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Abstract: Research has been conducted to efficiently transfer blocks and reduce network costs when
decoding and recovering data from an erasure coding-based distributed file system. Technologies
using software-defined network (SDN) controllers can collect and more efficiently manage network
data. However, the bandwidth depends dynamically on the number of data transmitted on the
network, and the data transfer time is inefficient owing to the longer latency of existing routing
paths when nodes and switches fail. We propose deep Q-network erasure coding (DQN-EC) to
solve routing problems by converging erasure coding with DQN to learn dynamically changing
network elements. Using the SDN controller, DQN-EC collects the status, number, and block size
of nodes possessing stored blocks during erasure coding. The fat-tree network topology used for
experimental evaluation collects elements of typical network packets, the bandwidth of the nodes
and switches, and other information. The data collected undergo deep reinforcement learning to
avoid node and switch failures and provide optimized routing paths by selecting switches that
efficiently conduct block transfers. DQN-EC achieves a 2.5-times-faster block transmission time
and 0.4-times-higher network throughput than open shortest path first (OSPF) routing algorithms.
The bottleneck bandwidth and transmission link cost can be reduced, improving the recovery time
approximately twofold.

Keywords: deep reinforcement learning; network routing; deep q-network; erasure coding; distributed
clustering systems

1. Introduction

Owing to the recent development of technologies such as smartphones, IoT, artificial
intelligence, and big data, large-capacity big data are being generated and utilized. We
previously used a replication technology-based distributed file system to store such data;
however, with the spread of cloud computing, we have recently begun storing big data
more efficiently using an erasure coding-based distributed file system [1–3]. Replication
techniques divide the original data into multiple data blocks and store them on each
distributed server through n-duplex replication. Because such techniques replicate n data,
the efficiency of disk storage is extremely low owing to the disadvantage of data availability
n times. To improve this, a distributed file system based on the erasure coding technique
is used. The erasure coding technique divides the original data into data blocks and
generates parity blocks through encoding operations. Decoding is a method for recovering
original data through an operation that combines distributed and stored data blocks with
parity blocks [4]. In such erasure coding-based distributed file systems, although space
efficiency problems have been overcome, a large disk overhead occurs during encoding
and decoding. Furthermore, block transfers are not efficiently achieved owing to the
occurrence of countless variables through the routing path of the network. When decoding,
it is important to efficiently send data and parity blocks to the destination node without
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a network delay. To address this problem, continuous research has been conducted to
optimize the network routing paths. Typically, we establish a server that can aggregate
the data and reduce the number of transmission links required for transferring blocks
while addressing network bottlenecks [5,6]. However, such studies have not focused on
detecting dynamic bandwidths that occasionally change in actual network topologies. In a
real-world network topology, the bandwidth is transmitted by multiple packets to manage
the health of each server, as well as the block transfers related to erasure coding.

SDN is a new network technology that separates the control of switches and routers
within a network from the data area [7]. SDN controllers allow for the central control
of the entire network and network management. In addition, SDN controllers have a
global view of the entire network, allowing comprehensive network information to be
collected. However, although data can be collected through an SDN for efficient network
management, efficient packet delivery remains a challenge in terms of network throughput
and latency. Therefore, optimizing network resources requires deploying and resolving
routing paths that are optimized for the network. The optimized routing path problem is
how to efficiently forward data traffic from the source node to all reachable destination
nodes and switches, and to find routing paths to destination nodes that conduct decoding
operations. Traditionally used routing path algorithms in networks include OSPF [8]. How-
ever, OSPF cannot predict network changes because it does not consider dynamic changes
in bandwidth based on the shortest paths. In other words, the optimal routing path cannot
be found in a network with a dynamically changing bandwidth and traffic distribution.

In summary, in an erasure coding-based distributed file system, the network routing
methodology has difficulty identifying real-time changes in the network bandwidth and
failed nodes because it does not take real data into account. In addition, efficient network
routing paths are difficult to create because supervised learning-based network routing
methodologies do not consider data from real networks. Although reinforcement-based
network routing can generate efficient routing paths compared to supervised learning, it is
difficult to apply the model’s suitability and network environment.

We therefore implement DQN-EC, which leverages erasure coding to provide opti-
mized routing paths based on deep reinforcement learning to address the throughput,
bandwidth, and transmission link cost issues that arise when transferring blocks. Instead
of building an accurate mathematical model for the underlying network, DQN-EC solves
this problem through the experience of deep reinforcement learning. DQN-EC applies
reward values designed for the collection of comprehensive network information for the
state, configuring one-to-many networks to select nodes and switches for the next link, and
optimizing the network throughput, bandwidth, and transmission costs. As the learning
progresses, the agent learns a policy that predicts the future behavior of the underlying
network and finally proposes improvements to the routing path between the source and
destination nodes.

Section 2 describes the basic principles behind the erasure coding-based distributed
file system as well as DQN and deep reinforcement learning. Section 3 discusses research
examples related to the methodology applied to solve the problem of machine learning
(supervised and reinforcement learning)-based network routing paths and the methodology
for network optimization of erasure coding. Section 4 discusses the data items used in the
proposed DQN-EC learning, the design of neural network models, and the configuration
of the hyperparameters [9]. In Section 5, we describe evaluation results showing the
improvements when applying DQN-EC to the erasure coding network topology. Finally,
some concluding remarks are provided.

2. Background Principle

This section introduces the principles of erasure coding and the fundamentals of rein-
forcement learning, which consists of a network environment for an experimental evaluation.
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2.1. Principle of Erasure Coding

The typical method of data storage in a distributed file system is to divide the original
data into blocks of data of a certain size using replication techniques, and to replicate the
divided blocks of n and store them separately on multiple nodes. However, traditional
replication technique-based distributed file systems store replicated blocks of data, resulting
in an n-fold increase in spatial efficiency. Therefore, to improve this, a recent erasure coding
technology-based distributed file system that has been extended from existing replication
technique-based distributed file systems is being utilized. Erasure coding is represented in
Figure 1 as a technique for storing data through the encoding and recovery of the decoding
data, unlike how data blocks are divided into constant sizes, replicated, and stored [10–12].

Figure 1. Encoding process of erasure coding.

Figure 1 shows a structure in which a Reed-Solomon (RS) code (6, 3) is used to
construct six data blocks and three parity blocks generated through encoding. That is,
when the original data are entered, they are divided by the RS erasure coding (6, 3) using
as many blocks of data. In addition, each data block generates parity blocks through
an encoding matrix and calculations, and thus all blocks (data blocks and parity blocks)
are distributed and stored for each disk or network environment they use, as shown in
Equation (1).

Pi =
k

∑
j=1

αi,jDj (1)

The parity block Pi is generated by multiplying the data block Dj by the encoding
matrix coefficient αi,j(i = row, j = column) in Figure 1; although the decoding operations
have been expressed through multiplication, they are actually computed through various
algorithms, such as the RS erasure coding, liberation, AVX:CRS, and XOR algorithms.

Figure 2 shows the behavioral process of the decoding operations in which nodes
possessing data block 2 and parity block 1 fail owing to factors such as a network connec-
tivity delay or a natural disaster and do not respond. However, a failure is recoverable by
decoding the parity block and the original data block generated through encoding. The
number of blocks that can be decoded and recovered reaches only up to three, which is the
number of parity blocks, when configured in an RS code (6, 3). In other words, three out of
nine blocks can be recovered during a failure, as shown in Equation (2).

d∗ = (β1, β2, β3, . . . , βi)×


P1
P2
P3
. . .
P4

 =
k

∑
i=1

βiPi (2)
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Figure 2. Decoding process of erasure coding.

Blocks d* that require recovery are regenerated into new nodes by decoding the decod-
ing matrix coefficients (β1, β2, β3, . . . , βi) and the generated parity blocks (P1, P2, P3, . . . , Pi).

2.2. Principle of Deep Q-Network

Q-learning, the reinforcement learning underlying a DQN, teaches agents that interact
with the environment. In the early stages of learning, the agent learns slowly over time,
taking random actions in various situations called ‘states’. Policies are configured by
updating all values to the table-type Q-table, depending on the status operation, and then
referring to them and selecting the action. This is expressed in Figure 3 and Equation (3) as
a way to update the Q-table to maximize the final cumulative reward while sequentially
progressing the episode [13].

Q(s, a) = r(s, a) + γ max
a

Q
(
s′, a′

)
(3)

Figure 3. Q-learning process.

The sum Q(s, a) of all rewards that can be received when taking action a in the current
state s can be calculated as the sum of the immediate rewards that can be taken and received
in the future. On the right side of the equation, r(s, a) represents the immediate reward
value to be received when action a is taken in the current state s. In addition, s′ is the very
next state that is reached by taking action a in the current state s, and max

a
Q(s′, a′) is the

maximum value of the reward that can be received in the next state s′. The goal of the agent
is to select an action that maximizes this value. In addition, γ is a value called a discount,
which controls the importance of a future value. The larger the value of γ is, the greater the
value of the future reward, and the smaller the value is, the greater the importance of the
immediate reward.

Because Q-learning must have all values for a state-action corresponding to the Q-
table, there is a limit to how many states can be stored. To improve this, there was a way to
learn Q-learning using neural network models; however, when applying high correlation
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problems between learning data and gradient descent methods, the target value, Target,
is moving. Therefore, using neural network models instead of a Q-table, DQN combines
Q-learning with deep learning, enabling neural network models to approximate the Q
values, and constructs the target neural networks separate from a replay of the experience.
This is expressed in Figure 4 and Equation (4) [14].

Cost =
[(

r(s, a) + γ max
a

Q
(
s′, a′; θ′

)
− Q(s, a; θ)

)]2
(4)

Figure 4. Deep Q-network process.

In the existing Q-learning in Equation (3), the final goal is to converge and reach the
true value when the left and right sides are the same. The DQN shown in Equation (4) also
has the same goal, i.e., to learn the neural network models in the direction of minimizing the
difference between the two values through the loss function of the neural network models.
In addition, in Equation (4), Q(s′, a′; θ′) is the Q-Target and refers to the state, action,
and parameters used in a neural network applied in deep-learning-based reinforcement
learning. The target network optimizes θ of the real network, holding the weight of the
value of the Q-Target θ′, even when minimizing the loss function, similar to how it holds the
target when conducting supervised learning. In other words, when learning a predictive
network representing Q(s, a; θ), as shown in Figure 4, a target network representing
Q(s′, a′; θ′) is created separately to fix the weights. It then passes the weights of the
forecasting network to the target network at every step. This learning is not affected by
the weights the target is learning when narrowing the difference between the values of the
target network and the predictive network. Therefore, more stable learning is possible than
with Q-learning.

As shown in Figure 4, the DQN takes actions that are considered optimal at every
moment through the learned neural network model and stores data on the status, behavior,
and rewards in the playback memory until the end of the episode. In other words, if the
batch size required for learning is n, the agent takes n actions and stores n data sequentially
in the replay memory. As a difference from Q-learning, it does not learn from the recently
stored data in replay memory, and instead randomly extracts mini-batch-sized samples
from n data stored thus far to learn the neural network. This is because, if the recently
stored data in the replay memory are used as is, the correlation between the data will be
too large, and learning is therefore not properly applied.

Therefore, DQN has two improvements. First, because the network is separated using
two deep learning neural network models, the learning instability of the target network
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can be improved. Second, the correlation among the data can be resolved because they are
trained by randomly extracting mini-batch sized samples using replay memory.

3. Related Studies and Motivation

This section first introduces algorithms and methodologies related to erasure coding,
which will consist of a network environment for an experimental evaluation. Second, we
introduce network routing algorithms and methodologies that utilize supervised learning
and reinforcement learning applied in machine learning. Finally, the need for this study
is explained.

3.1. Studies Related to Erasure Coding

Erasure coding has a significantly increased space efficiency, taking up less disk
space than traditional replication-technique-based distributed file systems. However,
because various cost problems, such as disk overhead and network bottlenecks, occur in
data encoding and decoding, various algorithms and methodologies have been proposed
to resolve such issues. A distributed erasure-coding-based file system can divide the
data encoding/decoding process into five stages: client overhead, master process, parity
calculation, data distribution, and slave process. A cost analysis that occurs when the
network bandwidth is sequentially increased to 1 G, 10 G, 40 G, and 100 G suggests that
client overhead and data distribution are the costliest [15,16]. Disk contention availability
is applied to efficiently distribute multiple recovery requests using a parallel recovery to
reduce client overhead costs, random chunk allocation is used to increase the load balancing
efficiency, and asynchronous recovery is utilized to increase the concurrency [17]. To reduce
the costs incurred during data distribution, a study has significantly reduced the recovery
bandwidth associated with the decoding performance by appropriately adjusting the
recovery speed [18]. A study on a top-down data transfer technique also used distributed
data calculations for updating the parity nodes [19]. In another previous study, the recovery
of failed data was achieved at a small scale throughout the storage node, reducing the
recovery time to approximately equal the normal read time for the same amount of data [20].
Other studies [3,4] also identified and avoided the traffic transmission paths of nodes and
associated nodes where bottlenecks occur, thereby reconfiguring the routing paths and
eliminating bottlenecks across the entire system to reduce the traffic transmission costs.

In erasure-coding-related studies, network routing methodologies and algorithms
improve the routing paths to the destination nodes where the data and parity blocks are
transmitted when decoding the data, reducing the costs of bottlenecks and transmission
links. However, because aggregated hardware-based switches are used to reduce the
bottlenecks and traffic transmission costs, additional hardware costs are required; in
addition, bandwidth is always evaluated at a fixed value and the block transmission rates
are inefficient when the bandwidth is suddenly lowered. Therefore, because DQN-EC
collects dynamically changing data in a network environment using erasure coding and
identifies failed switches, DQN neural network model learning can efficiently yield the
optimal routing paths and transfer blocks.

3.2. Supervised Learning-Based Network Routing

Supervised learning is a method of learning the correct answer data to predict values
and categories for new data [21]. In [22], the authors proposed graph-aware deep-learning-
based intelligent routing to solve such problems as slow fusion and degradation that
occur when constructing complex dynamic networking conditions. In addition, in [23], the
authors proposed an ML-assisted left-loaded algorithm, which is a combination of the Bayes
classifier and the existing least-loaded algorithm, configured to solve the connection failure
problem in the following situations of a circuit-switched network. Moreover, the authors
of [24,25] proposed a RouteNet algorithm to help optimize routing schemes for mean delays
by leveraging the ability of graph neural networks (GNNs) to learn and model graph-
based information. In [26], the authors proposed a deep learning routing algorithm that
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configures a deep-learning-based neural network, with the input of the model consisting
of a set of numbers indicating the number of packets forwarded through each node of the
network, and the output using network traffic information in the form of an interface for
forwarding packets. In addition, in [27], the authors studied the input of the deep learning
model as a routing strategy based on the deep learning architecture. The deep believe
architecture (DBA) was defined between the number of inbound packets observed on
each router and the time interval, and an algorithm was proposed to construct a restricted
Boltzmann machine on the detailed hidden layer of the DBA. In [28], the authors also
proposed an automated protocol design method for controlling and managing a network
by applying two important aspects of the GNN model—i.e., distributing the topology
information between different nodes and calculating the topology and link-weighted paths.
In addition, in [29], the authors also proposed MLProp by leveraging a variety of input
parameters—such as the buffer capacity and node access rates, respectively—to indicate
whether packets can be delivered successfully along these links, improving the network link
performance and probabilistic routing approaches to intermittent opportunistic networking.
Finally, in [30], the authors developed a flexible supervised learning framework through
a training model that includes learning paths and all path pairs of mixed integral linear
programming and proposed a routing methodology that utilizes deep neural network
methods to minimize the identity of network systems instead of always selecting the
shortest paths.

Related studies on supervised-learning-based network routing methodologies predict
the routing paths by learning the machine learning models, such as naïve Bayes classifica-
tion, decision tree, and deep learning-based neural network models. However, to conduct
supervised learning, a dataset must be prepared in advance, and the performance varies
greatly depending on the type of model used. In addition, although the correct labels for
the datasets used must exist, it is difficult to produce an efficient predictive path because the
correct labels can always vary depending on the bandwidth and traffic intensity generated
by the actual network. Therefore, DQN-EC can yield efficient routing paths compared to
studies related to supervised learning-based networks because the approach collects both
static and dynamic data through SDN controllers and utilizes deep reinforcement learning,
which does not select specific models.

3.3. Reinforcement-Learning-Based Network Routing

Reinforcement learning is a method of learning how to behave in each environment,
and proceeds by receiving feedback as positive or negative rewards for the actions con-
ducted by the agent under various situations [31]. In [32], the authors proposed a QAR
algorithm for achieving time-efficient and adaptive QoS provisioning packet delivery
through reinforcement learning and QoS-aware compensation capabilities. Furthermore,
the simulation results demonstrate that QAR outperforms existing learning solutions and
provides fast convergence with QoS provisioning to facilitate practical implementation in
large software-service-defined networks. In [33], the authors proposed RL4Net, which is
a type of deep deterministic policy gradient-based Q-learning. The state is encapsulated
into the amount of traffic flowing between each pair of routers (total size), which corre-
sponds to a weight update determining how the router selects the interface to forward,
and the reward is calculated based on the delay. In addition, in [34], the authors proposed
applying Q-learning directly to packet routing, and proposed an efficient routing policy in
dynamically changing networks without needing to know the network topology or traffic
patterns in advance. In [35], the authors proposed CQ-routing, through which the learned
routing policy under a high load shows more than twice the performance of Q-routing in
terms of the average packet delivery time. It has also been indicated that CQ-routing can
sustain higher load levels than both Q-routing and shortest path routing. Moreover, in [36],
the authors proposed NNQ-routing using a neural network approximation to improve the
scalability of Q-routing. The Q function was replaced by a three-layer-conceptron model,
and the successful packet delivery of Q-learning adopted positive compensation, delay,
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and loss packets as negative compensation. In [37], the authors proposed two adaptive
reinforcement-learning-based spectral recognition routing protocols, with Q-learning and
dual-reinforcement learning, respectively. Spectrum-aware DRQ routing learns the optimal
routing policies 1.5-times faster than spectrum-aware Q-routing at low and middle network
loads. Under high network loads, the routing policies learned are seven times better than
those of spectrum-aware Q-routing. Moreover, in [38], the authors proposed critical flow
rerouting-reinforcement learning (CFR-RL), a reinforcement learning-based scheme that
learns policies to automatically select critical flows for traffic matrices. The state uses a
traffic matrix for time t, and the action generates multiple actions for time step t at each
state. A reward is used to reroute the critical flows to balance the link utilization and set
up the flows to reflect the network performance. In [39], the authors also proposed posi-
tive and negative compensation values using network throughput and delay to optimize
the reward for network throughput. After proper learning, the agent proposes dueling
double-deep Q-learning-based RL-routing, which predicts the future behavior of the un-
derlying network and suggests better routing paths between switches. Moreover, in [40],
the researchers improved the problem of a poor response ability of neural networks when
generating multicast routing trees by always learning the DQN for the same environment.
In other words, we propose a multicast routing tree methodology that learns and responds
to a new environment each time it learns.

Related studies on reinforcement-learning-based network routing methodologies
yield routing paths by learning in the direction in which the routing nodes become agents
and reduce the latency based on Q-learning without specific models. In particular, deep
reinforcement learning is efficient because agents yield optimal routing paths through the
learning of neural network models based on data collected from the network. However,
related studies have not considered switches that fail in the routing paths, and studies
on applying DQN when transferring requested data blocks, and parity blocks during the
decoding of erasure coding remain insufficient. Therefore, DQN-EC leverages DQN, a
type of deep-reinforcement-learning-based Q-Learning, to collect network data and yield
efficient routing transmission paths.

3.4. Motivation

Figure 5 shows when a node and switch fail in an existing network routing path
and the network routing transmission path is disconnected. In the event of a failure, it
is difficult to find an efficient path to which links should be used to transmit data to the
destination node. In other words, an optimized routing path is needed to measure the
network bandwidth that changes in real time to avoid the link with the best link bandwidth
and when nodes fail due to natural geological and other factors. In addition, when selecting
links, reducing the link transfer cost as much as possible should also be considered, as
mentioned in the erasure coding-based improved study.

Figure 5. Example of a failure in a network routing path.
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Therefore, in this study, we apply DQN-based deep reinforcement learning to a
network environment configured with an erasure-coding-based distributed file system.
In addition, we propose a methodology that adds not only the dataset related to network
routing as input values to the neural network model applied, but also the input parameter
values required for decoding in erasure coding, and modifies the layers used in the neural
network model.

4. System Design

This section discusses the methodology used for applying DQN-based network rout-
ing algorithms to the erasure coding network topology.

4.1. Overview

Figure 6 shows the overall structure of applying the DQN-based network routing
algorithm to the erasure coding network topology environment proposed in this paper. The
algorithm utilizes SDN controllers, a network architecture approach that can intelligently
and centrally control or program networks using software applications. Therefore, it can
collect relevant data from the erasure coding network topology environment.

Figure 6. Structure of the DQN-based EC network routing architecture.

Data required when configuring network routing paths using dynamically changed
network bandwidth and failed node and switch information are collected and stored in the
database at regular time intervals. The stored data correspond to the input layer parameters
of the neural network model in a DQN-based network routing algorithm.

4.2. Database Storage

The parameters entered into the DQN neural network model were learned from data
collected over a period of time in the database. We collected general data from the network
and data from the erasure coding network topology. The main data collected from the
networks are the link bandwidth, link-available bandwidth, and hop count, and the main
data collected from erasure coding are the failed nodes and switches, block sizes to be
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transmitted, source nodes, and destination nodes. The list of data stored in the database
and the parameters entered into the DQN neural network model are shown in Table 1.

Table 1. Input parameters of DQN neural network.

Notation Symbol Definition

Time x1 Time when network data was collected

G(V, E) x2
Location of node or switch

(V consists of network nodes, E consists of all links between nodes)
RTT x3 Round tip time (Ms)
MSS x4 Maximum segment size (Byte)
ABsw x5 Available bandwidth currently available for transmission

PreBwsw x6 Previous link bandwidth (Gbps)
Nowsw x7 Location of the current node or switch

NextBwsw x8 Next link bandwidth (Gbps)
Prehobsw x9 Previous hop node or switch

Nexthobsw x10 Next hop node or switch
TNodecount x11 The total number of node or switch
PNodecount x12 The number of parity nodes
DNodecount x13 The number of data nodes

Nodelive x14 Current living nodes
Nodedead x15 Current dead nodes
Blocksrc x16 Source node that transmits blocks
Blockdes x17 Destination node that be received blocks
Blocksize x18 Transmitted size of blocks

The parameters entered into the DQN neural network model correspond to symbols
x1 through x18, which corresponds to the period of time in which x1 is collected. When
transferring data and parity blocks, elements that can be collected and stored in a typical
network topology correspond to x2 through x9, and elements that can be collected and
stored in an erasure coding network topology correspond to x10 through x18. In particular,
among the data that can be collected through the SDN controller, dynamic data are stored
through a calculation process conducted once before the data collection. The RTT sends the
immediately returned packets to the connected switch and measures them divided by two,
when considering the bidirection received through the response. Here, ABsw is measured
by calculating the difference between the maximum bandwidth of the link and the data
rate of the next connected switch. The data rate is the difference between the number of
bytes transmitted at time t and the number of bytes transmitted at time t+1.

The x2 element, G(V, E), represents the location and orientation in a two-dimensional
planar form, where nodes and switches can be located in a network topology. The x3 and
x4 elements, RTT and MSS, are the elements of network packets needed to transmit parity
blocks, x5 represents the current available bandwidth in the link, and x6, x7, and x8 are the
bandwidths of nodes and switches present before and after the present time. In addition,
x9 and x10 represent the hop count of the nodes and switches that exist before and after the
current location, and x11, x12, and x13 represent the total number of nodes with data blocks
and parity blocks in the erasure coding network topology, and the number of data nodes
and parity nodes for each block. Moreover, x14 and x15 are currently active and inactive
nodes used to determine the number of failed nodes, and x16, x17, and x18 are the data
blocks, the source nodes to which the parity blocks are to be transmitted, and the size of
the destination nodes and blocks.

4.3. Performance of Deep Q-Network

In Section 4.2, the state is described as the input parameters required by the agent to
derive actions from the DQN neural network model. All elements were used as inputs
to the neural network model, along with the amount of change before each element. For
example, the bandwidth of the following nodes and switches is shown in Equation (5)
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through the current time t, which is the time information, and the previous time t-1, which
is the amount of change.

∆NextBwsw = NextBwsw(t)− NextBwsw (5)

The action is passed on to the erasure coding network topology according to the policy
configured by the agent based on any state value. In addition, when a proper action is
applied according to the state value, the agent can obtain a positive reward value for nodes
that need to transfer blocks in the erasure coding network topology, and a negative reward
value for moving to the wrong node and switch. Thus, the entire Action_set group performs
k different actions for each time period t, as expressed through Equation (6).

Action_sett = {a1, a2, . . . , ak} (6)

A reward is utilized to update the weights in the DQN neural network model, and
unlike using labels for correct answers in supervised learning, each weight is updated
through backpropagation using action-driven rewards. Therefore, the learning outcomes
of neural network models may vary depending on how the reward is defined. In this study,
the Rewardtotal values were configured in three forms. Reward1 has a positive value when
data are sent using the correct link, Reward2 has a negative value when data are sent using
the wrong link, and Reward3 has an extremely small negative value because it enters into a
loop unless it chooses a switch link with another node. The overall reward value is shown
in Equation (7).

Rewardtotal = Reward1 + Reward2 + Reward3 (7)

Reward1 is shown in Equation (8) by setting it as a positive integer value when the
current node and switch location (Nowsw), the node and switch location (Prehobsw) of the
previous link, and the next node and switch location (Nexthobsw) are all moved throughout
the entire path.

Reward1 = Nowsw + Prehobsw + Nexthobsw(0 < Reward1 ≤ 1) (8)

Reward2 is shown in Equation (9) by setting the value to a negative integer when the
link is moved from the current node and switch position (Nowsw) to the failed node and
switch (Nodedead).

Reward2 = Nowsw − Nodedead (−1 ≤ Reward2 < 0) (9)

Reward3 is a negative value for exiting the loop state as a constant cycle is repeated. If
a large negative value is set, one can exit the loop and select another link; however, because
there is an error that allows one to select the wrong link, an extremely small negative value
can be set, as shown in Equation (10).

Reward3 = −0.02 ≤ Reward3 < 0 (10)

Replay memory is the memory space that stores the entire history that the agent
applies during repetitive learning. The DQN neural network model proceeds with learning
over time from the data contained in the constant cycle time collected. At this time,
the learning is unstable owing to the high correlation because the data were collected
sequentially. Therefore, when learning from replay memory is carried out, the correlation
is reduced as much as possible through mini-batch learning using randomly extracted data,
as previously mentioned in the description of the DQN principle.

The input layer, hidden layer, and output layer design of the DQN neural network
model are listed in Table 2.
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Table 2. Layer design of DQN neural network.

Layers Size Activation Function

Input Layer 18 None
Hidden Layer 1 32 Leaky ReLU
Hidden Layer 2 64 Leaky ReLU
Hidden Layer 3 128 Leaky ReLU
Output Layer 16 None

The input layer was designed with 18 elements corresponding to the state, and three
hidden layers were used. The first hidden layer was set to 32, the second hidden layer to
64, and the last hidden layer to 128. In addition, the activation function used by the hidden
layer was specified as a leaky ReLU [41]. The output layer is set to 16 to select the highest
Q-value of the links between the following nodes and switches on the source node holding
the data and parity blocks. Finally, the learning rate was tested by varying the values from
0.001 to 0.1, where 0.01 was the best value obtained, and the discount rate was designated
as 0.95.

4.4. Optimized Routing Paths

When the optimal routing path is calculated through a DQN, the routing path is
transmitted through OpenFlow to the erasure coding network topology. OpenFlow has a
flow table that contains information regarding the path and method of packet forwarding
used to the transmit blocks. When a packet occurs, it first ensures that the flow table
contains information about the packet. If information about a packet exists, the packet is
processed accordingly, and if information does not exist, the OpenFlow controller requests
control information about that packet. Upon receiving control information from the switch,
the OpenFlow controller checks the packet control information that exists inside and for-
wards the result to the OpenFlow switch. Packet control information within the OpenFlow
controller can be entered through an API in an external program. The OpenFlow switch
stores the control information received from the controller in the flow table and then uses
the information in the flow table to forward the packet when the same packet occurs.

In the erasure coding network topology, the source nodes that transmit the data blocks
and parity blocks required for decoding to the destination node are transmitted using
optimized network routing paths. The process of calculating the optimized routing paths
is shown in Algorithm 1.

First, the input parameters stored in the database, the hyperparameters used to design
the DQN neural network model, and the discount factors (step 1) are specified, and the
elements that are entered into the DQN neural network model are initialized. An element
is a replay memory used to solve the correlation problem, a Q-value of the action from the
state, a Q-value of the target network to calculate the next action, a P list that stores routes
from each source node to the destination node, and a 2d LP list that stores routes from all
source nodes to destination nodes (step 2).

The detailed algorithm works through a double loop (step 3) because the block transfer
required for the decoding operation must consider all routing paths from each source node
to the destination node (step 4). The following indicates the same e-greedy methodology
as Q-Learning and selects an action on which link to select from the source node to the
next node and acquires a reward value to move to the next state (step 5). To reduce the
correlation problems described, previous records are stored in the replay memory, and
mini-batch learning is applied (step 6). The action is determined, the value is calculated
to estimate the Q-value of the target network, and the weight is updated to optimize the
learning model by applying gradient detection (step 7).
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Algorithm 1 DQN-based network routing in Erasure Coding network topology

1 Input: hyper parameters of neural network, discount factor γ

2 Initialize experience replay memory RD
Initialize action-value function Q with random weights θ

Initialize target action-value function Q̃ with weights θ̃ = θ

Initialize network route list P
Initialize complete network route 2d list LP

3 For 1: i do ((i = number o f source nodes)
4 For episodes = 1:100 do
5 With the probability select random action at, otherwise select at = argmaxaQ(st, a; θ)

Execution action at, get reward rt and next state s′t then update the network state
6 Store the experience (st, at, rt, s′t) to RD

Sample random mini batch perform (sj, aj, rj, s′j) from in RD
7 If episode terminates at step, j + 1 then

Set target yj = rj
Else
Set target yj = rj + γmaxa′ Q̃

(
s′j , a′; θ̃

)
End If

Perform a gradient descent step on learning rate and
(

yj − Q̃
(

s′, a′; θ̃
))2

with θ

Every C steps reset Q̃ = Q
End For

8 Append the last route path to list P
List P append to list LP

9 Initialize all variable except LP (RD, Q, Q̃, Pi, at, rt, yt, . . .)
End For

10 Output: Complete network route path LP from all source node to destination node

When a routing route from one source node to the destination node is completed, it
is stored in a P-list as well as in a 2d LP list composed of dual lists (step 8). In addition,
because another route from the source node to the destination node must be produced,
the remaining variables are initialized except for the LP list that stores the final optimized
route (step 9). At the end of every iteration, the LP list stores the entire routing path from
each source node to the destination node, and thus in the erasure coding network topology,
each node transfers the blocks required for decoding to the destination node according to
the path (step 10).

5. Evaluation

This section describes the results measured in the DQN simulation environment
and the erasure coding network topology used to identify and analyze the experimental
evaluation results of the proposed method.

5.1. Simulation Environment

This section describes the specifications and simulation environments of deep-learning
workstations to evaluate the performance of DQN-based erasure coding network topologies.
The deep learning simulation was conducted on a workstation running the Ubuntu 20.04.4
operating system, with a XEON 4110 (8 core × 2) CPU, 128 GB of DDR4 memory, and four
RTX 2080 graphics cards.

OpenvSwitch was used to set up an environment containing virtual nodes and a
set of links connected to the switch, and the SDN network controllers used open-source-
based Ryu as an OpenFlow network controller. For network bandwidth fluctuations, the
link bandwidth of each node and switch reached up to 1 Gbps and was configured to be
randomly changed within the range of 300 to 600 Mbps. We randomly specified a 15%
probability of switch failures. The traffic intensity was set to 30% to 50% because it would
be necessary to assume that some data were being transmitted. The key variables and the
set values used in the experiments are listed in Table 3.
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Table 3. Parameters of network topology simulation.

Parameters Configure Value

Training steps 100
DQN episodes 100

Link maximum bandwidth 1 Gbps
Link real-time bandwidth 300–600 Mbps

Traffic intensity 30–50%
Probability of link failure 0–15%

The network topology used to experiment with the DQN-EC performance was given
a fat tree [42]. The fat-tree network topology is configured using parameter α and consists
of α3/4 servers and 5× α2/4 switches. In the experimental evaluation, parameter α was
specified as 8, resulting in a network topology with 128 servers and 80 switches. For
128 servers, RS (6, 3) erasure coding is applied to randomly generate six data blocks
and three parity blocks, which are distributed and stored on nodes, and the size of the
blocks stored is 128 MB. For various experimental evaluations, the test was conducted by
increasing the probability of a switch failure from 0% to 15% when requesting a decoding.

Figure 7 shows a topology example consisting of 16 servers and 20 switches by
specifying parameter α as 4 to help understand the fat-tree network topology with erasure
coding. The topology configuration shows that green-shaded nodes are source nodes
for transferring blocks in a decoding operation, and blue-shaded nodes are destination
nodes for receiving blocks and performing decoding operations. In the above simulation
environment and EC network topology, the DQN-EC-based network routing method was
labeled DQN-EC and compared with the underlying network routing algorithm OSPF.

Figure 7. Example of applying EC to fat-tree network topology.

5.2. Evaluation Result of DQN-EC

This section introduces the results of the rate of change in compensation per episode
associated with the designed DQN neural network model. It also introduces the time
and network throughput results of transferring blocks from the erasure coding network
topology to the target nodes, depending on the probability of a switch failure. Finally, we
introduce the recovery time results based on the number of recovery requests.

Figure 8 shows the cumulative change in reward values according to the learning
process of the agent when using DQN-EC and OSPF.
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Figure 8. Total reward based on number of episodes.

Figure 8 shows the results of measuring the change in the cumulative reward value,
with the x-axis representing the number of episodes and the y-axis representing the sum
of the rewards according to the number of episodes. On average, 95 different routing
paths were generated, some quite similar, and some completely different. However, as
the number of episodes was repeated, a similar route was created in the last 80–100 paths.
Using the e-greedy method, the agent initially does not have sufficient knowledge of the
current network topology. Thus, most of agents explored the environment and obtained
a lower reward value; however, as the number of episodes increased, the reward value
increased and converged to the maximum value, indicating that optimized network routing
paths were created during the last episode.

Figure 9 shows the block transfer time according to the probability of failure of 0%
to 15% on a switch corresponding to the simulation parameters when using DQN-EC
and OSPF.

Figure 9. Block transmission time based on the probability of a link failure.

Figure 9 shows the measurement of the block transfer time from the source node to
the destination node according to the probability of a switch failure, in which the decoding
request was conducted only once. When a decoding request is made, nine blocks with a
size of 128 MB are sent to the destination node. Compared to the existing OSPF routing
algorithms, the block transfer time is reduced. For up to 15% of the maximum probability
of a switch failure, DQN-EC has a slight increase in the block transfer time from 5.2 to 11.8 s.
However, OSPF increases significantly from 12.48 to 30.68 s as it reaches 15%. DQN-EC
measured a block transfer time of 8.25 s on average, and OSPF averaged 20.91 s, showing a
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difference in the block transfer rate of approximately 2.5. The DQN-EC neural network
model provides a faster block transfer time than the Dijkstra algorithm-based shortest-path
OSPF because the agent avoids failed switches and selects links corresponding to optimized
routing paths when considering the bandwidth.

Figure 10 shows the network throughput according to the probability of a failure of
0% to 15% on a switch when using DQN-EC and OSPF.

Figure 10. Network throughput based on the probability of a link failure.

Figure 10 shows the improvement in network throughput compared to traditional
OSPF routing algorithms because of the measurement of the network throughput. The
performance of OSPF is measured similar to that of DQN-EC under a probability of failure
of 0–4%. However, from 5% of the probability of a switch failure, the network throughput
of DQN-EC and OSPF becomes increasingly different owing to increased network traffic
and congestion probability in the network. In OSPF, when the probability of a switch failure
is 12%, the measured network throughput of 455 MB/s decreases slightly as the probability
of a switch failure increases to 15%. Conversely, DQN-EC can maintain the congestion
probability as low as possible throughout learning, and thus the network throughput is
not reduced by up to 15%, which is the maximum probability of a switch failure, and can
continue to improve, reaching up to 515 MB/s.

The performance of the recovery times that occur during decoding using optimized
routing paths is assessed. The recovery time is the sum of the network bottleneck costs
and the link count costs and is compared and evaluated using OSPF routing network
algorithms. The relevant content is shown in Equation (11). Because the measured recovery
time varies depending on the probability of failure of the switch, the probability of a switch
failure was fixed and measured at 5% to maintain a constant block transfer time.

RT = ∑n
r=1(BBr + TLr),

BBr = argmin(∑n
k=1 NBk),

TLr =
∑n

k=1 NBk
∑n

k=1 Lk
,

(11)

where BBr indicates the bottleneck bandwidth, TLr indicates the transmission link, NBk
indicates the network bandwidth and Lk is the number of links.

Above, RT is the recovery time, which is the sum of the BB and TL costs, where the
former indicates the bottleneck bandwidth in routing paths, and the latter indicates the
transmission link costs in the routes. The lower the measured value, the better, because the
network bottleneck bandwidth indicates the bandwidth at the point where network traffic
occurs at a particular point while configuring the network routing path. The transmission
link cost is the cost of summing the measured network bandwidth in the optimized routing
path and dividing the total sum of the link counts of the links. The results related to
network bottlenecks and transmission link costs are shown in Figure 11.



Appl. Sci. 2021, 11, 8727 17 of 20

Figure 11. Graphs of BBr, TLr by equation 11 as: (a) Bottleneck bandwidth based on number of decoding requests;
(b) Transmission link cost based on number of decoding requests.

Figure 11a shows that the network bottleneck bandwidth of DQN-EC averaged
493 Mbps, which is slightly lower than that of OSPF at 633 Mbps. The network bottlenecks
were reduced compared to OSPF because under intense traffic decoding operations using
optimized routing paths that avoid high transport links are applied as much as possible.
Figure 11b shows that the transmission link costs measured are high in OSPF, which can
simply maintain short transmission links up to two recovery requests. However, the
more recovery requests that exist, the more network routes that occur, and the greater the
complexity, the lower the DQN-EC, which considers the bandwidth and transport links.
In addition, the bottleneck bandwidth is likely to be due to the processing limitations of
the internal bus bandwidth of the deep learning workstation. Therefore, checking the
GPU, memory, and GPU entries in the monitoring log recorded during this experiment, it
was shown that a pull-load phenomenon did not occur, and thus was less relevant to the
internal bus bandwidth.

Figure 12 shows the combined recovery time for network bottlenecks and link count costs.

Figure 12. Recovery time based on number of decoding requests.

The measurement of the recovery time of DQN-EC and OSPF gradually varies as the
number of recovery requests increases. DQN-EC takes 77 s to recover when the maximum
number of recovery requests is 10, whereas OSPF requires 165 s for the same number of
maximum requests. The optimized routing path of DQN-EC avoids bottlenecks as much as
possible and chooses links in which the transmission link costs are low. Therefore, even if
the bandwidth of the transfer link is low, the recovery time is shorter than that of the OSPF
used to reduce the cost of the simple transfer link.
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5.3. Comparison and Summary of DQN-EC and Experiment Results

Similar to DQN-EC, RouteNet [24,25] improves the delay and jitter to the source and
destination by up to 1.4-times compared to OSPF. In [26], the authors compared between the
deep learning system and OSPF; in this case, the overall network throughput was improved
by approximately 2.3-fold, and the average hop delay was measured to be approximately
12-times lower in the proposed deep learning system. In addition, the authors of [27]
indicated that the results of a methodology experiment showed approximately a 3-fold
improvement in network throughput and average delay per hop compared to OSPF. In [34],
when the network load level is between 2 and 2.5, the average delivery time OSPF converges
to the maximum, whereas Q-routing records an average delivery time similar to that of
OSPF when the network load level is 4, which is an improvement of approximately 1.8-fold.
In [35], CQ-routing recorded the same average packet delivery time as OSPF until the route
had 1500 learning times. However, as the learning count reached 3000, OSPF continued to
increase, recording an average packet delivery time of 70 s; however, CQ-routing converges
at close to zero. In [37], DRQ-routing learns the optimal routing policies 1.5-times faster
than spectrum-aware Q-routing at low and intermediate network loads, and the average
packet delivery time differs by up to 30 s compared to Q-routing. In addition, in [39],
RL-routing improved the average file transfer rate by approximately 3-fold and the average
utilization rate by approximately 2-fold compared to those of OSPF.

The DQN-EC proposed in this paper constructs an experimental environment by using
a DQN, deep reinforcement learning, the addition of elements necessary for decoding in
erasure coding, and the selection of OSPF, the subject of the comparison of the experiment
results. The block transmission time, which has a similar meaning as the average packet
delivery time, improved 2.5-fold when the probability of a link failure was 15%. Network
throughput improved 0.4-times, and bottleneck bandwidth was measured up to 100 Mbps
lower than OSPF, reducing bottleneck bandwidth. The data may be recovered twice as fast
as when OSPF is used and the number of decoding requests is 10.

Compared with the above related studies, the purpose of calculating the optimal
routing path, which is the final goal of DQN-EC, is the same. However, DQN-EC incorpo-
rates a large-capacity distributed clustering system using erasure coding into the network
topology. In addition, it is possible to quickly recover the data because a switch that has
failed in the network is avoided, and the transmission link is not simply reduced, but
instead the bandwidth of the transmission link is detected and the block is transmitted
using an efficient routing path when applying the decoding.

6. Conclusions

In this study, various hyperparameters and erasure coding elements were applied to
the fat-tree network topology for a deep-reinforcement learning-based DQN algorithm
applied to neural network models. We proposed a DQN-EC in which blocks are efficiently
transmitted when a decoding operation is requested by designing a suitable reward value
and applying it to an erasure coding network topology. DQN-EC identifies switches that
fail in a simulated environment in which the bandwidth of each node and switch is not fixed
and dynamically changes, and thus avoids them by providing optimized routing paths.
Compared to the OSPF algorithm, the block transfer time was measured as shorter as the
probability of a switch experiencing a failure and the network throughput both increased.
Even when the number of decoding requests gradually increased, the recovery time could
be reduced by 15–20% overall compared to that of the OSPF algorithms. The DQN-EC
proposed in this paper showed a more efficient appearance than the underlying OSPF
algorithm in a simulation environment using RS (6, 3) erase codes, which are commonly
applied; however, the results may vary depending on the parameters that make up the
erasure coding. Therefore, we analyzed other network topologies—B-Cube, NSFNet, and
APRANet—and classified and extracted elements that can apply DQN-EC. Finally, we will
further study an optimized neural network model design methodology suitable for each
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network topology and demonstrate the efficiency of DQN-EC through an application and
experimental evaluation.
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