
applied
sciences

Article

A Secure Key Aggregate Searchable Encryption with Multi
Delegation in Cloud Data Sharing Service

JoonYoung Lee 1 , MyeongHyun Kim 1 , JiHyeon Oh 1 , YoungHo Park 1,2,* , KiSung Park 3

and Sungkee Noh 3

����������
�������

Citation: Lee, J.; Kim, M.; Oh, J.;

Park, Y.; Park, K.; Noh, S. A Secure

Key Aggregate Searchable Encryption

with Delegation in Cloud Data

Sharing Service. Appl. Sci. 2021, 11,

8841. https://doi.org/10.3390/

app11198841

Academic Editor: Charalampos S.

Kouzinopoulos

Received: 20 August 2021

Accepted: 22 September 2021

Published: 23 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea;
harry250@knu.ac.kr (J.L.); kimmyeong123@knu.ac.kr (M.K.); chldlstnr071@knu.ac.kr (J.O.)

2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
3 Blockchain Technology Research Center, Electronics and Telecommunications Research Institute,

Daejeon 34129, Korea; ks.park@etri.re.kr (K.P.); sknoh@etri.re.kr (S.N.)
* Correspondence: parkyh@knu.ac.kr; Tel.: +82-53-950-7842

Abstract: As the amount of data generated in various distributed environments is rapidly increasing,
cloud servers and computing technologies are attracting considerable attention. However, the cloud
server has privacy issues, including personal information and requires the help of a Trusted Third
Party (TTP) for data sharing. However, because the amount of data generated and value increases,
the data owner who produces data must become the subject of data sharing. In this study, we use key
aggregate searchable encryption (KASE) technology, which enables keyword search, to efficiently
share data without using TTP. The traditional KASE scheme approach only discusses delegation of
authority from the data owner to another user. However, if the delegated entity cannot perform
time-critical tasks because the shared data are unavailable, the delegate must further delegate the
rights given to other users. Consequently, this paper proposes a new KASE scheme that enables
multi-delegation without TTP and includes an authentication technique between the user and the
server. After that, we perform informal and formal analysis using BAN logic and AVISPA for security
evaluation, and compare the security and performance aspects with existing schemes.

Keywords: KASE; cloud server; data sharing; delegation; BAN logic; AVISPA; MIRACL

1. Introduction

As a hyper-connected world is realized due to the development of the Internet, data
production is increasing in various distributed environments such as medical care, finance,
and vehicles. As per a study published by Statista Research Department [1], the total
amount of data generated per year is expected to reach 149ZB by 2024 as the amount of
data generated worldwide increases exponentially. The generated data can be used as
an input for financial, medical, and artificial intelligence development, and cloud storage
and computing technologies have been introduced to manage vast amounts of data [2–4].
Cloud computing services provide large-capacity storage and computing resources to
resource-constrained computing devices.

However, privacy issues arise because the generated data includes personal informa-
tion. Research and policies are being developed worldwide to protect the privacy of such
data. “Midata” in the UK [5] and “Smart disclosure” in the US are policies for individuals
to use and protect personal information as subjects, and have been implemented to date.
However, these policies are being implemented with the help of a Trusted Third Party
(TTP) because it is difficult to provide services based on personal information. Because the
amount and value of the data generated increases, the data owner who produces the data
should be the data sharer, and not the TTP.

For the subject of data to manage data without the help of TTP, the following are
considered: (i) Key management for data access control must also be performed by the

Appl. Sci. 2021, 11, 8841. https://doi.org/10.3390/app11198841 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8172-6182
https://orcid.org/0000-0003-4891-818X
https://orcid.org/0000-0001-8690-2125
https://orcid.org/0000-0002-0406-6547
https://orcid.org/0000-0002-6172-9175
https://doi.org/10.3390/app11198841
https://doi.org/10.3390/app11198841
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11198841
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11198841?type=check_update&version=3

Appl. Sci. 2021, 11, 8841 2 of 20

data owner (DO). (ii) The efficiency of the key for data management should be considered.
This is because as the data increases, the key also increases. (iii) The data owner must store
the data in an encrypted form in order to maintain the confidentiality and integrity of the
data, and the data access policy is required for sharing with data users (DUs).

DO outsources data or computational work to cloud servers. In addition, DOs can
optionally share outsourced data with DU groups with the help of cloud computing
services through access control. For this purpose, research on cryptosystems such as
user-based access control cryptosystem [6], role-based access control cryptosystem [7], and
attribute-based access control cryptosystem [8] was studied. However, the computation
overhead of encryption and key generation increases with the number of attributes or
users in these user-centric data sharing methods. When DO grants a new user access to
their data, the DO must either generate a new ciphertext or modify the ciphertext stored
in the cloud. Furthermore, because the TTP defines and manages the user’s rules and
attributes, the DO cannot be the subject of data management. To address these limitations,
a data-centric shared encryption scheme called Key Aggregate Encryption (KAE) [9] has
beenproposed. In KAE, the DO first defines the document set S to which the data that
the DO intends to share to users of data belongs, and then aggregates the secret keys of
all documents in the set S. Then, DO shares a single key, known as the aggregate key,
with the user to grant access to S. Moreover, an extended encryption scheme called Key
Aggregate Searchable Encryption (KASE) [10] was proposed, which allows DOs to use
aggregation keys to delegate search authority over selected data sets and allow users to
retrieve shared data by submitting a single aggregation trapdoor to the cloud. In addition
to delegating search rights to data users by data owners, it is also important to consider
when the delegated users may need to transfer rights to other users for time-sensitive tasks,
processing and creation of various information, and smooth data management.

However, there is no KASE structure given that an authorized user needs to further
delegate privileges to other users. Therefore, this paper proposes a KASE cloud data
sharing scheme that simultaneously provides user authentication and delegation func-
tions without using TTP. To analyze the safety verification of the proposed scheme, we
conduct informal security analysis and formal security analysis using “Burrows-Abadi-
Needham (BAN) logic” [11] and “Automated Validation of Internet Security Protocols
and Applications (AVISPA)” [12]. We use the ”Multiprecision Integer and Rational Arith-
metic Cryptographic Library (MIRACL)” [13] to build a test bed and calculate the cost
of cryptographic operations. Finally, we compare security and performance with other
existing schemes.

1.1. Motivation

Existing KASE schemes only discuss delegating data access rights to other DUs by DO.
However, there are cases where the delegated user needs to delegate further the delegated
rights to another user because the shared data are unavailable to the delegated user:

• The first is a case in which time-critical work such as immediate life-threatening,
bodily harm, and property benefits of the DO is required. For example, in the event of
an emergency involving the DO’s life and body, the DU must delegate the authority
to another DU when the DU who has been authorized to access information such as
the DO’s health information management is absent.

• In addition, it is necessary to use various information and generate revenue through
information sharing. A DU who has received information rights can use the informa-
tion to make a profit. However, it is difficult to expect visible revenue generation from
a single user. In this case, the DU can create new services and revenue by delegating
limited access rights to other DUs.

• DUs authorized to provide services by data owners often struggle to manage large
amounts of data. In this case, the DU should be able to perform load balancing by
assigning limited administrative privileges to some users.

Appl. Sci. 2021, 11, 8841 3 of 20

Therefore, we propose a KASE data sharing scheme that can delegate access rights for
these cases.

1.2. Contribution

Our proposed scheme is an access control for DOs to share data with DUs without
the help of TTP. We also consider cases where DUs may delegate limited data access
rights to other users, which is not considered by existing KAEs and KASEs. The detailed
contributions of our proposed scheme are as follows:

• Group data sharing with a keyword search: In the proposed scheme, DOs can delegate
access to and retrieval of data in an encrypted state for data sets requested by DUs.
Additionally, each ciphertext in the shared set can be retrieved as a trapdoor of
constant size generated using the aggregate key. Furthermore, the proposed system
can confirm whether keywords exist in the data set to be searched using a bloom
filter [14].

• Multi-access prevention and privacy preservation: The authentication of the proposed
scheme prevents unauthorized DUs from accessing the trapdoor multiple times. In
particular, if an unauthenticated user attempts to intercept and submit a trapdoor, the
system prevents it. The identity submitted for authentication is a pseudonym identity
which is masked and sent to protect the privacy of the DU. Moreover, keyword
ciphertext, the hidden access policy defined by DO, and trapdoor does not disclosure
information about related keywords.

• Fine-grained delegation: In the proposed scheme, the DO provides authentication cre-
dentials to delegators and delegates. When a delegator wants to delegate authority, it
authenticates with the delegate through the authentication credential. If authentica-
tion is valid, delegates can delegate the rights they have received to another users in
fine-grained manner.

The rest of the paper is organized as follows: The related works are given in Section 2.
In Section 2, we briefly describe studies on KAE and KASE that have been studied. We also
provide preliminaries for the proposed scheme. The system model and threat model are
defined in Section 3.

2. Related Works

In this section, we review the literature regarding the previously studied of KAE and
KASE. This section also provides preliminaries about cryptology concepts that we use
throughout the paper.

2.1. Literature Reviews

In 2016, Chu et al. [9] proposed the notion of KAE scheme that can reduce the number
of distributed data encryption keys for data sharing system environments. The KAE
allows documents or data sets encrypted with different keys to be decrypted with a single
aggregate key. In 2018, Guo et al. [15] proposed a scheme for sharing encrypted data
with other users through public cloud storage. Their approach involves an authentication
process, and they argue that the authentication process can solve the key leak problem
of data sharing. However, Alimohmmadi et al. [16] proved that Guo et al.’s scheme does
not have security against impersonation and forging authentication key attacks. They
demonstrated that the proposed Guo et al.’s scheme could allow anyone to forge an
authentication key and access an arbitrary set of files stored in the cloud. Therefore, they
proposed a new KASE scheme to solve the problems of Guo et al.

However, since there was no search function for keywords in documents at [9,15,16],
Cui et al. [10] proposed a KASE scheme that enables group keyword search in the existing
KAE. The scheme of [10], which first proposed the KASE method, provides the searchable
group data sharing function, i.e., all users can selectively share selected groups of users
and selected groups of files, the latter can perform keyword searches against the former.
Unfortunately, Zhou et al. [17] proved that Cui et al.’s scheme is insecure against insider

Appl. Sci. 2021, 11, 8841 4 of 20

attack. They demonstrated that the adversary can guess the valid user’s key with the
insider attacker. Furthermore, Cui et al.’s scheme [10] did not support searching over
multi-owner data using a single key of constant size.

To address this problem, Li et al. [18] proposed the scheme for searching over multi-
owner’s data using a single trapdoor. Their scheme allows verification of search results
using an aggregate key. They also offered advance planning in multi-owner settings.

Zhou et al. [17] proposed a KASE scheme of data-centric framework in an Industrial
Internet of Things (IIoT) environment.Sensors in IIoT do not support the computational
power of pairing operations as their hardware resources are very limited. Therefore,
Zhou et al. proposed a KASE scheme that does not use the pairing operation in the
encryption phase.

Padhya et al. [19] also proposed a KASE scheme for multi-owner data. Padhya et al.’s
scheme is a practical way to generate keyword ciphertext without the use of expensive
pairing operations given resource-constrained environments. They also discussed scenarios
for federated clouds and proposed methods for delegating search authority when data are
stored in federated clouds.

Liu et al. [20] proposed a scheme to validate keyword search results using a single
aggregation key. The KASE method of Liu et al. also provides user authentication. In
their scheme, the cloud server can verify the legitimacy of a sub-user by verifying that the
authorized user’s identity set includes the sub-user’s identity. However, Li et al.’s protocol
is insecure against user impersonation attacks.

In addition to delegating the searchable authority to the user, it is also necessary to
consider the case where the delegated user must delegate the authority to another user
for time-sensitive tasks, processing and creation of various information, and managing a
large amount of data. However, there are many KASE schemes dealing with data sharing
between DOs and DUs, but none dealing with cases where DU delegates to other DUs
without help of the TTP. Furthermore, no KASE scheme works out the problem of user
authentication and fine-grained multi-delegation at the same time. Authentication is one
of the basic security services absolutely necessary to provide secure services in various
network environments [21–28].

2.2. Preliminaries

In this section, we briefly discuss the cryptographic concepts used in this paper:
bilinear map and bloom filter.

2.2.1. Bilinear Map

Pairing is a bilinear map defined for a subgroup of elliptic curves. Assume that G1
and G2 are two multiplicative circular elliptic curve subgroups of the same prime order p.
A mapping e : G1 × G1 → G2 is a bilinear map if it satisfies the following [29]:

1. Bilinearity: For allu, v ∈ G1, and x, y ∈ Z∗q , we have e(ux, vy) = e(u, vxy).
2. Non-degeneracy: If u and v are generators ofG1, e(u, v) 6= 1.
3. Computability: there is an efficient algorithm to compute e(u, v) for anyu, v ∈ G1.

2.2.2. Bloom Filter

An m-bit bloom filter [14] can be viewed as an array of m bits, all initialized to zero.
For verification in bloom filter, k independent hash functions H1, . . . , Hk with the ranges
{0, . . . , m− 1} is designed. During the generation phase, each element s ∈ S = {s1, s2, . . . , sn}
and each Hj(s)-bit in the array is set to 1, where 1 ≤ j ≤ k. The value of Hj(s) bit can be
determined in the verification phase whether the elements s belongs to S. If the value is 0
then it must be s /∈ S, ohterwise it is highly probable that it is s ∈ S. Assuming the hash
function is completely random, the false positive rate is (1− (1− 1

m)kn)k ≈ (1− e−kn/m)k.

The k = (ln2)m
n hash function leads to a minimum false positive rate (0.6185)m

n . Two algorithms
are included in the m-bit bloom filter.

Appl. Sci. 2021, 11, 8841 5 of 20

1. BFGen: BFGen hashes the data set S to {H1, . . . , Hk} for producing an m-bit
bloom filter.

2. BFVeri f y: BFVeri f y returns 0 if s /∈ S and 1 otherwise.

3. System Model and Threat Model

In this section, we describe the system model of our proposed scheme and provide
threat model and notations that we use throughout the paper.

3.1. System Model

Our proposed system model is represented in Figure 1 and has three entities:

• Data Owner (DO): DO is an entity that independently manages data as an owner of
data and information without TTP. When data are requested from DU, DO encrypts
data and related keywords and stores them in the cloud server, delivering a single
aggregate key of a fixed size. DO encrypts the group identity GID for delegation of
authority of delegatee and delegator to define delegation of authority.

• Data User (DU): DU receives aggregate key when requesting data from the user.
DU generates a trap door to retrieve data from CS using aggregate key and key-
word, receives encrypted data through authentication with CS, and then decrypts to
receive data.

• Cloud Server (CS): Since CS is an honest but curious entity, it may legitimately try to
learn all the information from a received message. CS provides DO with storage and
computing power. In addition, CS searches data through the trapdoor received from
DU and performs keyword verification.

Data owner

Cloud server

Data user A

Data user B

parameter public a Generates 0.

upload Data 1.

3. send authentication credential

6. Verify user B

& send aggregate key

Figure 1. Proposed system model.

DO creates public parameters to be used in the system and publishes them to entities.
Then, DO creates a bloom filter for keyword verification, encrypts data, and uploads it
to CS. DU sends a data request to DO, and DO returns a single aggregate key for the
data received from DU, an authentication credential for authentication with CS, and a
GID for verifying authorization. The authentication credential is delivered it to CS at this
time. Subsequently, DU creates a single trapdoor using aggregate and keywords from CS
and requests a search query. After CS authenticates with DU, CS searches the data and
confirms the keyword using the trap door. After that, CS generates a data search result and

Appl. Sci. 2021, 11, 8841 6 of 20

proof set for decryption and sends it to DU. DU uses the bloom filter to decrypt the data
after verification. In addition, if a DU wants to delegate authority to another DU, mutual
authentication is performed. If the authentication is valid, DU can delegate the aggregate
key and some of the keywords he/she has.

3.2. Threat Model

In this paper, we adopt the universally accepted Dolev-Yao (DY) threat model [30] for
security analysis of the proposed scheme. In accordance with the DY model, an attacker is
able to seize transmitted messages through an open channel, and eavesdrop, delete, inject
or modify on the seized messages.

• The attacker has full control over and learns from messages sent over open channels.
The attacker can then insert, modify, or remove valid messages.

• Because guessing more than one value at a time is a “computationally infeasible
operation”, the attacker can only guess one value in polynomial time.

In addition, this paper additionally adopts the assumptions of the “Canetti and
Krawczyk model (CK model)” [31]. It is a more powerful threat model compared to the
DY model and is considered the de facto standard for modeling key exchange protocols.

3.3. Notations

Table 1 specifies the symbols used in this paper.

Table 1. Notations used in this paper.

Notations Meanings
DUj, IDj jth data user and their identity, respectively,
DO Data owner
CS Cloud server
HIDj The hidden identity of jth data user
G1, G2 Bilinear groups
PKdo The DO’s public key for encrypt data
DPKdo The DO’s public key for authentication
rdo, ρdo Master secret key and secret key of DO
PKj, PKcs The public key of data user and cloud server, respectively
GIDl , HGIDl The group identity defined by data owner and its hidden identity
T1, T2, T3 Current timestamps
∆T Maximum transmission delay
Rdu, Rcs, rA, rB Random nonces
W The keyword
CK The encrypted keyword
Tr The trapdoor
|| Data concatenation operator
h1, h2 The hash function {0, 1}∗ → Zq

h2 The map-to-point hash function {0, 1}∗ → G1,
⊕ Bitwise exclusive-or operator

4. Our Proposed Scheme

We propose a key aggregate scheme for multi-delegation and authentication without
TTP in this section. The proposed scheme consists of six phases, namely setup phase, data
upload phase, aggregation key generation phase, trapdoor generation and retrieve phase,
authentication for delegation, and group identity revocation phase.

Appl. Sci. 2021, 11, 8841 7 of 20

4.1. Setup Phase

For data sharing and upload data, a data owner DO have to generate bilinear map and
public system parameters. DO also generates hash functions for encrypted information
and bloom filter. The detailed steps of the setup phase are summarized in Figure 2 and
discussed below.

Step 1: DO generates a bilinear map B = (q, G1, G2, e), where q is the order of G1 and
e : G1 × G1 → G2. G1 and G2 are multiplicative elliptic curve groups. Then DO picks
random generator g ∈ G1 and random nonce α ∈ Zq, and computes gi = G(αi), where
1 ≤ i ≤ 2n.

Step 2: After that, DO chooses his/hear master secret key rdo ∈ Z∗q , secret key
ρdo ∈ Z∗q . DO generates hash functions h1 : {0, 1}∗ → Zq and h2 : {0, 1}∗ → G1 for hashing
information. Furthermore, DO also generates k independent universal hash functions
{H

′
1, . . . , H

′
k} which are used to set up a m-bit bloom filter.

Step 3: Then, DO computes public key PKdo = grdo for encrypting data and public
key DPKdo = gρdo for authentication. At last, DO publishes B, (g, g1, . . . , gn), DPKdo,
PKdo, h1, h2 and {H

′
1, . . . , H

′
k}.

Setup Phase

Data owner (DO)

Generates bilinear map B = (q, G1, G2, e)

Pick a random generator g ∈ G2

and a random nonce α ∈ Zq

and computes gi = g(αi), 1 ≤ i ≤ 2n

Then chooses master secret key rdo ∈ Z∗q
and chooses secret key ρdo ∈ Z∗q
Then generate hash functions h1 : {0, 1}∗ → Zq,

h2 : {0, 1}∗ → G1,

and k independent universal hash {H
′
1, . . . , H

′
k}

Then computes,

for encrypt data public key PKdo = grdo

for authentication public key DPKdo = gρdo

Then DO publishes B, (g, g1, . . . , gn), DPKdo, PKdo, h1, h2, {H
′
1, . . . , H

′
k}

Figure 2. Setup phase.

4.2. Data Upload Phase

In this phase, DO encrypts the data and uploads it to the cloud server. At this time,
DO creates a bloom filter to verify whether the keyword is included in the document set.
DO encrypts the keyword set CKi, generates a public auxiliary value Oi for index, and
sends them to the cloud server. This phase is briefed in Figure 3 and detailed steps are
given below.

Step 1: First, DO picks a random number t ∈ Zq as the actual searchable encryption
key and generates a bloom filter for keyword set Wi, where i ∈ {1, . . . , n} is file index.
The bloom filter is computed as BFi = BFGen({H

′
1, . . . , H

′
k}, Wi).

Step 2: Then, DO randomly chooses a M ∈ G2 and computes a public auxiliary
value Oi for index i. The Oi comprises c1, c2, c3 and c4. They are computed as c1 =
gt, c2 = (gi · PKdo)

t, c3 = h2(M) ⊕ BFi, and c4 = M · e(g1, gn)t. Then, DO computes

CKi =
e(g,h1(w))t

e(g1,gn)t for each keyword w in this set’s keyword set Wi.

Appl. Sci. 2021, 11, 8841 8 of 20

Step 3: At last, DO sends Oi, CKi to the cloud server.

Data Upload Phase

Data owner (DO) Cloud server (CS)

Pick a random number t ∈ Zq.

Generate a bloom filter for keyword set Wi

BFi = BFGen({H
′
1, . . . , H

′
k}, Wi)

Choose a random M ∈ G2

Compute Oi = (c1, c2, c3, c4) for index i ∈ {1, .., n}
c1 = gt

c2 = (gi · PKdo)
t

c3 = h2(M)⊕ BFi

c4 = M · e(g1, gn)t

CKi =
e(g,h1(w))t

e(g1,gn)t

〈Oi, CKi〉−−−−−→
Figure 3. Data upload phase.

4.3. Data Request Phase

If DUj wants to data set Si, DUj calculates HIDj and PKj and requests data from
DU. DO computes the aggregate key ks corresponding data set. After that, DO creates
GIDl by defining groups that can delegate or receive authority. DO can manage the list
of DUs belonging to GIDl when a new DUj is added or an existing DU wants to leave
the group. After that, DO creates an authentication credential that allows DUj and CS
to authenticate each other. DO generates TIDj and transmits it with ks, HGIDl securely
to DUj, and generates and transmits HIDj and Acs securely to CS. CS uses this value to
calculate ACSj, which is for the authentication credential, and stores it in its own database.
Figure 4 summarizes this phase. The detailed steps involved in this phase are given below.

Step 1: DUj generates a secret key bj ∈ Z∗q and chooses an unique identity IDj. Then,

DUj computes pseudo identity HIDj = h1(IDj||bj) and public key PKj = gbj . DUj sends
〈HIDj, PKj, Si〉 securely to DO, where Si is a document set.

Step 2: After receiving data request from DUj, DO generates an aggregate key
ks = Πj∈sgrdo

n+1−j which is corresponding document set Si. DO then creates GIDl by
defining groups to determine which users can delegate or receive privileges from each
other. DO computes TIDj = (DPKdo)

HIDj ·ρdo for authentication credential. Furthermore,
DO computes HGIDj = h2(GIDl ||rdo||ρdo) and Acs = h2(rdo||ρdo). After that, DO sends
〈ks, TIDj, HGIDl〉 to securely DUj and sends 〈HIDj, Acs〉 to securely CS.

Step 3: CS computes ACSi = h2(HIDj||Acs) and public key PKcs = gAcs after receiv-
ing messages from DO. Then, CS stores ACSi in CS’s database.

Appl. Sci. 2021, 11, 8841 9 of 20

Data user (DUj) Data owner (DO) Cloud server (CS)

Generate a secret key bj ∈ Z∗q
Choose a identity IDj

Compute

HIDj = h1(IDj||bj)

PKj = gbj

Data request Si

〈HIDj, PKj, Si〉
−−−−−−−−−→

Generate a agrreate key ks

ks = Πj∈sgrdo
n+1−j

Define GIDj

Compute TIDj = (DPKdo)
HIDj ·ρdo

HGIDj = h2(GIDl ||rdo||ρdo)

Acs = h2(rdo||ρdo)

〈ks, TIDj, HGIDl〉←−−−−−−−−−−−−
〈HIDj, Acs〉
−−−−−−−→

Compute ACSj = h1(HIDj||Acs)

PKcs = gAcs

Store ACSj in the database

Figure 4. Data request phase.

4.4. Data Retrieve Phase

DUj generate a trapdoor of keyword w using their aggregate key. DUj sends the
trapdoor to CS for a search query and an authentication credential for mutual authentica-
tion. CS authenticates with DUj, then CS determine whether the encrypted keyword is CK
using DUj’s trapdoor. After verification of keyword, CS generates a result set and proof
set. After DUj receives result set and proof set from CS, DUj authenticate with CS and
conducts the verification proofs that the keyword exists in owner’s document set. Figure 5
describes this phase, and the detailed steps are as follows.

Step 1: DUj generates a single aggregate trapdoor Trj = ks · h1(w). A trapdoor relates
to a set of all documents related to the aggregate key. Then, DUj generates timestamp

T1 and random nonce Rdu. Furthermore, DUj computes Vj = PKRdu
j , Veri f j = PK

bj ·Rdu
cs ,

Mj = h1(IDj||bj)⊕ Veri f j, MAj = h1(Veri f j||HIDj||T1), and HHIDj = TID
MAj
j . After

that, DUj sends Mj, Vj, HHIDj, T1, Trj, Si via an insecure channel.
Step 2: After receiving messages from DUj, CS computes Veri f j = VAcs

j and HID
′
j =

Veri f j ⊕Mj. Furthermore, CS checks if h1(HID
′
j||Acs) = ACSi. If it is valid, CS computes

MA
′
j = h1(Veri f j||HID

′
j) and checks if e(HHIDj, PKcs) = e(DPK

HIDj ·Acs
do , DPK

MAj
do). If it

is valid, CS computes as follows for index i: pub1 = πz∈s,z 6==ign+1−z+i, Tri = TRj · pub1,

pub2 = πz∈sgn+1−z, and p1 = c4 · e(pub1,c1)
e(pub2,c2

. Then, CS checks ck = e(Tri ,c1)
e(pub2,c2)

, where
encrypted keyword is ck ∈ CKi. CS adds the identity of results which is correspond-
ing document to Resulti. Furthermore, CS sets PRFi = (c1, p1, c3). Then, CS gener-
ates a random nonce Rcs and computes VAcs = PKRcs

cs , Veri fcs = PKAcs ·Rcs
j AUTHcs =

h1(MAj||Veri f j||Veri fcs). CS sends set Result, PRF, VAcs and AUTHcs over an open chan-
nel to DUj.

Appl. Sci. 2021, 11, 8841 10 of 20

Step 3: After receiving sets from CS, DUj computes Veri fcs = VA
bj
cs. Then, DUj checks

if AUTH
′
cs = h1(MAj||Veri f j||Veri fcs). If it is valid, DUj computes for each i as follows:

M
′
= p1 · e(ks, c1), BF

′
i = h1(M

′
)⊕ c3, ACCi = BFver f iy({H

′
1, . . . , H

′
k}, BF

′
i , W). If the

keyword w exists in the document, ACCi = 1. Otherwise, ACCi = 0.

Data user (DUj) Cloud server (CS)

Generate a trapdoor Trj = ks · h1(w),

where w is a keyword over appreciates document set

Generate Timestamp T1 and random nonce Rdu

Compute Vj = PKRdu
j

Veri f j = PK
bj ·Rdu
cs

Mj = h1(IDj||bj)⊕Veri f j

MAj = h1(Veri f j||HIDj||T1)

HHIDj = TID
MAj
j

Mj, Vj, HHIDj, T1, Trj, Si
−−−−−−−−−−−−−−−−→

Compute Veri f j = VAcs
j

HID
′
j = Veri f j ⊕Mj

Check h1(HID
′
j||Acs) = ACSi?

If it is valid, then compute

MA
′
j = h1(Veri f j||HID

′
j||T1)

Check e(HHIDj, PKcs) = e(DPK
HIDj ·Acs
do , DPK

MAj
do) ?

Compute for index i

pub1 = Πz∈s,z 6=ign+1−z+i

Tri = TRj ∗ pub1

pub2 = Πz∈sgn+1−z

p1 = c4 · e(pub1,c1)
e(pub2,c2)

Check ck = e(Tri ,c1)
e(pub2,c2)

for encrypted keyword ck ∈ CKi

Add the identity of the corresponding document to Resulti

Set PRFi = (c1, p1, c3)

Generate a random nonce Rcs

Compute VAcs = PKRcs
cs

Veri fcs = PKAcs ·Rcs
j

AUTHcs = h1(MAj||Veri f j||Veri fcs)

Result, PRF, VAcs, AUTHcs←−−−−−−−−−−−−−−−−−−
Compute

Veri fcs = VA
bj
cs

Check AUTH
′
cs = h1(MAj||Veri f j||Veri fcs)?

Compute for each i

M′ = p1 · e(ks, c1)

BF
′
i = h1(M

′
)⊕ c3

ACCi = BFver f iy({H
′
1, . . . , H

′
k}, BF

′
i , W)

Figure 5. Data retrieve phase.

Appl. Sci. 2021, 11, 8841 11 of 20

4.5. Authentication for Delegation Phase

If DUA wants to delegate their aggregate key, DUA and DUB conduct mutual authen-
tication using HGIDl . If they have same HGIDl , they compute the same session key SK.
After that, DUA can send their own aggregate key and keyword using SK. In this case,
DUA can delegate limited access rights by sending only some of the keywords which DUA
have. The detailed steps are illustrated in Figure 6 and are as follows.

Step 1: DUA generates a random nonce rA and timestamp T2. Then, DUA computes
RA = PKrA

a , VA = PKba ·rA
B , and LAB = h1(VA||T2). DUA sends RA, LAB, T2 to DUB.

Step 2: After receiving messages from DUA, DUB computes VA = RBb
A , and checks

if LAB = h1(VA||T2). If it is valid, DUB generates a random nonce rB and computes
RB = PKrB

B , VB = PKbb ·rB
A , LBA = h1(VA||HGIDl ||T3||VB), AGIDl = h1(VA||HGIDl), and

session key SK = h1(VA||VB||AGIDl ||T3). After that, DUB sends RB, LBA, T3 to DUA.
Step 3: DUA computes VB = Rba

B and checks if LBA = h1(VA||HGIDl ||T3||VB). If it is
same value, DUA computes the session key SK. At the end, DUA and DUB authenticate
each other and compute the same SK for their secure communication.

Data user (DUA) Data user (DUB)

Generate a random nonce rA

and timestamp T2

Compute RA = PKrA
A

VA = PKba ·rA
B

LAB = h1(VA||T2)

RA, LAB, T2−−−−−−−→
VA = Rbb

A

Check LAB = h1(VA||T2)?

If valid, Generate a random nonce rB

Then, compute

RB = PKrB
B

VB = PKbb ·rB
A

LBA = h1(VA||HGIDl ||T3||VB)

AGIDl = h1(VA||HGIDl)

SK = h1(VA||VB||AGIDl ||T3)

RB, LBA, T3←−−−−−−−
Compute VB = Rba

B

Check LBA = h1(VA||HGIDl ||T3||VB)?

SK = h1(VA||VB||AGIDl ||T3)

Figure 6. Authentication for delegation phase.

4.6. Group Identity Revocation Phase

When DUj wants to leave the group, DO updates the group ID list to which DUj
belongs. DO updates GID with GIDnew and issues new HGIDnew calculated as GIDnew to
data users corresponding to the existing GID list to send in bulk.

5. Security Analysis

In this phase, we present the non-mathematical (informal) security analysis and formal
security analysis. We use broadly accepted “BAN logic” to show that the proposed scheme

Appl. Sci. 2021, 11, 8841 12 of 20

can provide the mutual authentication and use “Automated Validation of Internet Security
Protocols and Applications (AVISPA) simulation tool” for proving of security protocols
from man-in-the-middle and replay attacks.

5.1. Informal Analysis

We conduct the informal analysis to analyze security capabilities and the security
against various attacks.

5.1.1. Correctness

The DUj should obtain the bloom filter by decrypting the corresponding ciphertext of
the i-th document with the aggregation key. For correctness, the M can be obtained by:

p1 · e(ks, c1) = c4 ·
e(pub1, c1)

e(pub2, c2)
· e(ks, c1)

= c4 ·
e(ks · pub1, c1)

e(pub2, c2)

= c4 ·
e(ks ·Πz∈s,z 6=ign+1−z+i, gt)

e(Πz∈sgn+1−z, (gi · PKdo)t)

=
c4 · e(ks, gt) · e(Πz∈s,z 6=ign+1−z+i, gt)

e(Πz∈sgn+1−z, grdo ·t) · e(Πz∈sgn+1−z, gt
i)

=
c4 · e(ks, gt)

e(Πz∈sgn+1−z, grdo ·t) · e(gn+1, gt)

=
M · e(g1, gn)t · e(Πz∈sgrdo

n+1−z, gt)

e(Πz∈sgn+1−z, grdo ·t) · e(g1, gt
n)

= M

5.1.2. Impersonation Attacks

If an adversary attempts to impersonate a legitimate DU, the adversary must be
able to compute the legitimate message Mj, Vj, HHIDj, T1, Trj, Si. However, the attacker
cannot compute HHIDj because TIDj is computes using secret identity HIDj. Further-

more, CS checks e(HHIDj, PKcs) = e(DPK
HIDj ·Acs
do , DPK

MAj
do). If it is not valid, then the

impersonation attack is aborted by CS. Therefore, our proposed scheme can protect data
user impersonation attacks.

5.1.3. Data User Anonymity

The real identity IDj of DUj is calculated as the pseudo identity HIDj, which depends
on the random secret key bj. In addition, the data user is provided with TIDj to be used for
authentication in the data retrieve phase from DO. Since TIDj is dependent on the DO’s
secret key rhodo, the attacker cannot know IDj, which is the real identity of the data user.
Therefore, we can say that we guarantee the anonymity of data users.

5.1.4. Perfect Forward Secrecy

In the data retrieve phase, suppose that an adversary obtains secret key Acs of the cloud
server. Then, the adversary is able to compute Veri f j and HIDj. However, the adversary
cannot compute VAcs and AUTHcs since the adversary cannot know a random nonce Rcs.
Thus, the data retrieve phase provides perfect forward secrecy. In the authentication for
delegation phase, suppose that an adversary obtains secret key ba or bb of DUA or DUB.
The adversary cannot compute session key SK because the adversary cannot compute VA
or VB, which is dependent on random nonces rA and rB. Therefore, our proposed scheme
ensures perfect forward secrecy.

Appl. Sci. 2021, 11, 8841 13 of 20

5.1.5. Privileged-Insider Attacks

If an adversary is a privileged insider, the adversary is able to obtain HIDj and Acs
during the data request phase. Then, the attacker can compute Veri f j and MAj. However,
CS generates a random nonce RCS in the data retrieve session, and the adversary cannot
compute Veri fcs = PKAcs ·Rcs

j without Rcs. Therefore, the proposed scheme is secure against
the privileged-insider attacks.

5.1.6. Replay and Man-In-The-Middle Attacks

An adversary can learn about transmitted messages over open wireless channels
according to Section 3.2. However, in our proposed scheme, the adversary cannot conduct
replay and man-in-the-middle attacks because every transmitted message contains times-
tamp or random nonce. Timestamps or random nonces T1, T2, T3, Rcs, and rA are generated
by DUj or CS and included in the message MAj = h1(Veri f j||HIDj||T1), AUTHcs =

h1(MAj||Veri f j||Rcs), RA = PKrA
a , LAB = h1(VA||T2), and LBA = h1(VA||HGIDl ||T3).

Therefore, the proposed scheme can successfully prevent against replay and man-in-the-
middle attacks.

5.1.7. Known Session-Specific Temporary Information Attacks

If an adversary obtains random numbers rA and rB according to CK-threat model men-
tioned in Section 3.2 in authentication for delegation phase, then the attacker can compute
RA or RB. However, the adversary cannot compute VA or VB without obtaining data user’s
secret key ba or bb. Therefore, the attacker cannot compute SK = h1(VA||VB||AGIDl ||T3).
Thus, we can say that our proposed scheme can prevent against the known session-specific
temporary information attacks.

5.1.8. Ephemeral Secret Leakage (ESL) Attacks

In the authentication for delegation phase, DUA and DUB establish the same session
key SK = h1(VA||VB||AGIDl ||T3). Based on the CK-threat model Section 3.2, the short
term ephemeral secrets rA, rB can be leaked. However, the adversary still cannot compute
SK because the adversary does not have ba and bb. Furthermore, assuming that the long-
term secret keys ba and bb have been leaked, the adversary cannot calculate the session key
because rA and rB cannot be known. SK can be computed only when both short term and
long term are leaked, and since this is a computationally infeasible problem, our scheme
can resist ESL attacks.

5.1.9. Session Key Disclosure Attacks

An adversary tries to obtain sensitive information by calculating a legitimate session
key SK. However, as discussed in Sections 5.1.4, 5.1.7 and 5.1.8, the adversary cannot
compute SK because of the computationally infeasible problem. Therefore, our proposed
scheme is safe against session key disclosure attacks.

5.1.10. Mutual Authentication

After receiving the message from DUj in the data retrieve phase, CS checks

e(DPK
HIDj ·Acs
do , DPK

MAj
do) = e(DPK

HIDj ·Acs
do , DPK

MAj
do)

= e(gρdo ·HIDj ·Acs , gρdo ·MAj)

= e(g, g)ρdo ·HIDj ·Acs ·ρdo ·MAj

= e(gρdo ·HIDj ·ρdo ·MAj , gAcs)

= e(HHIDj, PKcs)

According to Sections 5.1.2 and 5.1.3, an adversary cannot impersonate legitimate
DUj. Moreover, DUj also checks AUTH

′
cs = h1(MAj||Veri f j||Veri fcs).

Appl. Sci. 2021, 11, 8841 14 of 20

In addition, in the authentication for delegation phase, DUA and DUB check
LAB = h1(VA||T2) and LBA = h1(VA||HGIDl ||T3||VB). Therefore, our scheme provides
mutual authentication.

5.2. BAN Logic Analysis

This section uses BAN logic [11] to prove that the proposed scheme provides mutual
authentication in the data retrieve phase and authentication for delegation phase. Table 2
provides a description of the notation of BAN logic and we also describe the rules, goals,
assumptions and ideal form of ban logic [32,33].

Table 2. The basic BAN logic notations.

Notations Meaning

SK The used session key in current authentication session
#ST The statement ST is fresh
ω C ST ω sees the statement ST
ω| ≡ ST ω believes the statement ST
ω| ∼ ST ω once said ST
< ST >For Formula SR is united with formula For
{ST}Key Encrypt the formula ST encrypted the key Key

ω
Key↔ σ ω and σ uses Key as shared key for communicating

ω ⇒ ST ω controls the statement ST

5.2.1. Logical Rules of BAN Logic

The Logical rules of the BANlogic are:

1. Jurisdiction rule :
ω |≡ σ | =⇒ S, ω |≡ σ | ≡ ST

ω
∣∣∣ ≡ S

2. Nonce verification rule :
ω |≡ #(ST), ω | ≡ σ

∣∣∣ ∼ ST

ω |≡ σ | ≡ ST

3. Message meaning rule :

ω
∣∣∣ ≡ ω

K↔ σ, σ C {S}K

ω |≡ B | ∼ ST

4. Belief rule :
ω

∣∣∣ ≡ (ST, For)

ω
∣∣∣ ≡ ST

5. Freshness rule :
ω

∣∣∣ ≡ #(ST)

ω
∣∣∣ ≡ #(ST, For)

5.2.2. Goals for Data Retrieve Phase

The following goals are presented to demonstrate that the proposed scheme achieves
a mutual authentication :

Appl. Sci. 2021, 11, 8841 15 of 20

Goal 1: CS| ≡ (Rdu),

Goal 2: CS| ≡ DUj| ≡ (Rdu),

Goal 3: DUj| ≡ (Rcs),

Goal 4: DUj| ≡ CS| ≡ (Rcs),

5.2.3. Idealized Forms for Data Retrieve Phase

The idealized forms are as following :

M1 : DUj → CS : (HIDj, T1, Rdu, DPKdo)gbj ·Acs

M2 : CS→ DUj : (HIDj, T1, Rcs)gbj ·Acs

5.2.4. Assumptions for Data Retrieve Phase

The following assumptions are the initial state of the proposed scheme to achieve
BAN logic proof.

A1 : CS| ≡ (CS
gbj ·Acs

←→ DUj)

A2 : DUj| ≡ (DUj
gbj ·Acs

←→ CS)

A3 : CS| ≡ #(Rdu)

A4 : DUj| ≡ #(Rcs)

A5 : CS| ≡ DUj ⇒ (Rdu)

A6 : DUj| ≡ CS⇒ (Rcs)

5.2.5. Proof Using BAN Logic for Data Retrieve Phase

Main proofs using rules and assumptions of the BAN logic are as the following steps :

Step 1: S1 can be obtained from M1

S1 : CS C (HIDj, T1, Rdu, DPKdo)gbj ·Acs .

Step 2: For obtaining S2, we apply the message meaning rule with A1

S2 : CS| ≡ DUj| ∼ (HIDj, T1, Rdu, DPKdo).

Step 3: For obtaining S3, we apply the freshness rule with A3

S3 : CS| ≡ #(HIDj, T1, Rdu, DPKdo).

Step 4: For obtaining S4, we apply the nonce verification rule with S2 and S3

S4 : CS| ≡ DUj ≡ (HIDj, T1, Rdu, DPKdo).

Appl. Sci. 2021, 11, 8841 16 of 20

Step 5: For obtaining S5, we apply the belief rule

S5 : CS| ≡ DUj| ≡ (Rdu). (Goal 2)

Step 6: For obtaining S6, we apply the jurisdiction rule with A5

S6 : CS| ≡ Rdu. (Goal 1)

Step 7: S7 can be obtained from M2

S7 : DUj C (HIDj, T1, Rcs)gbj ·Acs .

Step 8: For obtaining S8, we apply the message meaning rule with A2

S8 : DUj| ≡ CS| ∼ (HIDj, T1, Rcs).

Step 9: For obtaining S9, we apply the freshness rule with A4

S9 : DUj| ≡ #(HIDj, T1, Rcs).

Step 10: For obtaining S4, we apply the nonce verification rule with S8 and S9

S10 : DUj| ≡ CS| ≡ (HIDj, T1, Rcs).

Step 11: For obtaining S11, we apply the belief rule

S11 : DUj| ≡ CS| ≡ (Rcs). (Goal 4)

Step 6: For obtaining S12, we apply the jurisdiction rule with A6

S12 : DUj| ≡ Rcs. (Goal 3)

Thus, our scheme has completed the proof that it provides mutual authentication for
data retrieve phase. BAN logic proof of authentication for delegation phase is similar to
the above proof. Therefore, our scheme can provide secure mutual authentication.

5.3. AVISPA Simulation Analysis

We adopt the “Automated Validation of Internet Security Protocols and Applications
(AVISPA) Simulation Tools” [12] to perform validation of security protocols against replay
and man-in-the-middle attacks. AVISPA includes four backends: “Tree Automata based
on Automatic Approximations for the Analysis of Security Protocols (TA4SP)”, “SAT-
based Model Checker (SATMC)”, “Constraint-logic-based Attack Searcher (CL-AtSe)”,
and “On-the-fly mode-checker (OFMC)”. Neither the SATMC nor T theA4SP backends
currently support “bitwise exclusive OR (XOR)” operations. Therefore, official security
validation-based simulations rely on two backends: CL-AtSe and OFMC.

We use “High-Level Protocol Specification Language (HLPSL)” to implement the
proposed scheme for the primary roles of data owner DO, data user DU, and cloud server
CS, and also mandatory “Sessions and Goals and Environments”. It is worth noting that
AVISPA uses the DY threat model for validation. Figure 7 provides simulation results of
OFMC and CL-ATse backends in the data retrieve phase and authentication for delegation
phase, and clearly shows that the proposed protocol is safe from “replay and man-in-the-
middle attacks” [34,35].

Appl. Sci. 2021, 11, 8841 17 of 20

% OFMC

% Version of 2006/02/13

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

 /home/span/span/testsuite/results/aggkey_case1_2.if

GOAL

 as_specified

BACKEND

 OFMC

COMMENTS

STATISTICS

 parseTime: 0.00s

 searchTime: 5.42s

 visitedNodes: 1808 nodes

 depth: 9 plies

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 TYPED_MODEL

PROTOCOL

 /home/span/span/testsuite/results/aggkey_case1_2.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 0 states

 Reachable : 0 states

 Translation: 0.06 seconds

 Computation: 0.00 seconds

% OFMC

% Version of 2006/02/13

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

 /home/span/span/testsuite/results/aggkey_case2.if

GOAL

 as_specified

BACKEND

 OFMC

COMMENTS

STATISTICS

 parseTime: 0.00s

 searchTime: 8.71s

 visitedNodes: 4096 nodes

 depth: 12 plies

SUMMARY

 SAFE

DETAILS

 BOUNDED_NUMBER_OF_SESSIONS

 TYPED_MODEL

PROTOCOL

 /home/span/span/testsuite/results/aggkey_case2.if

GOAL

 As Specified

BACKEND

 CL-AtSe

STATISTICS

 Analysed : 0 states

 Reachable : 0 states

 Translation: 0.08 seconds

 Computation: 0.00 seconds

Figure 7. (left) Results of data retrieve phase. (right) Results of authentication for delegation phase.

6. Security and Efficiency Features Comparison

We compare the proposed scheme with the existing competing schemes in the do-
main of KASE such as Cui et al. [10] and Liu et al. [20], in terms of security functions,
computational and communication overhead.

6.1. Functionality and Security Features Comparison

We compare the proposed scheme with the existing competing scheme in terms of
various security features, such as replay, man-in-the-middle, impersonation, privileged-
insider, session key disclosure attacks. Moreover, we compare various functional aspects
such as user anonymity, mutual authentication, multi-access and delegation. Table 3
shows that existing schemes do not meet all security requirements. Moreover, unlike
existing schemes, our proposed scheme additionally provides multi-access and delegation
functions, and it is worth noting that DO or DU can perform various functions without
TTP assistance.

Table 3. Security Properties.

Security Properties Cui et al. [10] Liu et al. [20] Ours

Man-in-the-middle attack o o o
Replay attack o o o
Impersonation attack x x o
User anonymity o o o
Privileged-insider attack x o o
Session key disclosure attack x o o
Mutual authentication x x o
Multi-access - - o
Multi-delegation - - o

x: Insecure. o: Secure. -: Not concerned.

6.2. Comparison of Computation Costs

This section performs a testbed experiment on cryptographic computation of the
data retrieve phase using the popular “Multiprecision Integer and Rational Arithmetic
Cryptographic Library (MIRACL)” [13] on two platforms:

• Platform 1: The platform 1 is general personal computer environment, and the de-
tailed performance of the personal computer is as follows: “Ubuntu 18.04.4 LTS with
memory 8 GiB, processor: Intel Core i7-4790 @ 3.60GHz × 4, CPU Architecure: 64-bit.”
The experiments are executed for “one-way-hash-function (Th)”, “Bilinear pairing
operation (Tb)”, “Scalar point multiplication (Tspm)”, and “Exponentiation operation
(Te)” for 100 runs. After that the average run-time in milliseconds are recorded for

Appl. Sci. 2021, 11, 8841 18 of 20

these operations or functions from 100runs, which are 0.003 ms, 6.575 ms, 2.373 ms,
and 0.819 ms, respectively.

• Platform 2: The platform 2 is Raspberry PI environment for considering mobile device,
and the detailed performance of the Raspberry PI is as follows: “Model: Raspberry
PI 3 B, with CPU 64-bit, Processor: 1.2 GHz Quad-core, Memory: 1 GiB, and OS:
Ubuntu 20.04.2 LTS 64-bit.” Figure 8 shows the setting of Raspberry PI environment.
The experiments are executed for “one-way-hash-function (Th)”, “Bilinear pairing
operation (Tb)”, “Scalar point multiplication (Tspm)”, and “Exponentiation operation
(Te)” for 100 runs. After that the average run-time in milliseconds are recorded for
these operations or functions from 100runs, which are 0.020 ms, 21.348 ms, 5.686 ms,
and 2.973 ms, respectively.

Figure 8. Raspberry Pi Platform.

Table 4 reveals the message computation costs of data user and cloud server entities
in the data retrieval phase. As a result of comparing Cui et al., Liu et al., and ours,
respectively, it can be seen that our scheme has a higher total cost compared to the existing
schemes. However, the proposed scheme has the strength of showing that it is safe against
various attacks.

Table 4. Comparison of computation costs.

Protocol Computation Cost Total Cost

Data User Cloud Server Personal Computer Raspberry Pi

Cui et al. [10] 1Th + 1Tspm (2n)Tspm + 2Tb (4.746n + 15.526) ms (11.372n + 48.402) ms
Li et al. [20] 2Th + 2Tspm + 1Tb (2n + 1)Tspm + 4Tb (4.746n + 40) ms (11.372n + 123.838) ms
Ours 5Th + 3Tspm + 4Te + 1Tb 3Th + (2n + 2)Tspm + 3Te + 6Tb (4.746n + 63.647 ms) (11.372n + 198.837) ms

6.3. Comparison of Computation and Communication Complexity

The number of keywords in the ciphertext and the number of keywords in the search
query set affect computation and communication costs. In our scheme, the pairing opera-
tion between the user and the cloud server is additionally calculated compared to other
schemes, but authentication is performed only once regardless of the number of keyword
value. Therefore, according to (O) asymptotic notation, our scheme has the same computa-
tional and communication costs as other existing KASE schemes. A comparative analysis
in Table 5 shows that the complexity of computational and communication costs for the
different features of the proposed scheme are comparable to those of the other schemes.

Appl. Sci. 2021, 11, 8841 19 of 20

Table 5. Comparison of complexity.

Protocol Computation Cost Communication Cost

Encryption Trapdoor Retrieve of CS Aggregate Key Trapdoor Ciphertext

Cui et al. [10] O(|KW|P) (O|Q|M) O(|Q|P) O(1) O(|Q|) O(|KW|)
Li et al. [20] O(|KW|P) (O|Q|M) O(|Q|P) O(1) O(|Q|) O(|KW|)
Ours O(|KW|P) (O|Q|M) O(|Q|P) O(1) O(|Q|) O(|KW|)

|KW|: number of keywords with the ciphertext, |Q|: number of keywords in the query set, P: pairing.

6.4. Discussion of Comparison

We can see from a comparative analysis that the computation costs demonstrate that
the proposed protocol is expensive compared to other schemes. As per the asymptotic
notation, the proposed scheme’s calculation complexity and communication consumption
cost are the same as those of other schemes such as Cui et al. [10] and Liu et al. [20].
Furthermore, as shown in Table 3, our scheme outperforms other schemes in terms of
security and features.

7. Conclusions and Future Works

In this paper, we designed a novel KASE scheme for data sharing without assistance of
TTP, considering multi-delegation. The proposed scheme provides mutual authentication
to secure data sharing. Moreover, our protocol can provide keyword verification through
a bloom filter technique, and can resist various security attacks such as impersonation,
privileged-insider and session key disclosure attacks. Moreover, our proposed scheme
satisfies user anonymity property. We performed BAN logic to prove that the scheme can
provide mutual authentication, and we also applied AVISPA simulation tool to demonstrate
that the proposed scheme is secure from man-in-the-middle and replay attacks. Our scheme
has higher computation cost compared to existing schemes, but the complexity according
to the number of keywords and data sets is the same as existing schemes, proving that it is
more secure than existing schemes. In the future, we will build a test-bed that simulates
the real environment for efficient data sharing in real cloud services environment. After
that, we will apply our scheme to the test-bed and improve it to a more efficient scheme.

Author Contributions: Conceptualization, J.L., K.P. and Y.P.; software, J.L.; validation, M.K. and J.O.;
formal analysis, J.L., M.K. and J.O.; investigation, M.K. and J.O.; writing—original draft preparation,
J.L.; writing—review and editing, K.P., S.N. and Y.P.; supervision, Y.P.; project administration, Y.P.;
funding acquisition, K.P. and S.N. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by Electronics and Telecommunications Research Institute(ETRI)
grant funded by the Korean government. [21ZR1330, Core Technology Research on Trust Data Con-
nectome].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Holst, A.; Statista. Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2024. 2020.

Available online: https://www.statista.com/statistics/871513/worldwide-data-created/ (accessed on 30 January 2021).
2. Kamara, S.; Lauter, K. Cryptographic Cloud Storage. In Proceedings of the International Conference on Financial Cryptography

and Data Security, Tenerife, Spain, 25–28 January 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 136–149.
3. Osanaiye, O.; Choo, K.K.R.; Dlodlo, M. Distributed denial of service (DDoS) resilience in cloud: Review and conceptual cloud

DDoS mitigation framework. J. Netw. Comput. Appl. 2016, 67, 147–165. [CrossRef]
4. Juliadotter, N.V.; Choo, K.K.R. Cloud attack and risk assessment taxonomy. IEEE Cloud Comput. 2015, 2, 14–20. [CrossRef]
5. MiData. The Midata Project. Available online: https://www.midata.coop (accessed on 9 August 2021).
6. Fiat, A.; Naor, M. Broadcast encryption. In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA,

USA, 22–26 August 1993; pp. 480–491.

https://www.statista.com/statistics/871513/worldwide-data-created/
http://doi.org/10.1016/j.jnca.2016.01.001
http://dx.doi.org/10.1109/MCC.2015.2
https://www.midata.coop

Appl. Sci. 2021, 11, 8841 20 of 20

7. Ferrailol, D.F.; Kuhn, D.R. Role based access control national computer security conference. In Proceedings of the 15th National
Computer Security Conference (NCSC), Baltimore, ML, USA, 13–16 October 1992; pp. 554–563.

8. Sahai, A.; Waters, B. Fuzzy identity-based encryption. In Proceedings of the Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, 22–26 May 2005; Volume 3494, pp. 457–473.

9. Chu, C.K.; Chow, S.S.; Tzeng, W.G.; Zhou, J.; Deng, R.H. Key-aggregate cryptosystem for scalable data sharing in cloud storage.
IEEE Trans. Parallel Distrib. Syst. 2014, 25, 468–477.

10. Cui, B.; Liu, Z.; Wang, L. Key-aggregate searchable encryption (KASE) for group data sharing via cloud storage. IEEE Trans.
Comput. 2016, 65, 2374–2385. [CrossRef]

11. Burrows, M.; Abadi, M.; Needham, R. A logic of authentication. ACM Trans. Comput. Syst. 1990, 8, 18–36. [CrossRef]
12. AVISPA. Automated Validation of Internet Security Protocols and Applications. Available online: http://www.avispa-project.org/

(accessed on 9 August 2021).
13. MIRACL Cryptographic SDK: Multiprecision Integer and Rational Arithmetic Cryptographic Library. Available online: https:

//github.com/miracl/MIRACLAccessed (accessed on 9 August 2021).
14. Zheng, Q.; Xu, S.; Atenise, G. VABKS: Verifiable attribute-based keyword search over outsourced encrypted data. In Proceedings

of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014;
pp. 522–530.

15. Guo, C.; Luo, N.; Bhuiyan, M.Z.A.; Jie, Y.; Chen, Y.; Feng, B.; Alam, M. Key-aggregate authentication cryptosystem for data
sharing in dynamic cloud storage. Future Gener. Comput. Syst. 2018, 84, 190–199. [CrossRef]

16. Alimohammadi, K.; Bayat, M.; Javadi, H.H. A secure key-aggregate authentication cryptosystem for data sharing in dynamic
cloud storage. Multimedia Tools Appl. 2020, 79, 2855–2872. [CrossRef]

17. Zhou, R.; Zhang, X.; Du, X. File-centric multikey aggregate keyword searchable encryption for industrial internet of things. IEEE
Trans. Ind. Inf. 2018, 14, 3648–3658. [CrossRef]

18. Li, T.; Liu, Z.; Li, P. Verifiable searchable encryption with aggregate keys for data sharing in outsourcing storage. In Proceedings
of the Australasian Conference on Information Security and Privacy, Melbourne, VIC, Australia, 4–6 July 2016; pp. 153–169.

19. Padhya, M.; Jinwala, D.C. MULKASE: A novel approach for key-aggregate searchable encryption for multi-owner data. Front. Inf.
Technol. Electron. Eng. 2019, 20, 1717–1748. [CrossRef]

20. Liu, Z.; Li, T.; Li, P. Verifiable searchable encryption with aggregate keys for data sharing system. Future Gener. Comput. Syst.
2018, 78, 778–788. [CrossRef]

21. Yu, S.; Lee, J.; Lee, K.; Park, K.; Park, Y. Secure authentication protocol for wireless sensor networks in vehicular communications.
Sensors 2018, 18, 3191. [CrossRef] [PubMed]

22. Yu, S.; Lee, J.; Park, K.; Das, A.K.; Park, Y. IoV-SMAP: Secure and efficient message authentication protocol for IoV in smart city
environment. IEEE Access 2020, 8, 167875–167886. [CrossRef]

23. Kwon, D.; Yu, S.; Lee, J.; Son, S.; Park, Y. WSN-SLAP: Secure and lightweight mutual authentication protocol for wireless sensor
networks. Sensors 2021, 21, 936. [CrossRef] [PubMed]

24. Oh, J.; Yu, S.; Lee, J.; Son, S.; Kim, M.; Park, Y. A secure and lightweight authentication protocol for IoT-based smart homes.
Sensors 2021, 21, 1488. [CrossRef]

25. Lee, J.; Yu, S.; Park, K.; Park, Y.; Park, Y. Secure three-factor authentication protocol for multi-gateway IoT environments. Sensors
2019, 19, 2358. [CrossRef]

26. Park, K.; Noh, S.; Lee, H.; Das, A.K.; Kim, M.; Park, Y.; Wazid, M. LAKS-NVT: Provably secure and lightweight authentication
and key agreement scheme without verification table in medical internet of things. IEEE Access 2020, 8, 119387–119404. [CrossRef]

27. Lee, J.; Kim, G.; Das, A.K.; Park, Y. Secure and Efficient Honey List-Based Authentication Protocol for Vehicular Ad Hoc Networks.
IEEE Trans. Netw. Sci. Eng. 2021, 8, 2412–2425.

28. Wazid, M.; Bagga, P.; Das, A.K.; Shetty, S.; Rodrigues, J.J.; Park, Y. AKM-IoV: Authenticated key management protocol in fog
computing-based Internet of vehicles deployment. IEEE Internet Things J. 2019, 6, 8804–8817. [CrossRef]

29. Boneh, D.; Franklin, M. Identity-based encryption from the Weil pairing. In Proceedings of the Annual International Cryptology
Conference, Santa Barbara, CA, USA, 19–23 August 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 213–229.

30. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
31. Canetti, R.; Krawczyk, H. Universally composable notions of key exchange and secure channels. In Proceedings of the Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, 17 April 2002;
Springer: Berlin/Heidelberg, Germany, 2002; pp. 337–351.

32. Son, S.; Lee, J.; Kim, M.; Yu, S.; Das, A.K.; Park, Y. Design of secure authentication protocol for cloud-assisted telecare medical
information system using blockchain. IEEE Access 2020, 8, 192177–192191. [CrossRef]

33. Park, K.; Park, Y.; Das, A.K.; Yu, S.; Lee, J.; Park, Y. A dynamic privacy-preserving key management protocol for V2G in social
internet of things. IEEE Access 2019, 7, 76812–76832. [CrossRef]

34. Lee, J.; Yu, S.; Kim, M.; Park, Y.; Lee, S.; Chung, B. Secure key agreement and authentication protocol for message confirmation in
vehicular cloud computing. Appl. Sci. 2020, 10, 6268. [CrossRef]

35. Kim, M.; Lee, J.; Park, K.; Park, Y.; Park, K.H.; Park, Y. Design of Secure Decentralized Car-Sharing System Using Blockchain.
IEEE Access 2021, 9, 54796–54810. [CrossRef]

http://dx.doi.org/10.1109/TC.2015.2389959
http://dx.doi.org/10.1145/77648.77649
http://www.avispa-project.org/
https://github.com/miracl/MIRACLAccessed
https://github.com/miracl/MIRACLAccessed
http://dx.doi.org/10.1016/j.future.2017.07.038
http://dx.doi.org/10.1007/s11042-019-08292-8
http://dx.doi.org/10.1109/TII.2018.2794442
http://dx.doi.org/10.1631/FITEE.1800192
http://dx.doi.org/10.1016/j.future.2017.02.024
http://dx.doi.org/10.3390/s18103191
http://www.ncbi.nlm.nih.gov/pubmed/30248898
http://dx.doi.org/10.1109/ACCESS.2020.3022778
http://dx.doi.org/10.3390/s21030936
http://www.ncbi.nlm.nih.gov/pubmed/33573308
http://dx.doi.org/10.3390/s21041488
http://dx.doi.org/10.3390/s19102358
http://dx.doi.org/10.1109/ACCESS.2020.3005592
http://dx.doi.org/10.1109/JIOT.2019.2923611
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1109/ACCESS.2020.3032680
http://dx.doi.org/10.1109/ACCESS.2019.2921399
http://dx.doi.org/10.3390/app10186268
http://dx.doi.org/10.1109/ACCESS.2021.3071499

	Introduction
	Motivation
	Contribution

	Related Works
	Literature Reviews
	Preliminaries
	Bilinear Map
	Bloom Filter

	System Model and Threat Model
	System Model
	Threat Model
	Notations

	Our Proposed Scheme
	Setup Phase
	Data Upload Phase
	Data Request Phase
	Data Retrieve Phase
	Authentication for Delegation Phase
	Group Identity Revocation Phase

	Security Analysis
	Informal Analysis
	Correctness
	Impersonation Attacks
	Data User Anonymity
	Perfect Forward Secrecy
	Privileged-Insider Attacks
	Replay and Man-In-The-Middle Attacks
	Known Session-Specific Temporary Information Attacks
	Ephemeral Secret Leakage (ESL) Attacks
	Session Key Disclosure Attacks
	Mutual Authentication

	BAN Logic Analysis
	Logical Rules of BAN Logic
	Goals for Data Retrieve Phase
	Idealized Forms for Data Retrieve Phase
	Assumptions for Data Retrieve Phase
	Proof Using BAN Logic for Data Retrieve Phase

	AVISPA Simulation Analysis

	Security and Efficiency Features Comparison
	Functionality and Security Features Comparison
	Comparison of Computation Costs
	Comparison of Computation and Communication Complexity
	Discussion of Comparison

	Conclusions and Future Works
	References

