-calibration are based on features extraction and finding
the same keypoints in both images. One of the most well-known algorithms for identifying



Appl. Sci. 2021, 11, 8464 9 of 26

keypoints is Scale-invariant feature transform (SIFT) [53]. This algorithm was used for self-
calibrating stereo cameras by Liu et al. [54]. SIFT was a base for developing commonly used
Speeded up robust features (SURF) algorithm [55]. However, other methods for identifying
keypoints are also used for performing self-calibration of stereo cameras. Boukamcha, Atr
andSmach compared seven techniques for features extraction: SIFT, SURF, BRISK, FAST,
FREAK, MinEigen and MSERF [56].

A vast amount of research regarding calibration and autocalibration is focused on
calibrating stereo cameras and camera rigs for the purpose of using them with autonomous
cars. Mentzer et al. applied for this purpose A-KAZE-feature extraction [57]. Carrera,
Angeli and Davison used feature SURT extraction technique for calibrating multi-camera
rig [58]. Heng et al. applied a similar approach for the rig mounted on a car [59].

3. Equal Baseline Camera Array

The array described in this paper is called Equal Baseline Camera Array (EBCA) [1,2].
In previous papers the author of this paper called it Equal Baseline Multiple Camera Set
(EBMCS), however the name was changed because the current one is more adequate [3–5].
A real camera set mounted in the form of Equal Baseline Camera Array (EBCA) is presented
in Figure 3. The figure presents the set consisting of MS LifeCam Studio cameras with the
1080p HD sensor.

Figure 3. The camera set consisting of MS LifeCam Studio mounted in the form of Equal Baseline
Camera Array.

Park and Inoue were the first to research the possibilities of using a camera set arranged
in the form of Equal Baseline Camera Array with five cameras [1]. Research concerning
such a set was also conducted by Fehrman and McGough who were in possession of a larger
camera array but they selected from their array a five camera subset [60,61]. The author of
this paper is further developing this technology [2–5,62].

EBCA consists of up to five cameras placed in such a way that there is a central camera
and up to four side cameras. The distance between every side camera and a central camera
is the same. Such a distance is called a baseline. In real devices there are some inaccuracies
causing that baselines are not equal to each other. However, distortions occurring in images
caused by these imperfections are corrected in the calibration process. Side cameras are
placed on opposite sides of a central camera in vertical and horizontal dimensions.

The set with five cameras has a function of combined four stereo cameras created by a
central camera paired with different side cameras. These stereo cameras will be marked
with C1 (right pair), C2 (up pair), C3 (left pair), and C4 (down pair).

The central camera is a reference one in each considered pair of cameras. Algorithms
processing images from stereo cameras distinguish between a reference camera or a side
one. A reference camera is a point of view of a stereo camera. Side cameras are used to
acquire disparity maps for points visible from the reference camera.

In EBCA, every considered stereo camera shares the same reference camera which is
the central camera in the set. It is an important benefit of this kind of a camera set because
3D data acquired from each constituent stereo cameras can be easily merged together in
order to acquire data which is more precise than those based on a single stereo camera.
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EBCA resembles a linear camera array. However, in general, pairs of cameras which
can be selected from a linear stereo array may have a different reference camera or differ in
sides of baselines. The problem with inequality of baselines is such that it influences the
disparity. The increase in the size of a baseline cause that disparities became greater. It is
more problematic to merge data from stereo cameras with different baselines. Okutomi
and Kanade addressed this problem which is particularly significant in leaner camera
arrays [19]. Moreover, stereo cameras selected from a leaner camera array may have
different reference cameras. The problem with merging data from such stereo cameras is
also complicated because of the necessity to unify points of view of camera pairs. This
problem does not occur when EBCA is used.

3.1. Exceptions Excluding Merging Method

This paper presents also results of new research on modifying parameters used in
Exceptions Excluding Merging Method and applying the method to arrays with different
number of cameras. The EEMM method was designed by the author of this paper with the
purpose of improving the quality of disparity maps by taking advantage of EBCA instead
of using a single stereo camera. The research presented in [2,3] shows that the method
fulfills its requirements.

EEMM is based on eliminating values of disparities which deviate from other values
provided by stereo cameras included in EBCA. Every point of a disparity map represents
either a value of a disparity or a value indicating that the disparity is unknown. There are
stereo matching algorithms which obtain disparities for all points of a map. There are also
algorithms which provide information that it was not possible to determine disparities in
some points. Therefore, when N disparity maps are merged, then the number of disparities
used for calculating each resulting disparity is in the range between zero and N. EEMM
differently calculates disparities depending on the number of constituent values.

Details of the algorithm are described in [3]. The results of the method depends on
two parameters Q and B which are considered in the experiments presented in this paper.
In case of having two disparity maps with a value in point, results of the EEMM method
depends on a parameter Q. The existence of three disparities in merged disparity maps
cause that the parameter B is used. The original version of EEMM required that B = Q/2.

The previous version of the algorithm presented in [3] was designed for an array of
exactly 5 cameras, i.e., one central camera and four side cameras. In this paper we propose
a version of this algorithm for arrays consisting of only two or three side cameras. For some
applications, it could be advisable to use less than five cameras and the aim of this research
is to show the extent of improvement with respect to the number of used cameras.

Another original results covered by this paper is the problem of setting parameters Q
and B. This paper show results of a generalized version of the algorithm in which B 6= Q/2
i.e., parameters are set independently from each other. In some applications it can be
necessary to set parameters in such a way that the error rate of disparity maps is lower in
exchange for a greater size of areas in which disparity is undetermined. In other application
it may by crucial to keep the area of undetermined disparities are low as possible. It can be
controlled with the use of parameters Q and B.

4. Calibration of the Camera Array

Methods of calibrating and rectifying images described in Section 2.4 do not com-
pletely cover transformations which need to be performed in order to calibrate and rectify
EBCA. Moreover, techniques based on bundle adjustment are also insufficient because
they are designed for other kinds of camera locations as presented in Section 2.4, in which
work performed by Hosseininaveh et al. is discussed [52]. In this paper, the stereo camera
calibration methods described in Section 2.4 were used. However, in adapting existing
stereo camera calibrating methods to EBCA there are two missing steps: The first problem is
ensuring that all stereo cameras considered in EBCA will produce a disparity map referring
to the same central image, because EBCA is designed to make it possible to easily merge
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data obtained from different camera pairs. The second problem is calibrating baselines.
Solutions for both of these two issues are introduced in Sections 4.1 and 4.2 of the paper.

A large majority of stereo matching algorithms and calibrating algorithm are designed
and implemented with such an assumption that the algorithm will be used with a stereo
camera consisting of a left camera and a right camera. Disparities occur in the X dimension.
In fact, every stereo matching algorithm can be similarly implemented to process images
which were taken by lower and upper camera. However, it requires modifying existing
implementations of algorithms for stereo cameras. It is particularly problematic when an
there is no open-source implementation. This paper proposes a method in which instead
of re-implementing existing software the images are flipped and rotated in such a way that
they can be perceived by stereo matching algorithms a pair consisting of a left, reference
image and a right, side image. After these operations disparity maps refer to points of
the same central image regardless of the side camera used in EBCA. Section 4.1 describe
transformations required to achieve this.

The second problem is calibrating baselines in EBCA. It is beneficial for the quality
of disparity maps obtained from EBCA when distances between cameras are as closely
similar to each other as possible. However, in real devices inaccuracies occurs. In case of
using stereo cameras such a problem does not exist because there is only one baseline in a
stereo camera. Therefore, the problem of calibrating baselines appears when images from
EBCA are processed. However, all previously performed research on camera arrays such
as EBCA described in Section 2.4 did not cover methods of calibrating baselines. Therefore,
this paper introduce a method described in Section 4.2.

4.1. Pairwise Calibration

A pairwise calibration and rectification presented in this section is based on OpenCV
calibration algorithms implementing the calibration method proposed by Zhang and the
rectification method introduced by Hartley [41,51,63]. In order to obtain calibrated of
images taken by EBCA using OpenCV based method raw images (marked with IR) need to
be processed in few stages. This process in visualized by Figure 4. The first part of image
processing is using calibration data for rectifying images in order to reduce distortions. This
calibration is based on taking images of a predefined pattern as described in Section 2.4.

calibration
pattern

real objects 
selected

for 3D imaging

raw data sets (IR)

calibration 
images

set of pairs of calibrated 
images (IP)

calibration
data

retrieval

transformations
stereo 

matching 
algorithm 

disparity maps
refering to calibrated 

images

reverse
transforma- 

tions

 resulting disparity
maps refering to 

input imagesEBCA

Figure 4. The process of stereo matching using pairwise calibration.

Raw images IR were processed as if they were taken by a set of four stereo cameras
sharing a common camera which was the central one. IR0, IR1, IR2, IR3 and IR4 will denote
raw images from a central, right, up, left and down camera, respectively. A sample set of
raw images used in experiments is presented in Figure 5.

Results of the image calibration consist of four pairs of images. The entire set of these
pairs is marked with IP. ICk will denote a reference image in pair k and ISk will be a side
one in this pair. A sample set of pairs is presented in Figure 6.

Pairs IP are intended to be used as input data to stereo matching algorithms designed
for processing images from stereo cameras. Every pair of images is derived from an image
taken by a central camera and an image from one of side cameras. In EBCA locations
of side cameras with regard to a reference, central camera is different. However, each
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considered pair of cameras is regarded as a stereo camera consisting of a left and right
camera. Therefore, images were rotated and flipped in order to adapt them to such a
configuration. Equation (2) used for calibrating pairs of cameras takes the form

sp = Wk A[R|t]Pw (4)

where Wk is a matrix converting every pair of a central image and a side one to a pair
which can be perceived as two images taken from a reference camera and a side camera
located on the right side of a reference camera. Index k corresponds to the position of a
side camera in the camera array. The whole transformation Wk A[R|t] will be marked with
Ek in this paper.

Transformation Wk is the same for a central image and a side image within the same
stereo pair. An image from a central camera has a function of a reference image in every
pair of cameras considered in EBCA, therefore this image in transformed differently for the
purpose of using it with different side images.

Figure 5. Images taken by EBCA used for creating data set of strawberry images: (a) central image,
(b) right image, (c) up image, (d) left image and (e) bottom image.

Figure 6 presents pairs of rectified strawberry images. Images were converted to
grayscale as most of stereo matching algorithms process images in this form.

Figure 6. Pairs of images in strawberry data set ST1 after performing the calibration process. (a,b) The
left pair, (c,d) The up pair. (e,f) The right pair. (g,h) The bottom pair.

There are four cases:

right camera The right camera forms with the central camera a standard stereo camera,
therefore neither a rotation or an flipping is needed. Thus, in this case W1 = I.

up camera Images from a pair consisting of top and central camera were first rotated
90◦ counterclockwise and than flipped around y-axis. The matrix W2 defining the
transformation for the pair created with the use of up camera is equal to the value
presented in Equation (5).

W2 =

 0 −1 2cy
−1 0 2cx
0 0 1

 (5)
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where (cx, cy) is the center of an image. This value needs to be considered because
point (0,0) is not located in the middle of the image, but it is in top left corner of an
image affecting transformation matrices. The matrix was also calculated with regard
to the convention such that coordinates of points in an image rises in the Y dimension
from the top to bottom unlike in the commonly used Cartesian coordinate system.

left camera Images from a left camera with corresponding images from a central camera
were flipped around y-axis. Therefore,

W3 =

−1 0 2cx
0 1 0
0 0 1

 (6)

bottom camera In case of using a stereo camera consisting of a bottom camera and a
central one images were rotated 90◦ counterclockwise.

W4 =

 0 1 0
−1 0 2cx
0 0 1

 (7)

Stereo matching algorithms process pairs of images IP which were obtained by ap-
plying calibration transformations on images IR. Thus, points in a disparity map obtained
as a result of using matching algorithms refer to points of a transformed central image as
this image is regarded as a reference one in every considered pair of images. The central
image is differently transformed in every considered image pair. In order to acquire dis-
parity maps whose points correspond to points of a raw central image, it is necessary to
perform transformations reversing in disparity maps the calibration process. These reverse
transformations including flipping and rotating images described earlier.

Maps obtained after reverse transformations can be further processed. Further process-
ing can result in merging maps obtained from individual image pairs in order to acquire a
map which has a higher quality than constituent maps. This is a subject of EBCA merging
methods described in [2,3]. If ground truth is available then results can be compared in
order to estimate the quality of stereo matching.

4.2. Self-Calibrating Baselines

A typical stereo camera self-calibration is focused on retrieving extrinsic parameters
of a camera pair. The aim is to calibrate cameras so that a point pr from the reference image
is correctly matched with a point ps from a side image and as a result a correct disparity d
is identified. In case of the EBCA array, there are more tasks. Lets consider points psk from
ICk, k ∈ 1, 2, 3, 4, corresponding to the same point pr1 in raw image IR0. Points psk needs
to be correctly matched with points in every side image ISk. As a result, disparities dk are
obtained. However, in case of EBCA, it is expected that d1 = d2 = d3 = d4.

Even if correct values of dk are obtained for every considered camera pair these
values may not be equal to each other, because inaccuracies in the construction of EBCA.
Theoretically, baselines of all considered stereo cameras are the same, but in real devices
there are always some minor differences in baseline lengths. Baselines of considered stereo
cameras Ck may differ to such an extent that there are differences of at least few pixels
between values of dk. This deteriorates the quality of resulting disparity map because when
data is merged from all four Ck under the assumption that baselines of these cameras are
the same. Nevertheless, due to the self-calibration process described in this section images
can be rectified in order to reduce differences between disparities dk.

The rectifying transformation defined in the self-calibrating process will be denoted
by Mk, where k corresponds to a camera pair Ck. Let us first consider merging disparities
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for a single point pr1. Let us assume that a stereo matching algorithm correctly acquired
disparities dk for this point. Thus, there are

d1 = d(pr1, IS1)

d2 = d(pr1, IS2)

d3 = d(pr1, IS3)

d4 = d(pr1, IS4)

(8)

where IS1 is a side image after transformations as described in Section 4.1. We are willing
to obtain disparities d′2, d′3 and d′4 presented in Equation (9) such that d1 = d′2 = d′3 = d′4.

d1 = d(pr1, IS1)

d′2 = d(pr1, M2 IS2)

d′3 = d(pr1, M3 IS3)

d′4 = d(pr1, M4 IS4)

(9)

Values of d′ will be equal to each other if transformations Mk cause that points of
images ISk are shifted in the X dimension for numbers of pixels equal to mk such that,
mk = dk − d′k for k ∈ 2, 3, 4. For different points of image ISk desired values of mk may be
different as there can be different values of dk − d′k for different points of ISk. Therefore,
translation matrices Mk needs to be obtained with regard to the entire image IR0.

This paper introduces estimating the shift mk of images Isk on the basis of keypoints
acquired by the SURF algorithm [55]. Keypoints in the reference image and corresponding
keypoints in side images are identified in image pairs IP obtained after transformations Ek
described in Section 4.1.

Let Ok denote a set of matching keypoints in a pair consisting of a reference image
ICk and side image ISk. For different k there will be different keypoints in images ICk and
ISk. However, there will also be such keypoints oCk in images ICk which are derived from
the same point o0 of the raw image IR0 transformed to different coordinates because of
calibrating transformation Ek. Such keypoints are those for which condition presented in
Equation (10) is fulfilled.

oCk ∈ Ok such that ∀k∈{1,2,3,4}Qk(o0) = oCk (10)

In this paper, only these keypoints oCk are considered in calculations of array rec-
tification transformations Mk. Thus, in every considered stereo camera, the set of the
same points from a raw central image IR0 is a base for analyzing differences in disparities
provided by different cameras.

The subsequent step in calculating transformation Mk with the use of the SURF
algorithm is calculating disparities dok between keypoints identified in images ICk and
matching keypoints in images ISk. Those keypoints for which dok is not within the range of
disparities used for obtaining disparity maps by a stereo matching algorithm are excluded
from further calculations. Excluding these values adjusts self-calibration to parameters of
stereo matching algorithms. Thus, conditions dmin ≤ dok ≤ dmax are fulfilled.

Then, an average value dok,avg of the the remaining disparities is calculated for each
image pair ICk and ISk. The average value of disparities between matching keypoints
indicates which pair of images should be rectified by Mk so that disparities become larger
and which pairs should provide lower values of disparities. Disparities for different image
pairs are being adjusted to the pair IC1 and IS1 obtained from the central image and the
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right one taken by EBCA, so m1 = 0. Therefore, the extent of shifts m2, m3 and m4 that
transformations Mk should implement are given by Equation (11).

m2 = do1,avg − do2,avg

m3 = do1,avg − do3,avg

m4 = do1,avg − do4,avg

(11)

Thus, transformations Mk are equal to the matrix presented in Equation (12).

Mk =

1 0 −mk
0 1 0
0 0 1

 (12)

Equation (4) used for calibrating cameras in EBCA takes the following form:

sp = MkWk A[R|t]Pw (13)

Section 6.1 shows results of experiments with using transformations Mk to improve
the quality of disparity maps obtained from EBCA.

5. EBCA Testbed

This section describes a testbed which was released under an open-source license in
order to make it possible for other researches to develop new and better algorithms using
considered camera arrays. The application is available at (https://github.com/alkaczma/
ebca accessed on 9 August 2021). The testbed was released as a part of work on this paper.

The testbed is suitable for evaluating a usage of all camera sets consisting of a central
camera and up to four side cameras equally distant from a central one. In particular,
algorithms designed for trinocular vision systems can be evaluated. The testbed can be
used for both testing an array consisting of three cameras placed in a row and an L-shape
trinocular vision system [29,31]. Moreover, test data presented in this paper include images
necessary for testing arrays with four and five cameras. There are currently no openly
available testbeds which makes this possible.

The testbed consists of six data sets and the software necessary for running experi-
ments. Data sets used in the testbed contain images of plants. There are two data sets for
every considered species including strawberries (sets marked with ST1 and ST2), redcur-
rants (CU1 and CU2) and cherries (CH1 and CH2). Every data set was created on the basis
of five images taken by EBCA. Figure 5 presents a sample data set which is ST1 containing
images of a strawberry plant.

In the testbed calibration, the methods described in Sections 2.4 and 4 were used.
Calibration was based on taking images of an exemplary image pattern which was a
chessboard with 10 × 7 intersections of black and white fields. Each field has a side equal
to 24 mm. The set of images used for calibrating cameras consisted of 10 series of five
chessboard images taken by EBCA from different angles. The OpenCV library was used
for analyzing images and calculating transformations matrices used for refining images.

The process of preparing images for a testbed also consisted of cutting out parts of
images taken by EBCA. Cameras made images with the resolution of 1280× 720. The entire
content of images was not used. Experiments were performed on parts of these images
containing leaves and at least one fruit. In every data set, the selected parts of images
were those which were located at the same coordinates in side images and a central one.
The sizes of image parts which were used for making test sets are presented in Table 1.

The content of a central image can be distinguished between a matching area (MA)
and a margin (MR). MA is a part of an image for which a disparity map is acquired. MR is
the area placed around MA. MR contains auxiliary data used for calculating disparities in
MA. Locations of objects in MA of the central image are shifted in side images with regard
to positions of side cameras. Without a margin some objects located near borders of MA

https://github.com/alkaczma/ebca
https://github.com/alkaczma/ebca
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of a central image would not be visible from points of view of side cameras. Thus, both
MA and MR need to be included in calculations in order to provide data for calculating
disparities in MA.

The size of a margin needs to be greater than the maximum disparity that occurs in
MA. After cutting out significant parts of raw images and calibrating them, the resulting
images can be then processed by a stereo matching algorithm in order to retrieve a disparity
map. Maximum disparities in different data sets are presented in the last column of Table 1.
In all cases the maximum disparity is lower than 100. In previous experiments described
in previous papers sizes of margins were not equal to each other [2,3]. Margins of images
included in the testbed presented in this paper were unified and in every data set the
margin covers all points located within the range of 100 points from borders of MA.
The total number of test points existing in matching areas of all considered data sets is
equal to 172,400.

Table 1. Sizes of test data sets and the range of disparities.

Set ID Matching Size Disparity Range
ST1 440 × 380 1–28
ST2 340 × 325 19–45
RC1 420 × 370 31–79
RC2 320 × 295 11–35
CH1 470 × 380 40–69
CH2 330 × 310 27–58

The testbed contains also ground truth. Ground truth was prepared manually by
identifying in images locations of points corresponding to the same parts of plants. Such an
analysis is very time-consuming, however it allows acquiring correct values of disparities
in points considered in experiments. The main problem with determining ground truth
manually is the occurrence of monochrome areas such as walls for which it is impossible to
find points corresponding in different images to the same parts of real objects. However,
test data do not contain such surfaces as plants visible in images have non-uniform textures.

Ground truth data contain disparities referring to points of raw images IR0. However,
stereo matching algorithms process pairs of images IP which were obtained by applying
calibration transformations on images IR. Thus, points in a disparity map obtained as
a result of using matching algorithms refer to points of a transformed central image as
this image is regarded as a reference one in every considered pair of images. The central
image is differently transformed in every considered image pair. In order to compare
ground truth with disparity maps generated from different image pairs, it is necessary
to perform transformations reversing in disparity maps the calibration process. Such
transformations were also prepared by the author of this paper. Files ebmcscalibration.xml
available in the testbed contain data necessary to reverse transformations including flipping
and rotating images.

Maps obtained after reverse transformations can be either compared with ground
truth or further processed. Further processing can result in merging maps obtained from
individual image pairs in order to acquire a map which has a higher quality than constituent
maps. Performing such a data merge is a subject of Exceptions Excluding Merging Method.

Evaluation Metrics

Disparity maps acquired by stereo matching algorithms can be evaluated with the use
of different quality metrics [10,36]. Metrics used in the testbed and experiments presented
in this paper are the following: the percentage of bad matching pixels (BMP), the percentage
of bad matching pixels in background (BMB) and the coverage (COV) [2,3,10]. The formula
for calculating BMP is presented in Equation (14).

BMP =
1
N ∑

p
(|DM(p)− DT(p)| > Z) (14)
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where p is a point, DM(p) is the disparity in the point p in the evaluated disparity map,
DT(p) is the ground truth disparity, N is the total number of points and Z is the threshold
considered in the metric. If the difference between the correct disparity and disparity
indicated by the stereo matching algorithm does not exceed Z, then the estimation of the
disparity is regarded as correct.

BMP presented in Equation (14) estimates the quality of disparities obtained for objects
visible in the foreground. These objects are visible both in a central and side images, thus
it is possible to estimate their disparities. Objects located in the background can be only
partially visible in different images because from points of view of some cameras these
objects can be hidden behind other objects located in the foreground. Therefore, it can
be impossible to match patterns corresponding to the same object in different images.
The estimation of the quality of disparities for objects located in the background is the
subject of the BMP metric presented in Equation (15). The metric provides information
on the percentage of points for which a stereo matching algorithm set incorrect values of
disparities instead of indicating that disparities in these points are unknown.

BMB =
1

NB
∑
p
(DM(p) 6= 0∧ DT(p) = 0) (15)

where NB is the number of points in background and other symbols are the same as in
Equation (14). A value of a disparity equal to 0 means that the disparity is unknown.

Another considered metric is COV which corresponds to the percentage of points
for which stereo matching algorithm was able to identify disparities. The formula for this
metric in presented in Equation (16).

COV =
NL
N

(16)

where NL is the number of points in a disparity map and N is the total number of consid-
ered points.

6. Experiments

This section presents results of self-calibration (Section 4.2), the influence of EEMM
parameters on the quality of results (Section 6.2) and the influence of the number of cameras
included in the array (Section 6.3).

6.1. Results of Self-Calibration

The self-calibrating method described in Section 4.2 was evaluated on the basis of
comparing results obtained from images for which the method was applied with results
obtained from images which were not processed by the method. Thus, two collections
of image sets were prepared. The collection A contained images calibrated only with the
pairwise method described in Section 4.1. The collection B were images acquired from
the collection A after self-calibration. Collections A and B were prepared from the same
images which were used for making test data in the testbed. All six sets of images were
included in both of these collections.

Collections A and B had a function of input data used for acquiring disparity maps.
First, considered pairs of images included in collection were processed by stereo matching
algorithms. Then, results were merged using the EEMM method. Therefore, disparity maps
were results of processing images from all five cameras included in the array. Algorithms
considered in this experiments were ELAS, StereoSGBM and GC Expansion. Figure 7
shows results with regard to the collection used.
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Figure 7. The comparison between results based on images without self-calibration and results based
on images with self-calibration.

The first raw of charts in Figure 7 presents results for collection A (marked with Col
A) and B (marked with (Col B). The lower raw visualize decreases in values of metrics
obtained for collection B with regard to their values for collection A. Results of COV and
BMO quality metrics are similar as they differ between collections less than 2.5%. However,
the value of BMP is on average 34.2% lower than in case of using collection A. It is a
significant improvement which shows that self-calibration method described in Section 4.2
is a valid technique of calibrating EBCA.

The required applied shifts were different for different data sets. On average the shift
m2 for the up camera was equal to 0.83, shift m3 corresponding to the right camera was
equal to 0.33 and m4 for the down camera was 3.33. There were also differences in values
of m for different data sets. However, the greatest deviation from the average values was
lower than 5 points. For example, a2 for set RC1 was equal to −4, but for set RC2 it was
equal to 5. These values are high enough to influence the quality of resulting disparity
maps, because they indicate that for the same points disparities calculated by different
camera pairs differ between each other to this extent.

Differences in shifts for different data sets were foremost cause by different character-
istics of these sets. As presented in Table 1 there are different ranges of disparities occurring
in sets. Distances from which images were taken for different sets also varied. Moreover,
sizes of sets were different. It is also presented in Table 1. Raw images IR were made with
the resolution of 1280 x 720 however depending on the set parts of different sizes were cut
out from raw images. Moreover, there are also variations caused by contents of images
causing that SIFT matches different points depending on the analyzed set.

6.2. EEMM Parameters

The possibilities of selecting parameters B and Q in the EEMM method (Section 3.1)
and their influence on the quality of disparity maps is presented in Figures 8–10. Figure 8
shows values of the BMP metric when 1 ≤ B ≤ 5 and 1 ≤ Q ≤ 20. The figure contains
four parts showing results of using EEMM with four different stereo matching algorithms
which are ELAS, StereoSGBM, GC Expansion and MC-CNN. The usage of MC-CNN was
based on the KITTI 2015 accurate trained network provided by the author of the MC-CNN
algorithm. Results presented in charts are average values obtained from all six data sets
included in the testbed. Average values were calculated with respect to differences in sizes
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of matching areas presented in Table 1. The Y axes in Figure 8 refer to values of the BMP
metric. The X axes correspond to values of the parameter Q. Each chart contains five lines
which depict results for different values of B. The algorithm GC Expansion is influenced
by random values and it generates different results for subsequent executions with the
same input parameters. Therefore, results presented in figures for this matching method
are average values calculated from ten executions of the algorithm.

Figure 8 shows that in case of all tested stereo matching algorithms the greater value
of the parameter B results in lower values of the BMP metrics. It is an advantageous effect
as low values of BMP indicate higher quality of maps. Experiments were also performed
for greater values of B however the increase of this parameter did not cause significant the
decrease of BMP. As far as the parameter Q is concerned, the increase of its value also causes
the decrease of BMP. Note that for algorithms ELAS and StereoSGBM the improvement
is the most significant in the range of B between 1 and 5. Greater values of B also cause
that BMP become lower however this effect is not as significant as in case of B ≤ 5. Such a
characteristic does not occur with the GC algorithm in which there is a steady increase of
the BMP values for the entire range of tested values of B. As far as MC-CNN algorithm is
concerned, parameters B and Q affect values of BMP to an even lesser extent than in case
of GC Expansion. Note that in the Y axis there is a range between 98.62% and 99.66% for
GC Expansion and the range is only between 99.93% and 99.99% for MC-CNN.

Values of metrics BMB and COV were also acquired using the same input arguments
as in case of the BMP metric. Results are presented in Figures 9 and 10. A relation between
parameters of EEMM and values of the COV metric is similar as in case of BMP. The increase
in values of both B and Q results in obtaining more advantageous values of COV.
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Figure 8. Values of the BMP metric when EEMM was used with algorithms: (a) ELAS, (b) Stere-
oSGBM, (c) GC Expansion and (d) MC-CNN.
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Figure 9. Values of the BMB metric when EEMM was used with algorithms: (a) ELAS, (b) Stere-
oSGBM, (c) GC Expansion and (d) MC-CNN.

The improvement of the BMP value is, however, related to the increase of the BMB
value. It is particularly problematic in case of using Q ≥ 5 with ELAS and StereoSGBM.
When Q increases there is a much greater increase in the value of BMB than a decrease of
the BMP value. Therefore, setting Q to 5 is an optimal solution. As far as the GC Expansion
algorithm is concerned the increase of Q always causes the increase in BMB without a
significant influence on the value of BMP. Thus, for this algorithm Q should be set to 1.
Differences in results of BMB are the lowest in case of MC-CNN, however charts for this
algorithm have characteristics similar to charts obtained for GC Expansion. Thus, Q equal
to 1 is a recommended setting for MC-CNN with respect to results of BMB.
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Figure 10. Values of the COV metric when EEMM was used with algorithms: (a) ELAS, (b) Stere-
oSGBM, (c) GC Expansion and (d) MC-CNN.

Figure 11 presents sample disparity maps obtained using a single stereo camera
and EBCA. In the upper part of the figure there are four disparity maps retrieved on the
basis of two cameras using algorithms ELAS, StereoSGBM, GC Expansion and MC-CNN,
respectively [12,39–42]. The lower part of the figure contains disparity maps which were
obtained when these algorithms were applied to EBCA with the use of EEMM. Parameters
B and Q used in Exceptions Excluding Merging Method were set to 5.

Figure 11. Disparity maps obtained using a pair of cameras (a–d) and EBCA (e–h) for the following
stereo matching algorithms: ELAS (a,e), StereoSGBM (b,f), GC Expansion (c,g) and MC-CNN (d,h).

6.3. Different Number of Cameras

The EEMM method was originally designed for merging four disparity maps obtained
with the use of four stereo cameras considered in EBCA. However, this paper describes the
possibility of using the method with EBCA arrays in which the number of side cameras
is lower than four. Merging less than four disparity maps can be perceived as merging
four disparity maps such that there are blank maps in which all values of disparities are
not determined.

The quality of results obtained by using Exception Excluding Merging Methods
depends on the number of cameras included in EBCA as presented in Figure 12. Quality
metrics considered in this section are the same as those considered in the previous section.
The figure presents average results (AVG) and results for ELAS, GC Expansion, StereoSGBM
and MC-CNN algorithms. Experiments were performed for the number of cameras ranging
between two and five. Experimental sets differ in the number of side cameras. The same
central camera was used in every configuration. Experimental data for tested arrays were
acquired by removing images from a full set of images acquired from the array with all
five cameras.

The usage of two cameras is equivalent to using a single stereo camera. There are four
possibilities of obtaining such a configuration from the complete EBCA. In each case, a
central camera and one of four side cameras is used. The results presented in Figure 12
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were based on calculated the average mean of four different results obtained from four
camera pairs possible to select from a set with five cameras. This kind of calculating
the average mean of results obtained from all possible subsets was also applied in every
other configuration.

Configuration 3P means that there are three cameras placed along a straight line. Such
a configuration can be acquired from a complete EBCA set by selecting cameras located
either along a horizontal line or along a vertical line. Configuration 3L also consists of three
cameras however they are arranged in the L-configuration, i.e., cameras are in locations
corresponding to vertices of a isosceles rectangular triangle. The purpose of distinguishing
between configurations 3L and 3R is to verify whether differences in the arrangement of
three-camera EBCA influence the quality of results. Configuration 4 is the one in which
one camera was excluded from a full set of five cameras. Configuration 5 consists of all
cameras used in the tested EBCA.
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Figure 12 visualizes that the increase in the number of cameras reduces the value of
the BMP metric, which means that the quality of results become higher. When two cameras
are used, all tested stereo matching algorithms provided disparity maps with the value of
BMP in the range between 17.9% and 24.85%. The greatest influence on the results caused
by increasing the number of cameras occurred for the ELAS algorithm. The final result
was equal to 12.68% with the use of five cameras. Thus, results improved 48.97% of its
value obtained for a single pair of cameras. On average the improvement was equal to
40.79%. The MC-CNN algorithm produced results for which BMP was the lowest in the
configuration with a single pair of cameras. These results were even further improved
by increasing of the number of cameras included in the array. However, it was the ELAS
algorithm which generated results with the lowest value of BMP when five cameras were
used. Results for MC-CNN used with the same number of cameras were only slightly
worse as the difference in values of BMP for these two algorithms was equal to 0.07%.
These results show that applying a stereo matching algorithm to EBCA with five cameras
can lead to satisfactory results even if results of this algorithm were poor when it was used
with a stereo camera.

Moreover, there are not significant differences between configuration 3L and 3P.
Therefore, it is insignificant on which side of a central camera a third camera is placed
when a configuration with three cameras is used. Nevertheless, it is possible that in some
circumstances one of these configurations is better depending on the shape or illumination
of viewed objects.

The decrease in the value of BMP was associated with the increase in the value of the
COV metric as shown in Figure 12b. This means that obtained disparity map contained
overall less points for which disparities were not available. Charts obtained for GC and
MC-CNN algorithms look peculiar because highest values were reported for two and five
cameras. The reason is such that these algorithms provide data for almost all points of a
disparity map when they are used with a stereo camera. Therefore, the COV metric for
these algorithms drops when the EEMM is applied and the number of camera is increased
to 3. Further increase in the number of cameras implies greater values of COV similarly as
in case of SGBM and ELAS algorithms.

Figure 12c presents error rate for points located in the background. The BMB metric
becomes greater in case of all algorithms when the number of cameras increases from three
to four and from four to five. It corresponds to the increase in the values of the COV metric
showing that disparity maps contain values of disparities in almost all points. In case of GC
and MC-CNN algorithms, the error rate in background is nearly equal to 100% when two

Figure 12. Results obtained for EEMM used with different number of cameras. The figure presents
values of the following quality metrics: (a) BMP, (b) COV and (c) BMB.

Figure 12 visualizes that the increase in the number of cameras reduces the value of
the BMP metric, which means that the quality of results become higher. When two cameras
are used, all tested stereo matching algorithms provided disparity maps with the value of
BMP in the range between 17.9% and 24.85%. The greatest influence on the results caused
by increasing the number of cameras occurred for the ELAS algorithm. The final result
was equal to 12.68% with the use of five cameras. Thus, results improved 48.97% of its
value obtained for a single pair of cameras. On average the improvement was equal to
40.79%. The MC-CNN algorithm produced results for which BMP was the lowest in the
configuration with a single pair of cameras. These results were even further improved
by increasing of the number of cameras included in the array. However, it was the ELAS
algorithm which generated results with the lowest value of BMP when five cameras were
used. Results for MC-CNN used with the same number of cameras were only slightly
worse as the difference in values of BMP for these two algorithms was equal to 0.07%.
These results show that applying a stereo matching algorithm to EBCA with five cameras
can lead to satisfactory results even if results of this algorithm were poor when it was used
with a stereo camera.

Moreover, there are not significant differences between configuration 3L and 3P.
Therefore, it is insignificant on which side of a central camera a third camera is placed
when a configuration with three cameras is used. Nevertheless, it is possible that in some
circumstances one of these configurations is better depending on the shape or illumination
of viewed objects.

The decrease in the value of BMP was associated with the increase in the value of the
COV metric as shown in Figure 12b. This means that obtained disparity map contained
overall less points for which disparities were not available. Charts obtained for GC and
MC-CNN algorithms look peculiar because highest values were reported for two and five
cameras. The reason is such that these algorithms provide data for almost all points of a
disparity map when they are used with a stereo camera. Therefore, the COV metric for
these algorithms drops when the EEMM is applied and the number of camera is increased
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to 3. Further increase in the number of cameras implies greater values of COV similarly as
in case of SGBM and ELAS algorithms.

Figure 12c presents error rate for points located in the background. The BMB metric
becomes greater in case of all algorithms when the number of cameras increases from three
to four and from four to five. It corresponds to the increase in the values of the COV metric
showing that disparity maps contain values of disparities in almost all points. In case of GC
and MC-CNN algorithms, the error rate in background is nearly equal to 100% when two
and five cameras are used because these algorithms provide values of disparities in areas
of images which should be marked with values indicating that the disparity is unknown.
For this reason, results of MC-CNN need to be considered worse than results of ELAS
in the configuration with five cameras, although values of BMP indicate that the quality
of these algorithm is similar. ELAS in much larger extent correctly identifies points for
which disparities need to be marked as unknown. MC-CNN generates incorrect data for
these areas.

7. EBCA Applications

The main application of Equal Baseline Camera Array is robotics. In particular, it
can be applied to autonomous robots equipped with a robotic arm. Such robots can be
used for manufacturing, quality assurance [13], agricultural applications or any operations
requiring picking up objects in 3D space. EBCA can be even applied to robots designed for
construction works such as paining walls in building [64].

Another major application of EBCA is providing 3D vision for autonomous cars [65].
Such vehicles operate in outdoor environment causing significant limitations in possibilities
of using various kinds of 3D vision systems because intensive sunlight may interfere with
measurements performed by these equipment.

EBCA can also be used for making 3D scans of objects covered with a semi-transparent
material or made from this kind of substance [66]. Ihrke et al. presented a survey on this
topic inducing making scans of smoke and objects made from glass [67]. The authors of
this paper also performed experiments with 3D scanning of semi-transparent objects which
were amber fossils with inclusions such as leaves [68].

A problem similar to 3D scanning of semi-transparent objects is enabling 3D vision
for underwater operations [69]. Commonly used equipment for 3D scanning, such as
structured light scanners, faces significant limitations when it is used for such a purpose.
The array presented in this paper can be in particular applied to unmanned underwater
vehicles and provide these devices with 3D vision. UUVs are remotely controlled and 3D
vision of these devices supports their operators in performing expected tasks.

Drones are another kind of devices that can benefit from using EBCA [70]. Drones
have a view over long distances in comparison to their size. Moreover, it is preferable to
provide vision in high resolution. Obtaining high resolution for long distances cannot be
achieved with LIDAR scanners or structured light scanners. However, cameras are suitable
for such an application.

There is also an area of application of EBCA in a form of a 3D camera for general use.
Users of such a camera can record videos similarly as they do using 2D cameras or their
mobile phones. Nevertheless, popularizing such an application would have to be related
with the growth of popularity and further development of 3D displays.

8. Conclusions

EBCA is a subject worth investigating due to its wide range of applications. The cali-
bration technology presented in this paper makes it possible to assemble new EBCA which
can be used by other researchers. Moreover, the testbed released as a part of presented
research supports researchers in the development and testing of novel algorithms intended
for obtaining disparity maps with the use of EBCA.

The most significant contribution presented in this paper is the calibration method
which reduces the value of BMP metrics by over 34%. Another high value observation
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is the relation between number of cameras in EBCA and the quality of results when the
EEMM merging method is used. Plans for future work include mounting EBCA on a
robotic arm and performing hand–eye calibration.
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Abbreviations
The following abbreviations are used in this manuscript:

EBCA Equal Baseline Camera Array
EEMM Exceptions Excluding Merging Method
LIDAR Light Detection and Ranging
TOF Time-of-flight camera
ELAS Efficient Large-scale Stereo Matching
StereoSGBM Stereo Semi-Global Block Matching
GC Expansion Graph Cut with Expansion Moves
BMP percentage of bad matching pixels
BMB percentage of bad matching pixels in background
COV coverage
SIFT scale-invariant feature transform
SURF speeded up robust features
UUV unmanned underwater vehicle
CNN convolutional neural network
MA matching area
MR margin area
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