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Abstract: One of the factors that influence the dynamic characteristics of machining systems is the
cutting tool. Cutting tools are very diverse, and receptance coupling substructure analysis (RCSA) is
essential for analyzing the dynamic characteristics of each tool. For RCSA, a full receptance matrix
of the equipment and tools is essential. In this study, rotational degree-of-freedom receptance was
estimated and analyzed using translational receptance. Displacement/moment receptance was ana-
lyzed according to the distance of the response point using the first-and second-order finite difference
methods. The rotation/moment receptance was estimated according to the distance of the response
point. Rotation/moment receptance was analyzed using Schmitz’s method and compensation strate-
gies. The limitations of these strategies were analyzed, and the rotation/moment receptance for the
beam under free-free boundary conditions was predicted using the second compensation strategy.

Keywords: receptance coupling substructure analysis; rotational FRF; finite difference technique;
modal analysis

1. Introduction

To optimize the machining process and respond to abnormal conditions, it is essential
to analyze chatter stability using the dynamic characteristics of the equipment and cutting
tools. A chatter stability lobe diagram is utilized for chatter stability analysis, and an
essential parameter is the dynamic characteristic of the machining system. The dynamic
characteristics of machining are significantly affected by the equipment, material, and pro-
cess characteristics, and the dynamic characteristics change as the cutting tool changes. The
types of cutting tools utilized in processing equipment are very diverse, and it is very inef-
ficient to change the cutting tools to analyze the dynamic characteristics of various cutting
tools, perform vibration tests of processing equipment, and obtain dynamic characteristics.
Receptance coupling substructure analysis (RCSA) decomposes a complex structure into
relatively simple substructures and obtains the frequency response function (FRF) of the
substructures using experiments or FEM. Subsequently, by synthesizing the FRF of the
substructure, the FRF of the entire system is obtained, and the dynamic characteristics
are predicted. Regarding a machining center, the FRF of the entire machining equipment
system is obtained by synthesizing the FRFs of the cutting tool and machining equipment,
and the dynamic characteristics are predicted. Through the RCSA of various cutting tools,
the FRF and dynamic characteristics of the equipment can be predicted. It is more efficient
in terms of time and cost to change solely the cutting tool and perform a vibration test
rather than change the cutting tool repeatedly and perform a vibration test on the entire
machining equipment [1–6].

To perform RCSA, the FRF for translational and rotational degrees of freedom of the
substructure is required. In previous studies, errors occurred when RCSA was performed
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using only the translational FRF. When RCSA is performed using FRF in the rotational
direction, the accuracy is improved [2–4,6]. However, it is difficult to obtain the rotational
displacement and moment during the actual vibration test, and there is a disadvantage,
in that the cost of additional experimental equipment is incurred. Rotational FRF has
been known as a problem since 1972, as can be seen in the paper of Ewins and Sainsbury,
and many studies to estimate accurate rotational FRF are still in progress [5,7]. Although
FEM can be achieved without major problems, finding rotational FRF through practical
experiments is rarely achieved. Experimentally, the block, mass additive, finite difference,
estimation, angular transducer, and laser techniques have been used [5–10].

In this study, the problem was analyzed from an experimental point of view. Ex-
perimentally, the finite-difference method is used, which is low in cost and relatively
simple to obtain accurate results, does not require additional equipment, and performs
post-processing using translational FRF. When estimating the rotational FRF using the
finite difference method, it is difficult to select the order of the finite difference method
and the distance of the response point. In previous studies, only the order of the finite
difference method was studied. In addition, there is only the suggestion of the distance
of the measurement point without considering the size of the structure and the size of
the sensor [6]. However, in this study, a suitable ratio of the measuring point distance
to the size of the structure and the maximum measuring distance considering the sensor
size during actual testing are presented. The FRF of rotational degrees of freedom was
estimated and analyzed using the FRF of translational degrees of freedom according to
the response distance [6–9]. To estimate and verify the rotational FRF, a vibration analysis
was performed using Abaqus, a commercial program. To obtain the rotation/force and
displacement/moment FRF, the rotational FRF according to the measurement distance was
estimated, and the optimal condition was selected. In addition, the rotation/moment FRF
is estimated and analyzed using Schmitz’s method and a compensation strategy using
modal parameters [11–13].

2. Theoretical Background
2.1. Receptance of Euler-Bernoulli Beam

The coordinates and directions of the displacement, rotation, force, and moment of the
substructure are illustrated in Figure 1. The i and j at the ends indicate the measurement
and excitation positions, respectively. In this study, as illustrated in Figure 1, the out-
of-plane mode is considered solely, and the axial direction is not considered. The full
receptance matrix according to the RCSA formula can be expressed as:

Rij =

[
Hij Lij
Nij Pij

]
=

[
xi/Fj xi/Mj
θi/Fj θi/Mj

]
(1)

where Hij is the displacement/force FRF, Lij is the displacement/moment FRF, Nij is the
rotation/force FRF, and Pij is the rotation/moment FRF.

Figure 1. Coordinate system of the beam.
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In the free-free boundary condition of the beam, the cylindrical direct and cross
receptance can be expressed using the Euler–Bernoulli beam theory, as expressed in
Equations (2) and (3), respectively [14–17]:

Rij =

[
Hii Lii
Nii Pii

]
=

[ −C1
EIλ3C7

C2
EIλ2C7

C2
EIλ2C7

C3
EIλC7

]
(2)

Rij =

[
Hij Lij
Nij Pij

]
=

[ C4
EIλ3C7

−C5
EIλ2C7

C5
EIλ2C7

C6
EIλC7

]
(3)

where E is the elastic modulus, I is the area moment of inertia, η is the damping ratio, L is
the length of the cylinder, and λ can be expressed as Equation (4).

λ4 =
ωm

EI(1 + iη)L
(4)

where,



C1 = cosλLsinhλL− sinλLcoshλL
C2 = sinλLsinhλL

C3 = cosλLsinhλL + sinλLcoshλL
C4 = sinλL− sinhλL
C5 = cosλL− coshλL
C6 = sinλL + sinhλL

C7 = cosλLcoshλL− 1

.

2.2. Rotation/Force and Displacement/Moment FRF

The rotation/force (N) and displacement/moment (L) FRFs can be estimated using
two or three translational FRFs measured at a constant distance, as illustrated in Figure 2.
Rotational FRF can be estimated using the measured translational FRF transformation
matrix, as expressed in Equation (5):

[Hestimation] = [T][HMeasurment][T]
T (5)

where the measured translational FRF is shown as Equation (6):

[HMeasurment] =

 H1b1b H1b1a H1b1
H1a1b
H11b

[
H1a1a H1a1
H11a H11

]  (6)

Figure 2. Impact and response point for rotational D.O.F.

The rotation transformation matrix using the finite difference method is obtained using
Lagrange interpolation. When the domain for Lagrange interpolation in the experimental
boundary is (a, b) and the measurement point xi satisfies a ≤ xi ≤ b (i = 0, 1, 2 · · · n− 1),
the two-dimensional mode shape is as follows by Lagrange polynomials [7,18–20]:



Appl. Sci. 2021, 11, 8527 4 of 14

y(x) =
n−1

∑
i=0

yiai(x) (7)

where, ai(x) =
n−1
∏

k 6=i k=0

x−xk
xi−xk

, i = 0, 1, 2, · · · , n− 1.

The rotation matrix differentiates Equation (7) and is as follows:

δbr(x) = y′(x) =
n−1

∑
i=0

yiai
′(x) (8)

Table 1 shows the results of the 2nd and 3rd interpolation. Using this interpolation
formula, it is possible to obtain a transformation matrix (T) that calculates the rotational
freedom of the coupling region from the translational degrees of freedom in each direction
at the nodes near the coupling region.

Table 1. Lagrange interpolation.

Order of Equation y
′

2nd order : y = a2x2 + a1x + a0 (−3y0 + 4y1 − y2)/2h

3rd order : y = a3x3 + a2x2 + a1x + a0
(
−11y0 + 18y1 − 9y2 + 2y3

)
/6h

When the third order or higher is reached, the FRF of the translational degrees of free-
dom to be measured increases, which may increase the experimental error. For this reason,
only the first and second interpolation methods are used in this study. The transformation
matrix (T) using the finite difference method has first-order and second-order approxima-
tions, and the first-order requires two measurement points. Depending on the position
of the rotational FRF to be estimated, forward and backward difference transformation
matrices are adopted, as expressed in Equations (9) and (10), respectively.[

T1 f

]
=

[
0 1

1/s −1/s

]
(9)

[T1b] =

[
0 1
−1/s 1/s

]
(10)

The second order requires three measurement points, and they include the forward,
central, and backward difference transformation matrices. Equations (11)–(13) are similar.[

T2 f

]
=

1
2s

[
0 0
−1 4

2s
−3

]
(11)

[T2c] =
1
2s

[
0 2s
−1 0

0
1

]
(12)

[T2b] =
1
2s

[
0 0
1 −4

2s
3

]
(13)

In each transformation matrix, the forward, central, and backward parameters are
related to the position to obtain the rotational FRF [11–16].

2.3. Rotation/Moment FRF

Regarding rotation/moment FRF (P), it can be obtained using Equation (5) in Section 2.2.
In the finite difference method, the transformation matrix must be applied by determining
the excitation and response for each of the three points. The experimental data yielded nine
FRFs with three points of excitation, and three points of response for each point. When the
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finite difference method is adopted for rotation/moment FRF estimation, the number of
experiments increase, which has a disadvantage in that it may increase the experimental
error. To reduce the experimental error, it was estimated using Schmitz’s method. Schmitz’s
method reduces experimental errors by post-processing of measured and calculated FRFs
without requiring additional experiments. Regarding Schmitz’s method, it can be expressed
as Equation (14), and there is a disadvantage that the error increases when the anti-resonance
of H is approximately zero [3,11,13].

P11−schmitz =
θ1

M1
=

L2
11

H11
(14)

To remove the residual mode, a compensation strategy was proposed by Yulei Ji et al. [6].
Equation (15) represents the FRF using the mode superposition method; accordingly, H11 and
L11 can be expressed as Equation (16).

Φ =
2

∑
i=1

1
ki

(
1

1− (ω/ωn,i)
2 + j2ζ(ω/ωn,i)

)
=

2

∑
i=1

1
ki
× Si (15)


H11 =

2
∑

i=1
k−1

i,H11
× Si = k−1

1,H11
× S1 + k−1

2,H11
× S2

L11 =
2
∑

i=1
k−1

i,L11
× Si = k−1

1,L11
× S1 + k−1

2,L11
× S2

(16)

By substituting Equation (16) into Equation (15) and rearranging it, it can be expressed
as Equation (17). In Equation (17), the first and second components represent the first and
second modes, respectively, and the third mode represents the residual mode [11].

P11 =
k−1

1,L11

k−1
1,H11

k−1
1,L11
× S1 +

k−1
2,L11

k−1
2,H11

k−1
2,L11
× S2 + K

∏ k−1
i,H11
× Si

∑ k−1
i,H11
× Si

(17)

where K =

(
k−1

2,L11
k−1

2,H11

)2

−
(

k−1
1,L11

k−1
1,H11

)2

.

An error occurs because of the third residual term, and if modes are expressed by
eliminating the residual mode, two modes are as denoted in Equation (18).

Mode 1 =
k−1

1,L11
k−1

1,H11

k−1
1,L11
× S1

Mode 2 =
k−1

2,L11
k−1

2,H11

k−1
2,L11
× S2

(18)

Similarly, there is a method for discarding residual modes by initially calculating
Schmitz’s method in Equation (14), and then performing mode analysis. Two compen-
sation strategies are illustrated in Figure 3, and the first compensation strategy initially
performs a mode analysis of H11 and L11 to calculate the rotation/moment FRF. The second
compensation strategy eliminates the residual mode through mode analysis by initially
performing Schmitz’s method. The compensation strategy has the advantage of increasing
the accuracy of P11 by eliminating the residual mode in Schmitz’s method and does not
require additional experiments as a post-processing operation [11,13].
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Figure 3. Two types of compensation strategy.

2.4. Modal Peak Picking

Modal analysis must be performed to conduct a compensation strategy. Modal anal-
ysis includes modal circle and modal peak picking. In this study, modal analysis was
performed using modal peak picking. Modal peak picking is a method for obtaining modal
parameters using real and imaginary numbers. Each number in Figure 4 represents the
frequency value at the peak of the real and imaginary parts, and A and B represent the
magnitude of the frequency in the imaginary part. The damping ratio, stiffness, mass, and
damping coefficient are as denoted in Equations (19)–(22) [14–16].

ζq1 =
ω4 −ω3

2ωn1
, ζq2 =

ω6 −ω5

ωn2
(19)

kq1 =
−1

2ζq1 A
, kq2 =

−1
2ζq2B

(20)

mq1 =
kq1

ω2
n1

, mq2 =
kq1

ω2
n2

(21)

cq1 = 2ζq1

√
kq1mq1, cq2 = 2ζq2

√
kq2mq2 (22)

Figure 4. Modal peak picking method.

3. Vibration Analysis Using FEM
3.1. FE Modeling

In this study, the accuracy of the estimation of rotational FRFs according to the
measurement distance and finite difference order are compared. In addition, the rota-
tion/moment FRF estimation accuracy by the compensation strategy was compared, and
the accuracy according to the boundary condition was analyzed.
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Two or three response points were required to estimate L11 and N11. It is difficult to
obtain and verify the rotational degree of freedom FRF through an experiment. Therefore,
CAE was adopted to compare the rotational FRF estimation accuracy according to the
distance (s) of the response point. In modal analysis using CAE, in order to reduce the
effect error on the higher-order mode, the analysis should be performed considering at least
10 times the mode of interest or more. To solely consider the out-of-plane mode, modeling
is performed using the B22 element model, which is a beam element of the 2D planar.
The material properties of the beam model adopted for the vibration analysis are listed
in Table 2, and the boundary condition is a free-free condition. To compare the accuracy
according to the measurement distance, the response was analyzed by dividing the ratio of
the total length of the beam. Figure 5 illustrates the position of the response point, which is
the point for obtaining the rotational FRF. When the ratio of the distance of the measuring
point to the total length of the beam is s/l, X01 represents s/l = 0.01. As such, X05, X1,
X2, X3, X4, and X5 have s/l of 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. To verify the
reliability of the vibration analysis of FEM, the FEM at some points and Euler–Bernoulli
beam FRF results are compared. As illustrated in Figure 6, FEM modeling was verified as
the results of the FEM and the theory are consistent.

Table 2. Properties of the beam model.

Length Diameter Density Elastic Modulus Damping Ratio

1 m 0.005 m 7850 kg/m3 210 GPa 0.01

Figure 5. Response point of the beam model.

Figure 6. Verification of FEM and theory.

3.2. Rotaion/Force(=Displacement/Moment) Vibration Analysis Results

The estimated FRF, L11(= N11), using the first-order finite difference method accord-
ing to the response point distance, is illustrated in Figure 7. The natural frequency coincided
with the FEM results regardless of the distance between the response points, but the mag-
nitude of the natural frequency tended to decrease as the distance between the response
points increased. The anti-resonance also exhibited a tendency to move as the distance of
the response point increased.
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Figure 7. Estimation for L11(= N11) for the first-order finite difference method.

The estimated FRF, L11(= N11), using the second-order finite difference method ac-
cording to the response point distance, is illustrated in Figure 8. Similar to the first-order
method, the natural frequency coincided with the FEM result, and an error occurred in the
natural frequency magnitude and anti-resonance. As the distance between the response
points increased, the error increased.

Figure 8. Estimation for L11(= N11) for the second-order finite difference method.

The error rate for the first natural frequency magnitude of the FEM and the estimated
FRF of the first-and second-order finite difference methods are illustrated in Figure 9. In
both the first and second order, the error rate increased as the distance of the response point
increased. When s/l was 0.1, the error rate of the first order was 0.4%, and the second order
was 2.1%. When s/l was 0.2, the error rate of the first order was 2.9%, and the second order
was 12.3%. The magnitude error increased as the higher-order mode goes. The estimation
of L11(= N11) using the finite difference method yielded more accurate results in the first
order, and the shorter the distance between the response points, the more accurate the
results. The ratio of the response point distance to the total length of the structure during
the experiment should not exceed 0.05. Even considering the structure and sensor size, it
should not exceed 0.1 at most.
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Figure 9. Error rate magnitude at the first mode.

The responses of H0.01a and H0.01b when s/l = 0.01 are illustrated in Figure 10. The
two response points clearly indicate the resonance and anti-resonance, and these points
were well-estimated in the rotational FRF using these points. However, as illustrated
in Figure 11, both response points do not exhibit resonance and anti-resonance. This is
related to the shape of the mode, and because it does not indicate resonance and anti-
resonance, it causes a significant error in the rotational FRF estimation using this. Therefore,
when selecting a response point, it is necessary to select a point where the resonance and
anti-resonance modes are expressed.

Figure 10. FRF of H0.01a and H0.01b at s/l = 0.01.

Figure 11. FRF of H0.5a and H0.5b at s/l = 0.5.

3.3. Rotaion/Moment Vibration Analysis Results

To estimate P11, a mode analysis should be performed. As stated in Section 2.4, mode
analysis is performed on the real and imaginary parts using the peak picking method.
Similar to the modal analysis of CAE, in the peak picking method, modal analysis of a
sufficiently large number of modes must be performed to reduce the influence on higher-
order modes. The results of the mode analysis of L11 estimated when H11 and s/l = 0.01,
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respectively, are illustrated in Figure 12, and the reliability of the mode analysis using modal
peak picking is verified. Modal analysis was performed for the first and second modes, and
the results were fitted and compared with the FEM results. Although the result are similar
to the FRF result of FEM, it cannot be estimated that the initial displacement becomes
infinite in the real part. However, because modal analysis is performed at each natural
frequency, the infinity of the initial response does not affect the modal parameter estimation.

Figure 12. Modal fitting using modal peak picking; (a) is H11 and (b) is L11.

The estimated FRF using Schmitz’s method, which is the most widely used method
for estimating P11, and the FRF using FEM is illustrated in Figure 13. Residual modes of
12.6 and 41.24 Hz appear between natural frequencies, which are the modes that occur,
as the response of H11 approaches zero in Equation (14). A compensation strategy was
adopted to eliminate the residual modes.

Figure 13. Comparison of P11−FEM with Schmitz’s method.

The first compensation strategy is illustrated in Figures 14 and 15 by estimating P11
using the modal parameters of H11 and L11. Figure 14 is illustrated using L11 and H11 by
applying the first-order finite difference method according to the distance of the response
point, and Figure 15 illustrates the result using the second-order finite difference method.
The error increases as the distance between the response points increase, indicating a
similar trend to the L11(= N11) result.
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Figure 14. First compensation using the first-order finite difference technique according to s/l.

Figure 15. First compensation using the second-order finite difference technique according to s/l.

The first compensation strategy using L11, estimated using the first-and second-order
finite difference methods when s/l = 0.01, is illustrated in Figure 16. Because the error in
estimating L11 is negligible, a negligible error occurred in the compensation strategy as well.
The accuracy of L11 was confirmed to affect the accuracy of P11. The first compensation
strategy has a disadvantage in that it cannot express the free-free boundary condition
in which the response becomes infinite at 0 Hz. Because the boundary condition cannot
be expressed, the first anti-resonance cannot be expressed as well. It would be more
suitable for estimating the FRF of fixed-free or fixed-fixed boundary conditions, where the
displacement response does not become infinite near 0 Hz.

The second compensation strategy removes residual modes by performing mode
analysis after calculating P11 using Schmitz’s method in Equation (14). As the result of P11 is
more accurate and L11 is more accurate through the first compensation strategy, the second
compensation strategy is performed for s/l = 0.01, which has the highest accuracy of L11. In
Figure 17, Compared to the first compensation strategy, the second compensation strategy
represents a free-free boundary condition in which the rotational displacement, as well
as the anti-resonance, becomes infinite at 0 Hz. The natural frequencies and magnitudes
were identical. Over the second natural frequency, it appears different from the FEM result,
which will reduce the error if the high-frequency mode number is sufficiently considered.
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Figure 16. Error in the first compensation strategy at s/l = 0.01.

Figure 17. Second compensation strategy at s/l = 0.01.

4. Conclusions

In this study, the composition of the full receptance matrix for the analysis of the
dynamic characteristics of the machining equipment according to the cutting tool was deter-
mined. The full receptance matrix consists of displacement/force, displacement/moment,
rotation/force, and rotation/moment receptance. Because it is difficult to obtain the recep-
tance in the rotational direction through experiments, the receptance in the rotational direc-
tion is estimated using the receptance in the translational direction. In order to apply it to
the experiment, there is no additional cost, and it is important to estimate the rotational FRF
through the most accurate and relatively simple operation. Therefore, the rotational FRF
was estimated as a post-processing method using the translational FRF without additional
experimental equipment. In this study, the ratio of the distance of the measurement point
to the length of the structure was presented in the rotation/force(=displacement/moment)
FRF, and it was shown that the finite difference method was more accurate when the order
was first order. In addition, the disadvantages of rotation/moment estimation of the finite
difference method and Schmit’s method were presented. A compensation strategy that
compensates for these shortcomings was introduced. It was confirmed that the accuracy
of rotation/force FRF affects the accuracy of rotation/moment FRF through the finite
difference method and compensation strategy. It was shown that the free-free boundary
condition could not be expressed in the first compensation strategy. The free-free boundary
condition was expressed through the second compensation strategy. A compensation
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strategy selection method according to the distance of the response point and boundary
conditions was presented. Vibration analysis was performed using CAE, and verification
was performed using the Euler–Bernoulli beam theory.

The rotation/force (displacement/moment) receptance was estimated using the finite
difference method, according to the order and distance. The number of response points
varied according to the order, and the estimation accuracy varied according to the distance
of the response points. In both the first-and second-order finite difference methods, the
shorter the distance of the response point, the higher the accuracy; furthermore, the error
increased as the order increased. Regarding the first-order finite difference method, an
error of approximately 0.4% was generated in the first natural frequency at s/l = 0.1. To
estimate the displacement/moment (rotation/force) receptance in the actual test, the ratio
of the distance of the response point to the total length should not exceed 0.05; even if
experimental factors such as the size of the sensor are considered, the maximum ratio
should not exceed 0.1.

The rotation/moment receptance is estimated and analyzed using Schmitz’s method
and a compensation strategy. Schmitz’s method has the disadvantage of generating residual
modes other than the natural frequencies. The residual mode was removed using a
compensation strategy. The first compensation strategy has a disadvantage in that it cannot
estimate that the response displacement becomes infinite at 0 Hz. The second compensation
strategy estimates that the displacement of the response becomes infinite, but the error
increases as the frequency increases. To reduce the error, a sufficiently large number of
modes should be considered. Accurate rotation/force receptance is required to accurately
estimate rotation/moment receptance. The first compensation strategy is suitable for
beams with fixed ends, whereas the second compensation strategy is suitable for free-free
boundary conditions.
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