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Abstract: The article presents a synthesis strategy focused on low power implementations of combi-
natorial circuits in an array-type FPGA structure. Logic functions are described by means of BDD.
A new form of the SWitch activity BDD diagram (SWBDD) is proposed, which enables a function
decomposition to minimize the switching activity of circuits. The essence of the proposed idea lies in
the proper ordering of the variables and cutting the diagram, ensuring the minimization of switching
in the combination circuit. This article contains the results of experiments confirming the effectiveness
of the developed concept of decomposition. They were performed on popular benchmarks using
academic and commercial synthesis systems.
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1. Introduction

Logic synthesis aimed at minimizing power consumption is currently one of the
most important problems in the design of energy-saving digital circuits. One of the most
popular families of digital circuits is the very complex programmable Systems on Chips
using LUT-based FPGAs. Until recently, the goal of optimizing the synthesis process
was to minimize the number of LUTs or to minimize the length of the so-called critical
path affecting the maximum clock frequency. Along with technological development, the
problem of heat dissipation began to play a dominant role; thus, resulting in the need to
reduce power consumption. The development of mobile devices is also important, as it
forces the necessity to minimize energy consumption.

Minimizing power consumption should be sought at every level of circuit design. The
stage of the system synthesis, at which the greatest limitations of power consumption can
be found, undoubtedly depends on the specificity of the designed system. The greatest
benefits are to be expected when looking for a reduction in power losses at the highest
design levels [1]. The decision to divide the task into software and hardware parts can
have a significant impact on energy efficiency [2]. Only at the highest design level is it also
possible to anticipate the temporary shutdown of the modules of the designed hardware
and software system, which undoubtedly significantly reduces the total power of losses.
Many concepts of power minimization at the system level can be found in [3–6]. They are
often related to the problems of high-level synthesis, presented, inter alia, in [7–10].

However, the power savings at lower synthesis levels are also important. From
the point of view of saving power consumption, the most advantageous techniques are
minimization techniques aimed at minimizing both static and dynamic power consumption.
Such a concept of reducing power consumption are undoubtedly the methods of local
lowering the supply voltage [11,12], or recently very popular methods called “power
gating” [10–14]. However, they cannot be used in FPGAs. Methods aimed at minimizing
dynamic power consumption, with particular emphasis on automatic logical synthesis
algorithms, are also of great importance in the minimization process. Most of them are
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related to the methods of limiting the power consumption of synchronous systems. The
essence of many methods of synthesizing energy-saving circuits comes down to minimizing
the switching. Among them, there are various techniques for limiting the frequency of the
clock signal. Sometimes it is possible to reduce the frequency of the global clock signal, but
this leads to a longer execution of individual functions, which often adversely affects the
operation of the entire system. In this situation, the possibility of temporarily blocking the
clock signal (clock gating) [15] is often sought. The possibility of blocking the clock signal
can be predicted by analyzing the state of the input signals. There are many architectural
concepts known for the possibility of blocking the clock signal. Among them, for example,
it is worth distinguishing the precomputation logic method [16], the kernel extraction
method [17–19], or various FSM decomposition methods [20,21].

Much more sophisticated solutions are related to the local lowering of the clock signal
frequency, which are possible to be implemented in less loaded modules of a complex
digital system. In this case, however, there is a problem with the synchronization of
data exchange in two modules working with different clock signals. A very interesting
concept of reducing power losses is the implementation of systems in the form of a GALS
(globally asynchronous locally synchronous) structure, which makes it possible to adjust
the frequency of the local clock signal to the computational needs of a given unit, but
requires the use of asynchronous interface blocks enabling data exchange. Solutions of
this type work well in complex systems in which the modules are not evenly loaded with
the performed calculations [22]. It should be emphasized that methods of limiting power
consumption begin to play a key role in low-level synthesis. Appropriately carried out
selected synthesis steps can lead to a reduction in power consumption by programmable
systems. This is especially visible in the case of the implementation of FSMs [23–25].
There are several ways to reduce power consumption when implementing FSM. The
methods associated with the appropriate FSM internal state coding [26] are very promising.
Moreover, in the case of combinational systems, there are methods that enable a reduction
in power consumption, as shown in the works of [27–31].

The aim of this article is to present a low-level method of logical synthesis leading to a
reduction in power consumption by combinational circuits implemented in FPGAs. This
method is directly related to the function decomposition and technological mapping in LUT-
based FPGAs. Appropriate modification of the decomposition leads to the creation of a new
synthesis strategy aimed at minimizing the power consumption of the logical structure.

The first part of this article presents the theoretical basis of decomposition using the
description of a function in the form of BDD (in its reduced ordered form ROBDD). Then,
the essence of limiting power consumption by reducing switching activity is presented.
In the next part of the article, a new form of the diagram is introduced—SWBDD—which
allows the authors to propose an appropriate synthesis strategy aimed at minimizing
dynamic power consumption. The next section contains a general description of the
algorithm implemented in the PowerDekBDD tool, in which the ideas presented were
implemented. The article ends with the section “Experimental Results,” presenting the
effectiveness of the described strategy, and “Summary,” which contains conclusions and an
indicated direction for further work.

2. Theoretical Background

One of the main tasks of logic synthesis geared toward FPGAs is to map the im-
plemented logic structure into FPGA resources. The technology mapping in the case of
combinational circuits comes down to the mapping of the implemented function from LUT
logical blocks included in the circuit. It turns out that LUT logical blocks are capable of
executing any logic function with a limited number of variables. The number of k inputs of
the LUT (number of function variables) is small. Therefore, there is a problem of dividing
the implemented circuit. The mathematical model of such a division is the decomposi-
tion of a function. The decomposition theorem was formulated by Ashenhurst [32] and
developed by Curtis [33] as early as the 1960s. In the classical approach, simple serial
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decomposition comes down to splitting all variables into two sets: bound set Xb and free
set Xf. The variables contained in the bound set are variables for the bound functions g [33],
which are implemented in the bound block. On the other hand, the bound functions and
the variables from the free set are variables of the free function realized in the free block.
From the point of view of efficient partitioning, the key is the number of bound functions p,
which corresponds to the number of wires between the bound and free blocks.

Let f be n-input and m-output logic function reflecting Bn set into Bm set i.e., f: Bn →
Bm, where B = {0, 1}. Function f: Bn→ Bm may be presented as Y = f(In−1, . . . , I1, I0), where
Y = {ym−1, ..., y1, y0}.

Function f: Bn → Bm is subjected to decomposition, i.e.,

f (X2, X1) = F[g1(Xb), g2(Xb), . . . , gp(Xb), X f ] (1)

if and only if column multiplicity of Karnaugh map ν(X f

∣∣∣Xb) ≤ 2p [32,33], where Xb ∪ Xf

= {In−1, . . . , I1, I0} and Xb ∩ X f = ϕ.
Simple serial decomposition leads to the division shown in Figure 1.
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The method of describing a function plays a key role in the decomposition process,
which determines the computational complexity of individual operations and memory
usage. It turns out that in this respect, the representation of the function in the form of
BDD [34–36] is very effective. Of course, there are many different forms of BDD. In this
paper, the authors refer to the reduced and ordered form of BDD (ROBDD) when using the
term BDD.

The essence of BDD decomposition is to cut the diagram horizontally. This divides
the nodes into those above the cut line and the nodes below the cut line. The variables
associated with the top of the diagram belong to the bound set Xb. On the other hand, the
variables associated with the bottom of the diagram belong to the free set Xf. In the case
of BDD, column multiplicity corresponds to the number of cut nodes. Cut nodes are the
nodes at the bottom of the diagram (below the cut line) to which the edges above the cut
line are drawn. The essence of the implementation of decomposition with the use of BDD
is shown in Figure 2.
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There are also some modifications to the presented method. As shown in the works [37,38],
the decomposition can also be realized by introducing several cut lines for one BDD. Simple
serial decomposition is the basis for more complex decomposition models, such as multiple
or iterative decomposition, which can also be realized with the use of BDD [39,40].

In order to obtain efficient decomposition, the aim is to limit the number of bound
functions, which allows the complexity of the bound block to be reduced. It is, therefore,
necessary to limit the number of cut nodes. It turns out that the number of cut nodes
depends on two factors: the level of BDD cut and the order of variables in the diagram.
The cut level determines the cardinality of the bound set card(Xb). This value corresponds
to the number of inputs in LUT block (k). Thus, the cut level is assumed to be k from the
root of the BDD (card(Xb) = k). The number of cut nodes at a given level depends on the
order of the variables. Therefore, it is necessary to analyze many orderings of variables.
The idea of a quick reordering in BDD in terms of decomposition was presented in [41].

As the search for the best decomposition is an iterative process, it is necessary to
estimate the effectiveness of the divisions obtained each time. As a rule, the number of
LUT block inputs is somewhat configurable, which complicates the process. One of the
solutions to this problem is the use of triangle tables [42]. Assuming that the number of
inputs is not configurable, instead of determining the technology mapping coefficient from
triangle tables, only the cost of implementing the considered decomposition for a constant
value of k can be determined.

An example of technology mapping in LUT blocks with three inputs is shown in
Figure 3. The xor function described in BDD from Figure 3a was decomposed by a single
cut at level 3 from the root. Two cut nodes were obtained, which indicates the necessity
to use a single bound function g0. In Figure 3b, the top of the diagram is replaced with
a single node associated with the newly created bound function (g0 = x0 xor x1 xor x2).
The first step of decomposition ends with reordering the variables, leading to the diagram
shown in Figure 3c. In the second step of decomposition, the entire procedure is repeated,
replacing the top of the diagram with a single node associated with g1 (g1 = x3 xor x4 xor
x5). As a result, the diagram shown in Figure 3d is created, describing the free function
(y = g0 xor g1). After implementation in LUT blocks with three inputs, a structure is created
as in Figure 3e, the model of which is multiple decomposition.
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decomposition (a–d), the result of technology mapping (e). The ideas presented may be, depending
on the strategy, aimed at minimizing the number of blocks or minimizing the number of logical levels.
The main drawback of these approaches is the complete disregard of power consumption.

3. A Synthesis Method Aimed at Minimizing Power Consumption

Power in digital systems can be divided into static power Pstat and dynamic power
Pdyn (2):

Pdev = Pstat + Pdyn (2)

The static power Pstat depends on the technology of making the digital circuit. This
power depends on many factors such as: gate leakage, drain junction leakage, sub-threshold
current, i.e., a number of technological parameters. In the case of FPGAs, the designer
has minimal possibilities to limit static power consumption in the process of designing
the implemented circuit. It can only look for an FPGA chip that will ensure minimal
static power consumption. In the case of dynamic power Pdyn, the designer has a much
greater impact on reducing power dissipation. The dynamic power is expressed with the
relationship (3):

Pdyn =
1
2

V2
dd f

n

∑
i=1

CiSWi (3)

It is clearly visible that dynamic power depends on a number of factors. The main
factor that allows the dynamic power to be limited is to reduce the supply voltage Vdd.
Unfortunately, it is practically impossible to limit the supply voltage in FPGAs. Another
factor influencing the dynamic power is the frequency of the clock signal f. Naturally,
it is possible to imagine a local decrease in the clock frequency, although it should be
remembered that, as a rule, the aim is to design structures as fast as possible, which means
that this method usually cannot be used. The implemented logic structure resulting from
decomposition is usually a logic network composed in the general case of n nodes. In the
case of FPGAs, the nodes of this network correspond to the LUTs. The internal capacity Ci
can be associated with the lines corresponding to the connections between the nodes of
the network. This capacity must be reloaded each time in the process of switching logic
states, which, of course, has an impact on dynamic power consumption. The value of
the capacitance Ci can be treated individually due to the same technology of making the
entire FPGA matrix. Therefore, it becomes crucial to determine how often this capacity
is reloaded, i.e., the state changes to the opposite one in the i-th node. It is determined
by introducing an additional SWi parameter into Formula (3), i.e., switching activity for
each node. Thus, it can be concluded that limiting the switching activity for as many
nodes of the logic network as possible should lead to the limitation of dynamic power
dissipation. Thus, the idea of limiting switching activity appears at the stage of designing
the implemented structure. However, a problem arises as to how to take into account the
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limitations of SW in low-level stages of synthesis, such as decomposition or technological
mapping. In order to solve this problem, it becomes necessary to develop an appropriate
form of description of a logic function, taking into account the parameter expressions in
the description.

3.1. Switching Activity

Switching activity determines the probability of changing the state of the considered
variable from the value 0 to the value 1 or from the value 1 to the value 0, which is related to
the reload of the capacity Ci. Thus, the value of SW can be represented by the Formula (4):

SW = P( fcurrent = 0)P( fprevious = 1) + P( fcurrent = 1) P
(

fprevious = 0
)

(4)

where P is the probability of the value 1 (or 0) occurring for the considered logic network
node at a given time instant. It turns out that the expression (4) can be reduced if, as P(x),
we denote the probability of accepting the value 1 by the variable x and all inputs are
mutually independent and uncorrelated in time, then the expression (4) can be reduced to
the form (5):

SW = 2P(x)(1 − P(x)) (5)

In this situation, the expression (1 − P(x)) is the probability of the value 0. From the
perspective of the function variables, it is very difficult to determine the probability value
of the value 1. It is difficult to say whether 1 or 0 will occur on the selected input of the
combinational circuit and with what probability. In this situation, it is necessary to make
certain assumptions as to the probability of the value 1 (most often it is assumed that
P(x = 0) = P(x = 1) = 0.5).

The relationship (5) shows that the probability of the occurrence of the value 1 in
a given network node is related to its switching activity. The highest switching activity
occurs for nodes for which the probability of occurrence of the value 1 is 0.5. In the process
of synthesizing logic circuits implemented in FPGAs aimed at minimizing power consump-
tion, decomposition becomes necessary, which is the basis for dividing the designed circuit
into a network of LUTs. Therefore, there is a need for an appropriate BDD cut that also
depends on the SW.

3.2. SWBDD—Switch Activity Binary Decision Diagram

In order to develop a synthesis strategy aimed at minimizing power dissipation, it is
necessary to introduce a new diagram form—SWBDD. The new form of the diagram differs
from the classic form of BDD (ROBDD) in that additional information has been placed
in each node. In a single node, in addition to the information with which the variable is
associated, there is also the value of the probability of one P(fx) (to calculate which set of
paths in the BDD leading to the leaf “1” will be used) and the SW value determined from
the dependence (5) for the considered P(fx). It should be emphasized that when analyzing
the paths, it becomes necessary to determine the probability of the occurrence of the value
1 for individual variables. Assuming that the probabilities of the value 1 for all variables
are the same and equal to 0.5, an exemplary SWBDD diagram is shown in Figure 4.
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Figure 4. SWBDD diagram.

Assuming the implementation of the function on LUT blocks, it becomes necessary
to divide the diagram by cutting the diagram horizontally. It turns out that you can
associate the value of the SW coefficient with the cut line equal to the sum of the SWi values
associated with the vertices above the cut line. The value of this coefficient depends on the
order of the nodes in the SWBDD.

3.3. Example

Consider the function f(x0, x1, x2, x3) described by SWBDD shown in Figure 5. Let
us assume that we want to implement it on LUT3/2 blocks (number of inputs/number of
outputs). In this situation, it becomes necessary to intersect the SWBDD diagram in the
place indicated in Figure 5. In this case, the cardinality of the associated set is 3. For each
diagram, the number of cut nodes is the same and includes the node associated with the
corresponding variable below the cut line and two leaves. In this situation, in both cases,
we need two LUT3/2 blocks to perform the function f(x0, x1, x2, x3). When looking at the
SW coefficients associated with the nodes above the cut line of the two diagrams, they
assume different values. It turns out that the value of the total coefficient for nodes above
the cut line for the diagram in Figure 5a is SWsum = 1.3359 and is clearly smaller than the
value of SWsum for Figure 5b (SWsum = 2.2109). The sum value of the SW coefficients
associated with the nodes above the cut line should be used in the process of selecting the
appropriate cut line for the SWBDD diagram.
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4. The Strategy of Low Power Synthesis

As in the case of the classic form of BDD, the form of SWBDD can be used to perform
decomposition using a horizontal cut line. As usual, the number of bound functions
(numb_of_g) and the cardinality of the bound set (card(Xb)) are key. Of course, as before,
some optimization methods can be used, such as non-disjoint decomposition [41,42]. The
essence of non-disjoint decomposition is to replace a number of bound functions with
input variables, which leads to a reduction in the bound block. Naturally, these variables
must meet certain conditions to be able to function as g functions. The number of replaced
functions linking the variables x, for non-disjoint decomposition, will be given as num_ndisj.
It should be emphasized that a reduction in the number of LUTs achieved through non-
disjoint decomposition is also beneficial in terms of power consumption reduction.

As in the case of the classic form of BDD, the process of finding the best decomposition
in the case of SWBDD is also an iterative process, in which it is necessary to determine the
value of the cost function for the implementation of a given cost decomposition. The use
of SWBDD, thanks to the additional information contained in the nodes of the diagram,
allows for the determination of additional parameters. Let bound_activity_sum (SWsum) be
the cumulative SW value for all nodes above the cut line.

The performed numerous experiments allowed us to determine the cost function,
which can be determined from the dependence (6)

cost = ((numb_of_g − card(Xb)) ∗ 32 + num_ndisj) ∗ 128 − bound_activity_sum (6)

The additional constants 32 and 128 were introduced only so that the multiplied part
of the expression always has a greater effect on the cost value than the remainder. When
analyzing the cost function, it can be observed that num_ndisj is always less than 32 and
bound_activity_sum is always less than 128.

Including SW in the function of decomposition cost causes the parameter associated
with dynamic power to be added to the assessment of decomposition efficiency. In this
situation, it is possible to propose an algorithm of a new synthesis strategy aimed at lim-
iting the dynamic power consumption in the obtained solutions. The algorithm called
PowerdekBDD is an extension of the dekBDD algorithm [39,40] known from the litera-
ture, which takes into account the element of minimizing dynamic power losses in the
decomposition process.
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Algorithm of Logic Decomposition Oriented to Power Optimization

The decomposition algorithm consists of the following steps repeated cyclically:

1. Search for the best bound set in a given step (lowest cost function value).
2. Create a g function for a bound block.
3. Create a function diagram with the top of the diagram (above the cut line) replaced

by the variables g.
4. If there are still more variables in the diagram than the number of LUT inputs, go

to step 1.

The key element during decomposition is finding the appropriate bound set (point 1).
Since the bound set corresponds to the part above the cut line in the BDD diagram, searching
for the appropriate bound set comes down to changing the order of variables in the
diagram at a specific cut level. Checking all order combinations is very time-consuming
and has a complexity of O(n!/(N − k)!). Such complexity is unacceptable in practical
applications. In the proposed solution, thanks to the heuristic approach, the complexity
was limited to O(k∗(n − k)). The pseudocode of the algorithm for searching for the best
set of variables related to a given decomposition step is presented in Algorithm 1. The
algorithm’s parameters are: F function diagram, k number of LUT block inputs, and n
the number of function variables. The order of variables is changed in a double for loop
(lines 5, 6). After changing the order of the variables xi and xj (line 7) for the obtained
diagram, the cost is determined, allowing the quality of the obtained solution to be assessed.

In order to save computation time, the computation of the cost function was split into
two steps: computing the cost related to the number of blockcost_Ftmp blocks (line 8) and
computing activity_sum (line 10). The variable activity_sum is the summed activity values
for functions rooted in nodes above the cut line. The calculation of activity_sum only
takes place if blockcost_Ftmp does not have a greater value than the best solution found so
far, thus saving processing time. If a better solution is found, it is remembered (line 13).

Algorithm 1. The Algorithm for Searching for the Best Set of Variables for Bound Set.

FindBestBound(F)
2. //F function
3. //k number of LUT inputs
4. //n number of variables
5. for(i = 0; i < k; i++)
6. for(j = k; j < n; j++)
7. Ftmp= Swap(xi, xj, F) //swap variable order in BDD
8. blockcost_Ftmp= ((numb_of_g − card(Xb)) ∗ 32 + num_ndisj
9. if(blockcost_Ftmp is lower or equal than before)
10. activity_sum= CalculateBoundActivitySum();
11. totalcost_Ftmp= blockcost_Ftmp*128-activity_sum
12. if(totalcost_Ftmp is lower)
13. F = Ftmp

5. Experimental Results

In order to test the effectiveness of the solutions obtained using the PowerDekBDD
algorithm, a number of experiments were performed. The PowerDekBDD algorithm
is implemented in the tool of the same name. A popular set of benchmarks [43] was
used for the experiments. Since Equation (6) does not take into account the sharing of
logic resources between individual functions of the team, it was decided to consider each
function separately and then sum the obtained results.

In the first series of experiments, it was decided to compare PowerDekBDD with
other academic tools. Since PowerDekBDD is an extension of the DekBDD algorithm,
it is crucial to compare both algorithms. Additionally, it was decided to compare with
the leading synthesis tool ABC [27]. The work [44] discusses the appropriate scripts for
the ABC system: “Baseline” as the basic one, and “PowerMap” and “PowerDC” as the
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scripts aimed at reducing power consumption. The comparisons between the tools were
made, taking into account the necessary number of LUTs in the obtained “LUTs” solution
(assumed k = 5) and the number of logic levels, “Levels,” obtained. Of course, additional
information has also been added: in the case of the DekBDD and PowerDekBDD tools, the
value of the achieved switching activity, “SW,” for each benchmark, while in the case of
the ABC tool, the value of “Power” was given, which, as stated in [44], is calculated on the
basis of “SW.” According to the authors, the calculation methods of “Power” and “SW”
in both tools are slightly different, and it is difficult to make a direct comparison between
them. In order to maintain the reliability of the results, the authors provide the “Power”
value for ABC, but at the same time emphasize that the purpose of compiling these results
is not to compare them directly. The described list of results is presented in Table 1.

Table 1. Comparison of academic synthesis tools.
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5xp1 7 10 18 2 7.20 18 2 7.48 27 3 59.19 33 3 65.38 25 3 52.01
9sym 9 1 6 3 2.77 6 3 2.77 63 5 124.34 70 5 132.52 63 5 119.78
alu2 10 8 23 3 9.28 25 4 9.48 28 3 59.78 27 3 56.15 28 3 55.82
clip 9 5 22 3 9.48 24 4 10.16 47 3 98.09 53 3 101.39 45 3 93.09
con1 7 2 3 2 1.40 3 2 1.40 3 2 7.73 3 2 7.34 3 2 7.34

ex1010 10 10 633 8 297.79 631 8 295.60 539 5 1028.28 558 5 1046.18 545 5 1008.31
f51m 8 8 14 3 6.09 14 3 5.90 28 3 60.72 35 3 70.23 26 3 52.66
inc 7 9 18 2 7.40 18 2 7.11 23 3 50.52 27 3 55.25 23 3 49.38

majority 5 1 1 1 0.45 1 1 0.45 1 1 2.92 1 1 2.92 1 1 2.92
misex1 8 7 17 2 6.15 17 2 6.06 17 2 35.79 18 2 35.71 17 2 34.47

mux 21 1 21 6 9.00 17 7 7.46 10 3 24.26 13 3 25.29 11 3 24.64
pcle 19 9 28 3 9.29 25 3 7.67 25 2 49.07 28 2 51.21 25 2 49.02
rd53 5 3 3 1 1.27 3 1 1.27 3 1 8.6 3 1 8.6 3 1 8.6
rd73 7 3 8 2 3.97 8 2 3.97 19 3 41.23 26 4 51.92 19 3 41.18
rd84 8 4 12 3 4.79 12 3 4.79 51 4 105.21 59 5 117.09 52 4 103.47
sao2 10 4 27 4 10.01 25 4 10.26 39 3 83.25 42 3 80.78 40 3 81.47

squar5 5 8 8 1 3.49 8 1 3.49 8 1 20.18 8 1 20.18 8 1 20.18
t481 16 1 5 3 2.12 5 4 2.12 20 4 31.05 19 4 29.72 18 4 27.24

table3 14 14 840 14 338.20 815 17 301.14 698 6 1244.26 724 6 1238.34 698 6 1195.79
term1 34 10 50 5 14.11 48 5 10.51 62 4 124.33 66 4 130.92 66 4 121.22
vg2 25 8 59 5 24.78 60 7 25.21 78 4 141.9 71 4 129.98 77 4 140.66
x2 10 7 14 3 4.07 14 3 3.69 14 2 29.69 15 2 30.24 14 2 29.14

Sum: 1830 79 773.09 1797 88 727.98 1803 67 3430.39 1899 69 3487.34 1807 67 3318.39
Geometric mean: 2.89 7.17 17.46 3.10 6.91 25.46 2.73 54.61 27.63 2.80 56.27 25.35 2.73 52.64

The last rows of Table 1 contain the sum value and the geometric sum. The values of
the respective sums are summarized in the graphs in Figure 6.

Analyzing the graph in Figure 6a, it can be observed that the solutions obtained with
the PowerDekBDD tool are the most effective in terms of the number of LUTs. The obtained
improvement over DekBDD is about 2%. Taking into account Figure 6b, it can be observed
that the total number of logic levels for PowerDekBDD is slightly greater than for DekBDD.
However, both solutions are much worse than the solutions obtained for ABC. Figure 6c
shows the comparison in terms of SW. In the case of PowerDekBDD, this parameter was
reduced by over 5% compared with DekBDD. Unfortunately, it is impossible to reliably
compare the PowerDekBDD method with the ABC system because the methodology of
SW determination in both systems is slightly different; therefore, this issue will not be
further developed.
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activity (Power).

Summarizing the comparison of academic systems, it can be stated that it was possible
to reduce the number of blocks, but it is difficult to draw any conclusions as to the reduction
in dynamic power dissipation (SW reduction), which is the main subject of this paper. In
this situation, it was decided to conduct a second series of experiments, this time using a
commercial tool from Xilinx–Vivado [45].

The next steps of the synthesis in the Vivado system were performed with the default
settings. The series 7 FPGA (Artix-7) was selected as the target device. The relevant
results included in this paper were taken from the reports generated in this tool after the
implementation process.

In the PowerDekBDD system, synthesized HDL (Verilog) descriptions of the function
after decomposition were generated. Similarly, in ABC, similar descriptions were generated
for the PowerDC script (PowerDC was selected due to the fact that the total value of
“Power” was the lowest in Table 1). It was decided to perform two series of experiments for
PowerDC. In the first “PowerDC SF,” HDL descriptions of single functions (without sharing
logical resources) obtained from ABC were further synthesized in Vivado. In the second
“PowerDC MF,” descriptions of sets of functions were further synthesized. PowerDekBDD
decomposes individual functions, but providing results for competing systems, including
a set of functions, will, according to the authors, better define how the obtained solutions
fit into the spectrum of other results. The obtained results are summarized in Table 2. The
individual columns in Table 2, for each of the systems, describe: the number of “LUTs”
blocks, the dynamic power consumed by the “Dynamic” implementation, and the dynamic
power consumed only by the “LUT Power” LUTs.
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Table 2. The results of the experiments obtained with the use of the Vivado tool.
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5xp1 7 10 11 4.7 0.054 14 4.791 0.045 11 4.486 0.05
9sym 9 1 4 0.869 0.04 6 0.443 0.023 6 0.441 0.023
alu2 10 8 14 2.635 0.057 17 3.002 0.059 19 2.496 0.067
clip 9 5 14 2.929 0.09 25 2.901 0.109 18 2.492 0.084
con1 7 2 2 0.799 0.007 2 0.823 0.008 2 0.799 0.007

ex1010 10 10 170 8.014 0.752 170 8.311 0.736 170 4.797 0.673
f51m 8 8 7 4.108 0.045 12 4.124 0.042 10 3.966 0.04
inc 7 9 9 2.991 0.038 11 3.242 0.035 12 2.848 0.043

majority 5 1 1 0.334 0.003 1 0.333 0.003 1 0.333 0.003
misex1 8 7 8 2.728 0.034 9 2.798 0.032 8 2.664 0.033

mux 21 1 6 0.543 0.025 5 0.54 0.021 5 0.544 0.022
pcle 19 9 12 2.59 0.043 18 2.984 0.051 10 2.551 0.039
rd53 5 3 2 1.492 0.012 3 1.552 0.012 2 1.492 0.013
rd73 7 3 6 1.96 0.029 6 2.043 0.029 6 1.953 0.029
rd84 8 4 7 2.412 0.056 12 2.248 0.057 11 2.095 0.056
sao2 10 4 13 1.63 0.089 20 1.001 0.066 20 0.813 0.071

squar5 5 8 4 2.787 0.026 8 2.962 0.024 4 2.786 0.025
t481 16 1 5 0.717 0.019 7 0.715 0.018 7 0.715 0.018

table3 14 14 270 3.047 0.639 423 5.659 1.349 277 3.102 0.677
term1 34 10 26 2.034 0.1 38 2.711 0.121 16 1.949 0.057
vg2 25 8 26 2.242 0.098 43 2.884 0.143 26 2.239 0.098
x2 10 7 9 1.642 0.036 11 1.802 0.029 8 1.71 0.035

Sum: 626 53.203 2.292 861 57.869 3.012 649 47.271 2.163
Geometric mean: 9.572 1.918 0.045 12.826 1.971 0.045 10.427 1.719 0.042

The last rows of Table 2 contain the sum value and the geometric sum. The values of
the respective sums are summarized in the graphs in Figure 7.
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When analyzing the diagram in Figure 7a, it can be observed that the solutions
obtained for PowerDekBDD are very effective in terms of the number of blocks. The
obtained results are much better than the results for PowerDC for single functions and
practically the same as for the group of functions (thus taking into account resource sharing).
Taking into account the overall dynamic power (graph in Figure 7b), it can be observed that
the obtained results are slightly worse than for PowerDC MF (which should be expected)
and slightly better than for PowerDC (a reduction of 8% was achieved). A very similar
situation occurs in the case of the diagram in Figure 7c, showing the dynamic power
consumed by the LUTs. In this case, it was possible to achieve a reduction of almost 24%
compared with PowerDC SF. It should be emphasized, however, that in both cases, the
values of the geometric mean were the same.

6. Conclusions

The new concept of the description of logic functions by means of SWBDD presented
in the article is an interesting attempt to include in the process of automatic logic synthesis
the issues of power dissipation minimization. It can be a form of description that allows for
the minimization of power dissipation in the combination circuits described with the BDD.
It can complement many synthesis methods in which BDD is used. This makes it possible
to extend known synthesis methods without having to create new synthesis algorithms
from scratch.

When analyzing the results of the experiments, it is clear that it is possible to develop
a technology representation of the function in the form of a network of LUT blocks, in
which there are the smallest possible losses related to the minimization of switching in
individual nodes, directly related to the dynamic power dissipated in the circuit. The
proposed algorithm is competitive in relation to alternative academic and commercial
solutions. A significant weakness of the proposed solution is its limitation related to not
taking into account the sharing of logical resources. In its current form, it is possible to
analyze each function separately, which means that the obtained solutions can be definitely
optimized. This type of optimization will become the basis for further work, the essence
of which comes down to the optimization in terms of energy consumption of various
synthesis strategies, in which various concepts of structure optimization, the use of a
flexible configuration of LUTs, etc. play a leading role.
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