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Abstract: This study integrates path planning, fuzzy theory, neural networks, image processing,
range sensors, webcam, global navigation satellite system (GNSS), and real-time kinematic (RTK)
positioning system into an intelligent wheeled mobile robot (WMR) for outdoor patrolling. The
robot system uses ultrasound sensors, laser sensors, and fuzzy controllers to detect obstacles and
avoid them. The starting position and the goal position of the WMR in an outdoor environment are
given by the GNSS RTK positioning system. Real-time position correction of the robot is performed
through the differential global positioning system. The robot system applies the ant algorithm and
the Dijkstra algorithm to find the shortest path for patrol tasks. The convolutional neural network
image processing is utilized to identify intruders that are appearing in the patrol path. When the
WMR detects an intruder by the face detection and recognition methods, the robot captures the
photo of this person by the webcam and acquires the location information of this person by the RTK
positioning system. Then the WMR sends the location and photo of the intruder to the control center
by Wi-Fi and asks for help.

Keywords: image processing; fuzzy theory; GNSS; range sensor; path planning

1. Introduction

Starting in 2019, with the rapid spread of Coronavirus disease (COVID-19), govern-
ments all over the world have called on people to isolate themselves at home, or even
stop going to work. Therefore, when people are unable to work for various reasons, how
to make automatic machinery or intelligent robots continue to work instead of human
labor and let the world continue to run is currently an important goal and research issue.
Robots of different types have been developed based on different requirements. Most
intelligent robots integrate automation, control, electronics, mechanics, and communi-
cation technologies. The expensive intelligent robot system integrates many advanced
technologies and theories such as path planning [1], image processing, obstacle avoidance
technology [2], arms control [3], navigation [4], and so on. Those technologically advanced
robots are usually expensive and difficult to maintain. However, a robot structure that is
cheap and simple in design needs to be developed to completely replace human labor, and
despite being beneficial to the whole world, this is a challenging task. After the outbreak of
the pandemic, many tasks need robots that can replace humans, such as simple material
transportation and environmental patrol. However, the goal is to design and develop this
kind of robot that is easy to manufacture, assemble and repair, and it should be relatively
cheap and practical, and although this is challenging to achieve and there is still a lot of
room for improvement so far.

Our lives have become troubled by the current pandemic, and when the outdoor air is
no longer safe, robots are needed to replace humans in outdoor patrols. Wheeled mobile
robots (WMR) are the commonly used robots in many applications. The advantages of
the WMR include easy control and fast movement, therefore, the WMR was used in this
study. Omnidirectional WMR has more advantages than a normal directional wheeled
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mobile robot, such as mode of action, easy control, and high mobility [5–8]. Therefore,
to design an intelligent control system that replaces human labor and make the WMR
able to independently assist human patrol in an outdoor environment is the primary
research motivation of this study. Since the late 1990s, many papers have been presented
regarding robot outdoor patrol [9–13]. These studies mainly focused on navigation, obstacle
avoidance, path planning, road detection, and object recognition. Intruder identification
and location informing were not included. Here, we put focus on fast path planning and
fast face recognition. In addition, a new function of intruder alert is added.

There have been many research efforts devoted to the problem of robot path planning,
such as the Dijkstra algorithm, A* algorithm, and ant algorithm [14]. For obstacle avoidance,
among most studies, the majority use fuzzy controllers to control WMR [15]. For detecting
obstacles, there are many kinds of sensors, such as infrared sensors, ultrasonic sensors, and
laser sensors that can be used to detect obstacles. This study integrates the global navigation
satellite system real-time kinematic (GNSS RTK) positioning system, laser sensor, Dijkstra
algorithm, ant algorithm, fuzzy controller, CNN [16] image processing, ultrasound sensors,
and webcam into an intelligent robot system to perform outdoor patrol. The laser sensor,
ultrasound sensors, and fuzzy controller are applied to detect and avoid obstacles. The
starting position and the goal position of the WMR in an outdoor environment are given
by the GNSS RTK positioning system. The robot system uses the Dijkstra algorithm with
ant algorithm to find the shortest path for patrol tasks. In the outdoors, the robots may
move to an unknown environment. Therefore, a navigation system installed on the robot is
particularly important, so that the robot can know the current location and check whether
it reaches the destination or not. Path planning is another important issue of robot research.
Path planning allows the robot to move as much as possible on a shorter and collision-free
path. Image processing is used to detect any intruder who appears on the patrol path. If
the WMR detects a stranger by the face detection and recognition methods, it will capture
the photo of this person by a webcam and get the location information of this person by
the positioning system. Then, the WMR will send the location and photo of the stranger to
the control center by Wi-Fi and ask for help.

Robotic systems consist of different technologies. Many researchers have presented
their studies of intelligent robot control. Huang utilized inverse kinematics of the D-H
coordinate system in robot arm control [17], where the value of the robot joint variables can
be determined according to the given position and posture of the end effector. Lian [18] used
a fuzzy controller to control an obstacle avoidance mobile robot and made the robot have
an adaptive intelligent obstacle avoidance system. The kinematic model of omnidirectional
WMR was analyzed by Chung [19] to obtain a mobile system that does not require a
radius of gyration. Aman et al. [20] presented an efficient sensor fusion method. The
result is that different sensor fusion methods can be used to detect the size and location
of obstacles. Then, Fukai et al. [21] used the TOF (Time of Flight) type range sensor to
measure the distance, and then use that distance information acquired by the TOF camera
to detect obstacles. The distance between the sensor and the object can be measured
according to the time difference between signal emission and return, thereby improving
the accuracy of 3D recognition. Leow combined kinematic models on a wheeled mobile
robot [22], and constructed a very good modeling and nonlinear controller design for an
omnidirectional mobile robot. Lin implemented obstacle avoidance and ZigBee control
functions for omnidirectional mobile robots [23]. Zigbee is a low-power, low data rate,
and close proximity (i.e., personal area) wireless ad hoc network. The results provide the
FPGA implementation techniques for omnidirectional mobile robot control and extend
the ZigBee wireless communication techniques into the intelligent robot research. Zhang
et al. [24] proposed a hybrid method based on the A* algorithm and genetic algorithm
to solve the problem of the optimum path planning for mobile robots. The authors used
a GA approach for efficiently finding an (or near) optimal path in a grid map. GA is
able to find the optimal paths in large environments equally to A* algorithm in all the
simulated cases. Fadzli et al. [25] proposed a multi-layer dictionary storage structure
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for the Dijkstra algorithm. When applied to a map of any indoor terrain, the proposed
method produced the most optimal path between two points. Kho et al. [26] installed the
Global Positioning System (GPS) on an automated robot. GPS is used to determine position
coordinates, time, and the default position of the robot and can map the shortest path for
the robot to reach its goal from its current position. North et al. [27] proposed a system
that integrates odometry from wheel encoders, low-cost MEMS-based inertial sensors,
and GPS. During GPS outages, the Kalman Filter with velocity update derived from the
forward speed from wheel encoders is a good technique for reducing localization errors.
Mahendran and Vedaldi [28] showed that several layers in CNNs retain photographically
accurate information about the image, with different degrees of geometric and photometric
invariance. Shuyun et al. [29] proposed an improved ant colony optimization, and the
global path planning of the robot is carried out based on the known two-dimensional
environment map. Shuyun et al. designed a handling robot system that can recognize
ribbons and signposts, and automatically charge [30]. Parada-Salado et al. [31] proposed the
design and construction of a land-wheeled autonomous mini-robot (LWAMR) for indoor
surveillance. Isakhani et al. [32] presented a local optimization navigation algorithm based
on fuzzy logic, using the “recognition-memory” strategy to process the sensor information.
When the current planning path forms a dead zone and runs repeatedly, “identification” is
formed, and the path and navigation decision are re-planned to avoid obstacle colliding.
In our study, the advantages of GPS, Dijkstra algorithm, ant algorithm, CNN, and fuzzy
control are utilized in the control system design.

Contributions of this research are mainly in three parts. The first is to develop a robot
that can conduct outdoor mobile patrols using a simple physical mechanical structure
and inexpensive and easily available electronic components and motors. Secondly, a
convolutional neural network in the system integration is used to improve the robot’s face
recognition ability in outdoor patrol. Through the combination of Gaussian function a
new type of ideal fuzzy control model is established. The DGPS method plus Dijkstra
algorithm and ant algorithm for robot patrol in real-time path planning has been approved
to be sufficiently accurate. Finally, through software integration and data transmission
and analysis, a control center for remote robot manipulation and monitoring of patrol
conditions can be set up anywhere, which proves the flexibility and feasibility of this
conceptual system.

2. Materials and Methods
2.1. Composition and Structure of the Robot

The proposed control scheme is performed through experiment verification by an
omnidirectional WMR robot. The size of the robot is 600 mm in length, 400 mm in width,
and height is 850 mm, as shown in Figure 1a. The robot has six MX motors. The arms
have two MX-64 motors in the shoulders, two MX-64 motors in the elbows, and two
MX-28 motors at wrists on both sides. The MX-28 is 35.6 mm in length, 35.5 mm in width,
and 50.6 mm in height. Its static torque is 2.5 N.m. The MX-64 is 40.2 mm in length,
41 mm in width, and 61.1 mm in height. Its static torque is 6.0 N.m. The robot has two
mechanical arms and fingers that can grip objects, the length is 470 mm and 150 mm,
respectively. The StarGazer is on top of the robot’s head for indoor navigation and position.
The omnidirectional WMR’s chassis size is 240 mm radius. Three omnidirectional wheels
are configured in separated 120◦ from each other, and three 12V-DC motors are installed
to provide rated torque 700 g-cm. The WMR has two 12V batteries (12V1.3AH/20HR
lead-acid batteries) and a UPS uninterruptible power system on the first and second layer.
The WMR has six ultrasonic sensors in front of the carrier of the second layer, which
is used to measure the distance of the obstacle. The WMR also has a SICK LMS100 2D
laser scanner in front of the carrier of the fourth layer, which is used for long-distance
measurements. Both sensors are used to detect an obstacle as well as to an avoid obstacle.
The WMR has a GNSS RTK positioning system receiver in the back of the fourth layer,
which is used for outdoor navigation and positioning. The GNSS RTK system consists of
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two parts, one is GNSS receiver, the other is GNSS antenna, as shown in Figure 1b. The
system uses GPS/BDS dual satellite systems. In addition, it uses a low-cost GNSS chip,
and the price is about one-tenth of the traditional RTK system. Because the number of
useful satellites becomes more than twice the number of a single satellite system, it can
provide high accuracy of the observations and can very effectively solve the problem of
satellite signals which are clouded when the WMR is moving.
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Figure 1. (a) The omnidirectional WMR with webcam, laser sensor, ultrasonic sensors, GNSS RTK positioning system,
StarGazer positioning system, and notebook; (b) the GNSS antenna and the GNSS receiver [8].

2.2. GNSS RTK Positioning System and Differential GPS

To obtain the precise positioning coordinates, this system decodes and operates the
satellite data then transmits the data to the server via Wi-Fi. This system is a real-time
dynamic satellite positioning system. It uses two GNSS receivers capable of receiving GPS,
Global Navigation Satellite System (GLONASS), and Beidou satellite data. One is used as a
reference station and the other is used as a monitoring station. The satellite data of the two
stations are sent back to the server. After the device is processed by the differential GPS
technology, it can instantly obtain the positioning coordinates of the monitoring station
accurately to the centimeter level. The three main architectures of this system include a
fixed reference station, a movable monitoring station, and a server program for calculating
the positioning coordinates. The satellite data can be stored in an SD card inside the black
box.

ρ = D + c · (dt− dT) + dion + dtrop + νρ (1)

∆P = ρ + c · ∆dT + ∆dion + ∆dtrop + ε (2)

∇P = ∇ρ + c · ∇dt +∇dion +∇dtrop + ε (3)

∇∆P = (∆P)satellite2
− (∆P)satellite1

+ ε

= ∇∆ρ +∇∆dion +∇∆dtrop + ε
(4)

The difference result of the GNSS RTK positioning system receiver can be calculated by
the above Equations (1)–(4). Equation (2) expresses the single difference between receivers.
Equation (3) expresses the single difference between satellites. At time t, the error from
satellite clock dt and receiver clock errors dT could be canceled as in (4). Because the
distance between base and robot is short (less than 100 km), the localized atmospheric
errors can be reduced, and more accurate location can be obtained. The positioning system
transmits location and direction from the receiver to the computer via a USB connection.
In Equations (1)–(4), ρ is the virtual distance between a satellite and receiver, D is real
distance between a satellite and receiver, ∇∆ is a double difference (receiver-satellite), dion
is the ionosphere correction(the delay error caused by ionosphere), dtrop is the tropospheric
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correction (the delay error caused by the troposphere), ε is the measurement noise, c is
the speed of light, dt is the delay of GPS satellite clock relative to GPS time, dT is the
delay of receiver’s clock relative to GPS time, and νρ is the random error between receiver
and satellite.

2.3. Environmental Sensors of the Robot

The SICK LMS 100 2D laser scanner is set on the fourth layer of the WMR. Its scanning
angle is 270 degrees, operating range is 0.5 m to 20 m, angular resolution is 0.5 degrees,
scanning frequency is 50 Hz, and operating voltage is 10.8 VDC to 30 VDC. It uses Ethernet
to connect the SICK LMS 100 2D laser scanner to the notebook. Figure 2a is the appearance
of the SICK LMS 100 2D laser scanner and its illustration of the scanning range [14]. The
ultrasonic sensors in front of the carrier of the second layer are the Devantech SRF05 sonar
sensor, detecting range is 1 cm to 4 m. SRF05 sonar sensor module is easy to connect with
the ordinary control panel, such as BASICX, etc. Sonar frequency is 40 kHz, current is 4 mA,
and the voltage is 5 V, as shown in Figure 2b. The robot uses a Microsoft LifeCam studio
1080P Full-HD webcam to catch the visual image. It is set on the left shoulder. Webcam is
for target recognition and face recognition and is used to search the people who appear in
the patrol path, as shown in Figure 2c.
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2.4. Composition of the Motion System

The omnidirectional WMR uses a three-wheel drive so that the wheels on the WMR
are separated 120◦ to each other, as shown in Figure 3. Using three-wheel drive, the
disadvantage is that the direction of WMR is difficult to control stably. However, when the
WMR is set on a coordinate system [16], we can use an omnidirectional WMR kinematic
model [17] to implement the motion control. In this study, microcontroller Arduino was
used. Figure 4a shows the Arduino UNO, which is an ATmega328-based microcontroller
board. It has 14 digital input/output pins (6 of which can be used as PWM outputs),
6 analog inputs, a 16 MHz ceramic resonator, USB connection, power jack, ICSP connector,
and a reset button. The Arduino is an open-source microcontroller, and the microcontroller
uses the ATMEL AVR series. It contains everything needed to support the microcontroller;
simply connect it to a computer using a USB cable or boot it with an AC-to-DC adapter
or battery. The DFRduino I/O expansion board is shown in Figure 4b. Arduino has a
different model, hence, we used Arduino UNO and DFRduino I/O expansion board in the
control scheme. With a similar Java and C development environment, it can connect other
sensors and electronic components. When the direction of WMR can be controlled stably,
the omni-wheels have the advantages of having no radius of gyration and being able to
move in any direction compared with the ordinary differential steering.
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2.5. Face Recognition

This study uses a webcam to detect the intruder who appears on the patrol path.
For people detection, the important information is head, face, skin color, and so on. The
image processing methods include pattern recognition, feature description, human face
detection, and convolutional neural network. To start with, the webcam captures the
desired color of the target in RGB color space. RGB color space uses additive color by
primary color to produce many colors, but RGB color is easily influenced by the light source.
Various changes will occur due to outdoor ambient light sources. Thus, the RGB image is
transformed to the HSV color space, the use of HSV color space is to reduce the impact of
light sources. The HSV space is similar to human vision. By color segmentation [33] we
can obtain the HSV color space for pattern recognition. Then, the face image is processed
by the Haar-like method [34–36]. The second is Adaptive Boosting (AdaBoost) learning
algorithm and boosted classifiers that can have a better success rate for detecting faces [37].
The convolutional neural network (CNN) image processing is applied to face recognition.
It has been proven to have a very good recognition rate. However, when CNN involves the
operational nature of deep learning, it must have a huge amount of computing resources
and needs a very long training time to support the final results. This study attempted to
achieve generally acceptable effect verification with CNN that is as simple as possible,
maintain the face recognition rate that can be generally accepted under general conditions
after simplifying CNN, and use less computational resources and training time [38]. These
methods are described as follows.

2.5.1. Integral Image

The rectangle features are shown in Figure 5a [37], and the value I(x,y) at point (x,y)
in the integral image is the sum of i(x′, y′) of all the pixels (x′, y′) above and to the left of
(x,y), as shown in Figure 5b [37,39,40]. Its computation is very fast at any scale or location
in constant time by using the integral image, which was proposed by Frank Crow in 1984.
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In Equation (5), I is the value of the pixel position in the integral image and i is the value of
the pixel position in the original image.

I(x, y) = ∑
x′≤x,y′≤y′

x
(
x′, y′

)
(5)
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The integral of the image can be computed efficiently with one pass over the image,
and the value at point (x,y) is [39]:

I(x, y) = i(x, y)− I(x− 1, y− 1) + I(x, y− 1) + I(x− 1, y) (6)

When the integral image has been computed, the rectangular sum can be computed
in four array references regardless of the area size, as shown in Figure 6 [37]. That sign in
Figure 6, having 1 = (x0, y0), 2 = (x1, y0), 3 = (x0, y1), and 4 = (x1, y1), the sum of i(x,y) over
the rectangle spanned by 1, 2, 3 and 4 is [34]:

∑
x0 < x ≤ x1
y0 < y ≤ y1

i(x, y) = I(4) + I(1)− I(2)− I(3) (7)
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Figure 6. The sum of the pixels within rectangle D can be computed with four array references.

Lienhart et al. proposed a novel set to rotate Haar-like features [35]. Their method
has two assumptions, one is to assume that the basic unit for testing for the presence of an
object is a window of W*H pixels, as shown in Figure 7 [35,36].
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Figure 7. The examples of upright and 45◦ rotated rectangles.

The other is to assume that they have a very fast way of computing the sum of pixels
of an upright and 45◦ rotated rectangle inside the window. That can extend the original
feature set, which is used by Viola and Jones. The calculation for 14 Haar-like features is
very fast at any scale or location in a constant time, as shown in Figure 8 [35,36]. Calculation
of each feature is by summing up pixels [34,40].

f eatureI = ∑
i∈I={1,··· ,N}

ωi ∗ RecSum(ri) (8)

where wi are the weights, ri are the rectangles, and N is chosen arbitrarily. Only weighted
combinations of pixel sums of two rectangles are considered, that is, N = 2. The weights
have opposite signs and are used to compensate for the difference in area size between the
two rectangles.
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Figure 8. The extended feature sets, wherein, the black and white areas correspond to positive and
negative weights, respectively.

At the 45◦ rotated rectangles, the value of the point (x,y) in the integral image is the
sum of extending upwards until the boundaries of the image and all the pixels of the
bottom-most corner at point (x,y), as shown in Figure 9 [36].

R(x, y) = ∑
y′≤y, y′≤y−|x−x′ |

I
(

x′, y′
)

(9)
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Figure 9. The value at point (x, y) in the integral image is the sum of all the pixels of the bottom-most
corner at point (x, y) and extending upwards until the boundaries of the image.
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Computation efficiently of the integral image can be performed with one pass over
the image from left to right and top to bottom, as shown in Figure 10 [36].

R(x, y) = R(x− 1, y− 1) + R(x + 1, y− 1)− R(x, y− 2) + I(x, y) + I(x, y− 1) (10)
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2.5.2. Adaptive Boosting and Preprocessing

In 2001, Viola and Jones utilized the detection frame that used Haar-like features of
the sum of pixels in the rectangular area. The object detection framework has a good object
detection rate in real-time [40]. The Haar-like method uses a rectangle frame, and its size
and rotation angle can be variable. It is assumed that the first rectangle encompasses the
black and white rectangle, and the second rectangle represents the black area; black areas
have negative weights and white areas have positive weights (Figure 8). The feature values
are different between the sum of white and dark rectangular areas of pixel values, and these
different values are the basis of threshold determining whether the feature is needed or
not. We use a data structure of integral graph so that calculation of rectangular features can
be performed on constant time, then the adaptive boosting machine learning (AdaBoost)
can classify features of selected features. The classifier function is shown in Figure 11. To
ensure all face image position, skewness and size are invariant in the image, and because the
distance between the eyes is nearly the same for most humans, the location of two eyes is
used as a geometric normalization of face images. In the face image, the positions of the two
eyes are A and B, to make a line from A to B. The line between A to B is used to maintain
the level (rotating image), resulting in the direction of the face to maintain consistency,
reflecting the face rotation invariance in the image plane. Figure 12 shows the relationship
of scale, O is the center of the A with B. The distance is set to a fixed length (C = AB),
reflecting the face scale invariance in the image plane, as shown in Figure 12 [41,42].
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2.5.3. Convolutional Neural Network

In 2006, the article by G. Hinton and R. Salakhutdinov in Science ushered in the
wave of deep learning in the academic and industrial world [43]. Their paper has two key
points. The first is the multi-layer hidden artificial neural network that has excellent feature
learning capabilities, and the learned features have more characterization of the data, which
is conducive to visualization or classification. The other key point is deep neural network
training, the difficulty of which can be effectively overcome by layer-wise pre-training.
The current basic structure of the CNN consists of the input layer, convolutional layer,
pooling layer, full connectivity, and output layers (classifiers). For many existing classic
deep learning networks such as YOLOv4, the computing resources required from data
labeling to training classification are becoming larger and larger. The process of training
neural networks and adjusting hyperparameters has become very time-consuming. If we
want to rely on an ordinary notebook computer to be the processor of the robot, we need to
hypothesize and challenge the problem of insufficient computing power of the robot in the
outdoors and minimize the demand for computing resources. The CNN model established
in this experiment attempts to use only a single convolutional layer and a single pooling
layer plus three full-connection layers (hidden layer, multi-layer perceptron) to reduce
computing time, as shown in Figure 13. The output layer is the classifier and uses the
Softmax regression.
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Figure 13. The structure of CNN.

Consider a 5× 5 image size and a 3× 3 convolution kernel. There are nine parameters
for the convolution kernel here, which is denoted as (Theta = [theta{ij}] {3 × 3}). In this
case, the convolution kernel has nine neurons, and their outputs form a 3 × 3 matrix called
a feature map. The first neuron is connected to the first 3 × 3 part of the image, and the
second neuron is connected to the second part (with overlap), as shown in Figure 14 [44].

Θ = [θij] 3 × 3 (11)
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A matrix of (m × n) is convoluted with a matrix of (u × v) to obtain a matrix of
((m + u − 1) × (n + v − 1)).

Apply the discrete convolution operation, assuming a two-dimensional discrete func-
tion (f (m, n), g(u, v)), then their convolution is defined as f (m, n), g(u, v), and their convolu-
tion is defined as:

A(m, n) = f (m, n) ∗ g(u, v) =
m

∑
i

n

∑
j

f (m− u, n− v)g(u, v). (12)

The top of Figure 14 is the output of the first neuron, and the bottom is the output of
the second neuron. The operation of each neuron is:

A(1+q)(1+p) = act

(
u

∑
i

v

∑
j

a(i+q)(j+p)θij + b

)
. (13)

In Equations (11)–(13), Θ is the 9 parameters for the convolution kernel, A(m, n) is the
convolution output, f (m, n) is the convolution input, and g(u, v) is the convolution kernel,
u (and v) is the length (and width) of the matrix of the convolution kernel, m (and n) is
the length (and width) of the matrix of the convolution input, act is the activation function,
b is the bias value, i and j are the position subscript of the matrix, q is a positive integer
and the range is less than or equal to (m − u), and p is a positive integer and the range is
less than or equal to (n − v).

The purpose of pooling is to reduce the feature map. The pool size is generally
2 × 2 [39]. Commonly used pooling methods are:

• Max Pooling, take the maximum inside of the 4 points. This pooling method is used
in this study, as shown in Figure 15.

• Mean Pooling, take the average for the 4 points.
• Gaussian pooling, learn from Gaussian fuzzy methods, uncommonly used.
• It can be pooled, the training function (f ) accepts 4 points as input and 1 point as

output, uncommonly used.
• Since the length of the feature map is not necessarily a multiple of 2, there are also two

schemes for edge processing:
• Ignore edges, save the extra edges directly.
• Keep edges, the variable length of the feature map is filled with 0 as a multiple of 2,

and then pooled. This is the edge processing method used in this study.
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In the fully connected network of the CNN, the layer between the input layer and the
output layer is called the hidden layer. The perceptron is calculated using the following
formula:

Connection weight: i is input neuron, j is output neuron:

Wji(n + 1) = Wji(n) + ∆Wji(n) + α∆Wji(n− 1) (14)

Weight change (hidden neuron): k is the neuron in the output layer:

∆Wji(n) = η
.
ϕj
(
vj(n)

)
∑
k∈c

[δk(n)Wkj(n)]yi(n) (15)

Weight change (output neuron):

∆Wji(n) = ηej(n)
.
ϕj
(
vj(n)

)
yi(n) (16)

Activation (sigmoid) function:

ϕ(v) =
1

1 + exp(−v)
(17)

Local gradient (sigmoid): output layer:

δk = ek
.
ϕk(vk(n)) = ekyk(n)[1− yk(n)] (18)

Local gradient (sigmoid): hidden layer:

.
ϕj
(
vj(n)

)
= yk(n)[1− yk(n)][∑

k∈c
Wkj(n)δk] (19)

Total error:
(n) =

1
2 ∑

j∈c
e2

j (n), ej(n) = dj(n)− yj(n) (20)

Average error:

Eav =
1
n

N

∑
n=1

E(n) (21)

In Equations (14)–(21), W is the weight value of the neural network, ji is the order of
the weights of the neural network (the rows and columns of the weight matrix), n is the
iterative update timing, η is the learning rate, α is the momentum, v is the total input of
a single neuron, δ is the local gradient, y is the value of the output layer neuron, ϕ is the
activation function, e is the error value, k is the serial number of the output neuron, and d
is the true value (ideal value).
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In the traditional perceptron structure, the sigmoid function is commonly used as
the activation function. To overcome the problem of vanishing gradients in multi-layer
networks, Rectified Linear Unit (ReLU) can be used instead of the sigmoid function. ReLU,
also known as a modified linear unit, is a commonly used activation function in artificial
neural networks and usually refers to a nonlinear function represented by a ramp function
and its variants [45]. The more commonly used linear rectification function has a ramp
function f (x) = max(0,x), as shown in Figure 16.
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In this study, the Softmax regression model was used for the final identification and
classification. The Softmax regression model is an extension of the logistic regression
model for multi-classification problems, wherein, the class label y can take more than two
values, and Softmax regression is usually supervised [46]. In the Softmax regression, for
the training set {(x1, y1), . . . , (xm, ym)}, we have y(i) ∈ {1, 2, . . . , k} (note that the category
index here starts with 1, not 0). For a given test input x, we can use the hypothesis
function to estimate the probability value p(y=i|x) for each category j, that is, to estimate
the probability of occurrence of each classification result of x. Therefore, our hypothesis
function will output a k-dimensional vector (the sum of the vector elements is 1) to represent
the k estimated probability values. The hypothesis function hθ(x) has the following form:

hθ
(

x(i)
)
=



p(y1 = 1|x1)
p(y2 = 2|x2)

.

.

.
p(yk = k|xk)

 =
1

∑k
i=1 eθx(i)



eθ1(x1)

eθ2(x2)

.

.

.
eθk(xk)


(22)

When implementing Softmax regression, it would be convenient to represent θ with a
matrix of k ∗ (n + 1), which is a list of θ1, θ2, . . . , θk, as shown below:

θ =



θ1
θ2
.
.
.

θk

 (23)

2.5.4. Real-Time Face Detection in Dynamic Background

The traditional face recognition research mostly focuses on a single static image. How-
ever, the image is easily affected by the capturing environment in a dynamic background,
such as local light and shadow effects and face rotation angle problems, leading to reduced
recognition performance. In real-time face recognition, we try to create a better face detec-
tion rate than other methods and to overcome the decline in recognition rate, due to the
lightweight of the convolutional neural network and the dynamic recognition of human
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faces. Our solution is to identify the same person multiple times in the streaming video of
the webcam. Then multiple identification results are combined to confirm the identification
of the images, as shown in Appendix A.

2.6. Fuzzy Control

The WMR must have the ability to avoid obstacles and is not influenced by obstacles
in the patrol process to successfully conduct outdoor patrols. Often, vehicles parked on
the road are the obstacles that are most encountered in outdoor patrols. We used a laser
rangefinder to detect the obstacle which is on the patrol path and the fuzzy controller to
enable the WMR to avoid obstacles. The SICK LMS100 laser rangefinder is settled on the
WMR. The angle 20◦ of the laser rangefinder on the WMR is marked as DL. The angle
90◦of the laser rangefinder on the WMR is marked as DF. The angle 160◦ of the laser
rangefinder on the WMR is marked as DR. Input variables dl, df, and dr are presented by
three linguistic labels: “near”, “medium”, and “far”. The robot uses an ultrasonic sensor
and laser sensor to detect the distance of surroundings. There are three inputs of the
proposed fuzzy controllers for angle control, which are detected distances from different
angles. The three inputs of the fuzzy controller in angles are 20◦, 90◦, and 160◦. For input
variables 20◦ (dl), 90◦ (df ), and 160◦ (dr), their fuzzy sets are “near”, “medium”, and “far”
(the distance detection range is 0 to 200 cm). The output of the fuzzy controller is the
turning angle. Fuzzy sets of the output variable for turning angle are five linguistic labels,
including “VLL (turn left very large)”, “VL (turn left)”, “S (go forward)”, “VR (turn right)”,
and “VRR (turn right very large)”. We established a new kind of ideal fuzzy control model
through the cross combination of Gaussian functions. This fuzzy control model is shown
in Figure 17. The fuzzy truth table shows all the rules used to control the steering angle, as
shown in Appendix C.
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In addition, we also tried five inputs, three membership functions, and 243 fuzzy rules.
Compared with 243 fuzzy rules, 27 fuzzy rules were found to be sufficient to complete a
patrol and avoid obstacles.

2.7. The Path Planning

When the robot performs outdoor patrol, the computing time of the road path planning
should be minimized. Dijkstra algorithm can be used to calculate and shorten the operation
time of the path planning, and the ant algorithm can optimize the path in path planning.
Therefore, our path planning uses a combination of the Dijkstra algorithm and ant algorithm
to achieve the preset goals, that too are calculated in a short time, and that the calculated
path is the better or the shortest. Dijkstra algorithm is used to plan the shortest path
between nodes, and since only the nodes are connected to the node that forms the shortest
path, computational time can be reduced. This path planning is the shortest straight line
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between nodes, while the calculated path between the starting point and the ending point
is often no longer the shortest. Then, the use of an ant algorithm can make up for this
shortcoming. The ant algorithm is used to search for the best path to the target node. Path
planning results of the Dijkstra and ant algorithms are shown in Figures 18 and 19. Here,
we first used the Dijkstra algorithm to plan the short path from node to node, as shown in
Figure 18. Then, the ant algorithm was used to search for a shorter path along the previous
calculated path from number 1 node to number 9 node, as shown in Figure 19.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 50 
 

 
Figure 18. Path planning by Dijkstra algorithm. 

  

Figure 18. Path planning by Dijkstra algorithm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 50 
 

 

 
Figure 19. Path planning by Dijkstra algorithm combined with ant algorithm. 

2.8. The Control Scheme 
The control scheme consists of two sections. The first part is path tracking control for 

omnidirectional WMR navigation, which has path planning using the Dijkstra algorithm 
with ant algorithm and directional guidance using the GNSS RTK position system. Path 
correction uses Three-point positioning to determine the direction, as shown in Appendix D. 
The obstacles and distance are captured by laser sensor during movement. The second 
part is for face detection and recognition. When the robot patrols and finds an intruder, it 
will send the image of the intruder and the location information to the control center and 
give a loud alarm at the site. These two parts are integrated to control the WMR for per-
forming outdoor patrol tasks. Figure 20 shows the flowchart of the control sequence in 
this study. To start with, the coordinate location of the goal of the WMR is set. After that, 
the GNSS RTK positioning system receiver receives the coordinate location of the WMR 
and then uses the Dijkstra algorithm with ant algorithm to plan the shortest path. Next, 
we use the ultrasonic sensor, laser sensor, and webcam to search the surrounding envi-
ronment while WMR is moving. This provides environmental information and the WMR 
will determine the obstacles or the people that appear on the patrol path. If obstacles ap-
pear on the patrol path, then the fuzzy controller is used to avoid them until the WMR 
finishes the patrol. If people appear on the patrol path, the WMR will capture the images 
of the people from the webcam and use image detection and face recognition. If someone 
appears in the patrol path and the detection discovers that the person is an intruder, the 
WMR will save the photos of the intruder as well as the location information and send 
them to the control center by Wi-Fi and ask for help and give a loud alarm at the site. The 
experimental condition at the National Taiwan Ocean University is shown in Figure 21. 

Figure 19. Path planning by Dijkstra algorithm combined with ant algorithm.

2.8. The Control Scheme

The control scheme consists of two sections. The first part is path tracking control for
omnidirectional WMR navigation, which has path planning using the Dijkstra algorithm
with ant algorithm and directional guidance using the GNSS RTK position system. Path cor-
rection uses Three-point positioning to determine the direction, as shown in Appendix D.
The obstacles and distance are captured by laser sensor during movement. The second
part is for face detection and recognition. When the robot patrols and finds an intruder,
it will send the image of the intruder and the location information to the control center
and give a loud alarm at the site. These two parts are integrated to control the WMR for
performing outdoor patrol tasks. Figure 20 shows the flowchart of the control sequence
in this study. To start with, the coordinate location of the goal of the WMR is set. After
that, the GNSS RTK positioning system receiver receives the coordinate location of the
WMR and then uses the Dijkstra algorithm with ant algorithm to plan the shortest path.
Next, we use the ultrasonic sensor, laser sensor, and webcam to search the surrounding
environment while WMR is moving. This provides environmental information and the
WMR will determine the obstacles or the people that appear on the patrol path. If obstacles
appear on the patrol path, then the fuzzy controller is used to avoid them until the WMR
finishes the patrol. If people appear on the patrol path, the WMR will capture the images
of the people from the webcam and use image detection and face recognition. If someone
appears in the patrol path and the detection discovers that the person is an intruder, the
WMR will save the photos of the intruder as well as the location information and send
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them to the control center by Wi-Fi and ask for help and give a loud alarm at the site. The
experimental condition at the National Taiwan Ocean University is shown in Figure 21.
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3. Results

To show the effectiveness of the control scheme proposed in this study, experiments
were performed in an outdoor environment. In the experiment, we used the LabVIEW
software to write a human–machine interface and used the MATLAB R2013a software
to code image process, face recognition, path planning, and fuzzy controller. The SICK
LMS100 laser rangefinder uses an Ethernet cable, the webcams and GNSS RTK positioning
system use a USB cable to connect with a notebook, and then the notebook transmits the
signals to the robot. Experiments were conducted on the campus of the National Taiwan
Ocean University. The data and figures of face detection are shown in Appendix B.

In the beginning, the robot received the satellite data by the GNSS RTK positioning
system and a patrol destination on the campus map was given, then the WMR started to
patrol. Patrol path was obtained by the Dijkstra algorithm and ant algorithm, as shown
in Figure 22. Figure 23 shows that the robot encountered a moving object, and the object
was identified as a known person, as shown in Figures 24 and 25. The robot kept moving
along the desired path and encountered another person, as shown in Figures 26 and 27.
Figure 28 shows that the intruder was identified as a stranger. The robot then stopped
moving and activated the alarm system, as shown in Figures 29–31. Figure 32 shows
a staff of the control center who went to turn off the alarm. The intruder’s image and
location were sent to the control center, as shown in Figures 33 and 34. Outdoor patrols at
night are shown in Figures 35 and 36. The left side of Figure 35 was taken by an outdoor
camera, while the picture on the upper right side was taken from the notebook computer
on the robot, and the picture on the bottom right side was taken by an indoor camera (in
control center).
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4. Discussion

During the development and realization of the robot, we once faced a difficult situation
when the robot was walking on grass and gravel roads. When walking on certain rugged
roads, the entire robot shakes like an inverted pendulum due to the vibration caused
by the omnidirectional wheel. When the shaking period meets a certain frequency, the
robot may even fall. Although this problem is caused by the robot’s center of gravity and
omnidirectional wheel specifications, as a solution, we reduced the robot’s moving speed
and increased the number of batteries at the bottom of the robot to adjust the center of
gravity. Consequently, the endurance of the robot increased; it could patrol for 1 to 2 hours
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each time and reduce the demand for rapid response time for obstacle avoidance. In the
area of image processing and face recognition, we used the repeated recognition method
to improve the accuracy, with the advantage that even a single recognition error cannot
affect the overall recognition rate, so it can overcome the impact of the poor classification
ability due to the light effect and save several training resources and time spent on the
entire neural network. However, the disadvantage is the increase in the time spent on
face recognition. We made a few adjustments to sample pictures of the known targets in
dynamic to perform classification. The image calculation could be completed in 1 second.
For the result of a robot replacing a human in patrol, we send back the message of the
detected person to the remote-control center. This has three advantages. First, when the
robot’s recognition result is a stranger or an intruder, the personnel of the control center
can reconfirm and decide whether a security guard is needed to the place of the incident.
The second is data transmission and mailing through the 4G network. The coordinates and
images of people can be known in detail. Naturally, it can also be set to automatically send
messages to community guards or police stations when an incident occurs. Finally, during
the patrol process, the image captured by the robot camera is synchronized back to the
control center. If the personnel of the control center see an abnormality on the screen that
the robot has not found, they can react immediately. Indeed, if the control center can have
sufficient data transmission and computing performance, it is entirely possible to set up a
robot formation to cover the patrolling and supporting tasks in the desired area.

5. Conclusions

In this study, an intelligent control scheme was proposed which can control a robot
to perform outdoor patrol tasks day and night, and provide environmental security ser-
vices. We could successfully integrate the satellite positioning system, path planning, path
navigation, laser rangefinder, webcams, fuzzy controller, omnidirectional wheels robot,
robotic arm, and convolutional neural network image processing to a wheeled mobile
robot. Path guidance used outdoor navigation and positioning system, to obtain location
information from the GNSS RTK positioning system. The Dijkstra algorithm and the ant
algorithm for shortest path planning were used to compute the desired path. The GNSS
RTK positioning system was used to provide the current position of WMR and this system
can receive GPS + BDS observation data. As the number of useful satellites has become
more than twice the number of a single satellite system, the positioning accuracy has
therefore improved significantly. The laser rangefinder and the fuzzy controller were used
to detect the surroundings and avoid obstacles in real-time. In image processing, a normal
image was in RGB color space, and the produced color was not so intuitive and susceptible
to light interference. An object with the light intensity changes will have a large difference
in the same image and is difficult to distinguish for identification. Thus, we used HSV color
space to solve the problem of light interference, as it can counter the influence of the light
source more effectively. It also has a better identification effect for the light source changes
during a night patrol. In face recognition, we used a simplified convolutional neural
network for classification, and the experimental results prove the feasibility of this method.
Two webcams and image processing were used to acquire and recognize the images of
the patrol process, detect the intruder who appears on the patrol path, and capture the
photo of the intruder. Although the robot sometimes recognizes people as strangers due to
light problems during nighttime, as long as the staff of the central control center check the
photo of the intruder sent by the robot, they can confirm whether a stranger has invaded.
Experiment results show that the WMR can complete outdoor patrol tasks during the day
or night, successfully detect the intruder in the patrol process, send the intruder’s photo
to the control center, and therefore validate the effectiveness of the control scheme that
was proposed in this study. The outdoor security robot designed in this study has the
advantages of replacing human patrol and reducing manpower requirements, as well as
succeeded in cheaper assembly costs of the robot.
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Appendix A

We recognized the same person multiple times by the webcam video, and then com-
bined the multiple recognition results to enhance the recognition rate of the image, as
shown in Figures A1–A3.
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Appendix B

The data and figures of face detection are shown in Tables A1 and A2 and Figures A4
and A5.
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Figure A4. Face recognition of classified images.

Table A1. Frontal face static recognition.

Classification Misclassification Test Sample False Rate

Class 1 1 15 0.067
Class 2 0 15 0.000
Class 3 0 15 0.000
Class 4 0 15 0.000
Class 5 1 15 0.067
Class 6 1 15 0.067
Class 7 2 15 0.133
Class 8 0 15 0.000
Class 9 0 15 0.000
Class 10 0 15 0.000
Class 11 2 15 0.133
Class 12 0 15 0.000

Total 7 180 0.039



Appl. Sci. 2021, 11, 8857 26 of 30
Appl. Sci. 2021, 11, x FOR PEER REVIEW 46 of 50 
 

 
Figure A5. Face recognition in dynamic object rotation of Class 9. 

Table A2. Real-time face detection of dynamic objects. 

Classification Misclassification Test Sample False Rate 
Class 1 2 10 0.200 
Class 2 1 10 0.100 
Class 3 1 10 0.100 
Class 4 2 10 0.200 
Class 5 1 10 0.100 
Class 6 3 10 0.300 
Class 7 4 10 0.400 
Class 8 2 10 0.200 
Class 9 1 10 0.100 

Class 10 1 10 0.100 
Class 11 5 10 0.500 
Class 12 0 10 0.000 

Figure A5. Face recognition in dynamic object rotation of Class 9.

Table A2. Real-time face detection of dynamic objects.

Classification Misclassification Test Sample False Rate

Class 1 2 10 0.200
Class 2 1 10 0.100
Class 3 1 10 0.100
Class 4 2 10 0.200
Class 5 1 10 0.100
Class 6 3 10 0.300
Class 7 4 10 0.400
Class 8 2 10 0.200
Class 9 1 10 0.100
Class 10 1 10 0.100
Class 11 5 10 0.500
Class 12 0 10 0.000

Total 23 120 0.192
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Appendix C

The following fuzzy truth table shows all the rules used to control the steering angle.

Table A3. Fuzzy truth table.

Fuzzy
Rules

Input of DL Input of DF Input of DR Output of Fuzzy Control

Near Medium Far Near Medium Far Near Medium Far VLL VL S VR VRR

1 1 0 0 1 0 0 1 0 0 0 0 0 0 1
2 1 0 0 1 0 0 0 1 0 0 0 0 0 1
3 1 0 0 1 0 0 0 0 1 0 0 0 0 1
4 1 0 0 0 1 0 1 0 0 0 0 1 0 0
5 1 0 0 0 1 0 0 1 0 0 0 0 1 0
6 1 0 0 0 1 0 0 0 1 0 0 0 1 0
7 1 0 0 0 0 1 1 0 0 0 0 1 0 0
8 1 0 0 0 0 1 0 1 0 0 0 0 1 0
9 1 0 0 0 0 1 0 0 1 0 0 0 1 0

10 0 1 0 1 0 0 1 0 0 1 0 0 0 0
11 0 1 0 1 0 0 0 1 0 0 0 0 0 1
12 0 1 0 1 0 0 0 0 1 0 0 0 0 1
13 0 1 0 0 1 0 1 0 0 0 1 0 0 0
14 0 1 0 0 1 0 0 1 0 0 0 0 1 0
15 0 1 0 0 1 0 0 0 1 0 0 0 1 0
16 0 1 0 0 0 1 1 0 0 0 1 0 0 0
17 0 1 0 0 0 1 0 1 0 0 0 1 0 0
18 0 1 0 0 0 1 0 0 1 0 0 0 1 0
19 0 0 1 1 0 0 1 0 0 1 0 0 0 0
20 0 0 1 1 0 0 0 1 0 1 0 0 0 0
21 0 0 1 1 0 0 0 0 1 0 0 0 0 1
22 0 0 1 0 1 0 1 0 0 1 0 0 0 0
23 0 0 1 0 1 0 0 1 0 0 1 0 0 0
24 0 0 1 0 1 0 0 0 1 0 0 0 1 0
25 0 0 1 0 0 1 1 0 0 1 0 0 0 0
26 0 0 1 0 0 1 0 1 0 0 1 0 0 0
27 0 0 1 0 0 1 0 0 1 0 0 1 0 0

Appendix D. The Use of GNSS

In robotic outdoor patrols, the latitude and longitude are given by GNSS satellite
instant positioning systems. However, when robots use satellite navigation in patrols, they
must be able to determine whether the movement is correct or not, in order to successfully
perform patrols and reach their destinations. In this study, we tried to use the triangulation
positioning method to calculate the robot’s forward direction. We used this method to
replace the common but more complex method of robots to distinguish specific directions.
Here, the robot outdoor patrol was given a new starting point and target point repeatedly.
In the initial state of uncertain direction or movement error, the direction in which the
robot moved was not the direction to the target point, as shown in Figure A6. We can
see from Figure A6 that the robot is going from the starting point (point B) to the target
point (point A), but it has reached the moving point (point C). The longitude and latitude
of point A was measured and recorded in advance, and it was used as the target point.
The GNSS satellite positioning system can calculate and give the latitude and longitude
of points B and C instantly. We can have the latitude and longitude of A, B, and C. The
rotation angle of the robot from the current forward direction to the target location can
be obtained.
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