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Abstract: The measured vibrational responses of the pumping station pipeline in the irrigation site
were chosen to confirm the chaotic characteristics of the pumping station pipeline vibration and
to determine the vibrational excitation that makes it chaotic. First, the chaotic properties of the
pipeline vibration responses were investigated using a saturation correlation dimension and the
maximum Lyapunov exponent. The vibration excitation with chaotic features was obtained using an
improved variational mode decomposition (IVMD) method to examine the multi-time-scale chaotic
characteristics of the pipeline vibration responses. The results show that the vibrational responses
of each measuring point of the pipeline under different operating conditions have clear chaotic
characteristics, where the chaotic characteristics of the axial points and bifurcated pipe points are
relatively strong. The vibration of the operating conditions and measurement points affected by the
unit’s operation and flow state change is further complicated. The intrinsic mode function (IMF)
produces a low-dimensional chaotic attractor after the IVMD disrupts the vibration response. Still,
the vibration excitation of the remaining components on behalf of the units does not have chaotic
properties, implying that water pulsation excitation makes the pumping station pipeline vibrations
chaotic. The vibration excitation caused by the unit’s operation covers the chaotic characteristics of
the pipeline vibration and increases its uncertainty. The outcomes of this study provide a theoretical
basis for further exploration of the vibration characteristics of pumping station pipelines, and a new
method of chaos analysis is proposed.

Keywords: pumping station pipeline; chaotic characteristic; IVMD; vibration response; correlation
dimension; Lyapunov exponent

1. Introduction

High-lift pumping stations and water-diversion irrigation areas have been built in
many water-deficient areas due to the continuous development of electric water-lifting
equipment and water-diversion irrigation technology in China. These projects have created
enormous economic, ecological and social benefits. Thus, ensuring their safe and stable
operation is the main task of modernising and developing water conservation in China [1].
Natural and human forces create varying degrees of pipeline vibration during long-term
operation at pumping stations [2]. Long-term irregular pipe vibration will lead to the
loosening of the pipelines and their auxiliary system, causing catastrophic damage in severe
cases [3]. Therefore, it is of great research interest to analyse the vibration characteristics of
the pumping station pipeline to avoid its adverse vibrations.

Chaos is a unique mechanical phenomenon in the vibration of strongly nonlinear
structures. Most researchers believe that the vibrations of pipelines are weakly nonlinear,
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so they mainly focus on studying chaotic phenomena caused by the flow of water and
other excitation sources such as flow. There is a scarcity of research on the chaotic processes
in the pipeline itself when researching nonlinear problems. It is found that the chaotic
phenomena of pipelines do not depend solely on the strength of structural nonlinearity;
for some weak nonlinear or even linear structures, chaos occurs [4]. PaïDoussis studied
the dynamics of a cantilever pipeline with nonlinear constraints and constant internal
flow, which discovered the chaotic motion of the system [5]. Tang obtained the chaotic
characteristics of the transport pipeline by increasing the nonlinear force and found that
the occurrence of chaos is mainly affected by the flow velocity in the pipeline [6]. B.G.
Sinir investigated the nonlinear vibrations of slightly curved pipes that transport fluid
with constant velocity [7]. The periodic and chaotic movements have been observed in
the transverse vibrations of slightly curved pipes transporting fluid. Zhao analysed the
chaotic phenomenon in the pipeline vibration caused by the flow pulsation excitation
under thermal load and then obtained the relationship between the frequency response
and flow velocity [8].

Research on the chaotic characteristics of pipeline systems mainly focuses on oil-gas
pipelines and the mathematical models of pipelines with specific nonlinear constraints. In
contrast, the chaotic characteristics of pumping station pipeline systems are rarely studied.
Most of the previous research achievements have only analysed the chaotic characteristics
of the vibration system but have not further explored the vibrational excitation that caused
the chaos. In this paper, the measured vibration responses of the pumping station pipeline
in an irrigation area are taken as the research objective. The chaotic characteristics of the
vibratory responses of the pumping station pipeline under different working conditions
are analysed by using the saturation correlation dimension and the largest Lyapunov
exponent. In addition, the IVMD method is used to decompose the vibration responses of
the measurement points under typical working conditions. The chaotic characteristics of the
IMFs are analysed to obtain the vibratory excitation that causes the chaotic characteristics
of the pumping station pipeline.

2. Theoretical Aspects
2.1. Identification Method of Chaotic Characteristics

There are many methods for identifying chaotic characteristics, which are roughly
divided into qualitative and quantitative analysis. Orbit observation, Poincare surface of
section, and power spectral analysis are examples of qualitative approaches [9–11]. These
methods are feasible and straightforward, but they are limited in determining whether
the system has chaotic characteristics and cannot perform transverse comparisons under
different operating conditions. Quantitative methods, such as the saturation correlation
dimension method [12] and the largest Lyapunov exponent method [13], can reflect the
vibration complexity and the degree of chaos under different conditions by comparing the
values of the parameters. The saturation correlation dimension and the largest Lyapunov
exponent are chosen as the chaotic identification indexes of pipeline vibration responses in
pumping stations to improve the trustworthiness of the result.

2.1.1. Saturation Correlation Dimension

The correlation dimension characterises the compactness of a dynamic system and
is used to reflect the system’s complexity. When the saturation correlation dimension is
fractional, the system is said to have chaotic properties. For an m-dimensional phase space,
its correlation function can be defined as follows:

C(r) = lim
M→∞

2
M(M− 1) ∑

1≤i≤j≤M
H
(
r− ‖Yi −Yj‖

)
(1)

where M = N − (m− 1)τ is the number of phase points, H(u) is the Heaviside function,
N is the time series; r is the vector point in the time series; M is the embedding dimension;
Tau is the time delay; Y is the reconstruction vector.



Appl. Sci. 2021, 11, 8864 3 of 15

When the time series is chaotic, for the positive, the relationship between the correla-
tion function C(r) and r is

C(r) ∝ αrD2 (2)

where α is a constant, D2 is the correlation dimension which can be obtained by the slope
of the log2 C(r) ∼ log2 r curve, that is

D2 = lim
r→0

log2 C(r)
log2 r

(3)

Due to the noise in the measured signal, the embedding dimension is generally
controlled to rise gradually. The apparent straight line segments in the log2 C(r) ∼ log2 r
curve are fitted using the least square method for each embedding dimension. The slope
of each segment increases with the rising embedding dimension, and eventually reaches
saturation, the saturation correlation dimension.

2.1.2. Largest Lyapunov Exponent

The Lyapunov exponent determines the chaotic characteristics of the system based
on the diffusion of the phase trajectory. Generally, the direction represented by the pos-
itive Lyapunov exponent supports the attractors. In contrast, the contraction direction
corresponding to the negative Lyapunov exponent contributes to the attractor dimension’s
fractional part after counteracting the expansion direction’s effect. Thus, the positive
Lyapunov exponent is a prominent feature of chaos. Suppose λ1 as the largest Lyapunov
exponent of a system, then the chaotic components of the system can be found if λ1 is
positive, and its value reflects the chaos degree.

Rosenstein [14] proposed the small data sets for computing λ1. Its basic steps are as follows:
Choose suitable τ and m to reconstruct the phase space and find the nearest neighbor

point Yî of each Yi in the phase space. Short separation limitation is as follows:

di(0) = min
î
‖Yi −Yî‖(

∣∣i− î
∣∣ > p) (4)

where p is the average period of time series, i is the vector in space, î is the vector of the
nearest neighbor of the second vector.

Define the distance of Yi+j and Yî+j as

di(j) = ‖Yi+j −Yî+j‖ (5)

where j = 0, 1, 2, · · · , min
(

M− i, M− î
)
.

For each j, compute the ln di(j) average as follows:

y(i) =
1

q∆t

q

∑
i=1

ln di(j) (6)

where q is the number of nonzero ln di(j). The slope of the regression line made by the
least square method is λ1.

2.2. Improved Variational Mode Decomposition (IVMD)

Variational mode decomposition (VMD) is a new method of multi-component adap-
tive signal decomposition [15]. Compared to traditional signal decomposition methods, it
effectively avoids modal aliasing and over-decomposition defects and has a higher utiliza-
tion value [16]. VMD comprises two processes comprising the establishment of variational
constraints and iteration to find the optimal solution. The specific operation process is
as follows: VMD decomposes a given signal f into K modal functions using variational
constraints mk(t). The bandwidth of each IMF is limited, and each IMF is distributed
around the central pulsating frequency. The variational constraint model is as follows [17]:
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min
mk ,wk

{
∑
k

www∂t

[(
σ(t) + j

πt

)
mk(t)

]
e−jwkt

www2

2

}
s.t.∑

k
mk = f

(7)

where {mk} represents the decomposed K IMF components, {mk} = {m1,m2, · · · , mk};
σ(t) is a pulse function; {wk} is the central frequency of each IMF, {wk} = {w1, . . . wk}.

To complete the adaptive decomposition of input signals f and to obtain the IMFs
with the minimum sum of bandwidth, the following expanded Lagrange expression
is introduced:

L(mk, wk, λ) =α∑
k
‖∂(t)

[(
δ(t) +

j
πt

)
mk(t)

]
e−jwkt‖2

2+‖ f (t)−∑
k

mk(t)‖
2

2

+

〈
λ(t), f (t)−∑

k
mk(t)

〉
(8)

where α is the penalty factor to ensure the accuracy of signal reconstruction; λ(t) is a La-
grange multiplier used to strengthen the constraint; 〈〉 represents the inner product operation.

To solve the above variational constraint problem, the dual decomposition and alter-
nate direction multiplication sub-algorithm are used [18]. Keep updating mk, wk and λ(t)
to find the saddle point of Equation (8), that is, the optimal solution of Equation (7). The
modal component function mk and the central frequency wk are

mn+1
k (w) =

f (w)− ∑
i 6=k

mi(w) +
λ(ω)

2

1 + 2α(w− wk)
2 (9)

wn+1
k =

∫ ∞
0 w|mk(w)|2dw∫ ∞
0 |mk(w)|2dw

(10)

λn+1 = λn + τ

(
f (w)−∑

k
mn+1

k (w)

)
(11)

When VMD decomposes the vibration response sequence, determining the total modal
number is a crucial step. The selection of modal parameters K greatly affects the accuracy
of the results [19]. A parameter K is usually challenging to determine. If K is greater
than the number of useful components obtained by signal decomposition, information
superposition will occur; if K is smaller than it, a part of the limited bandwidth of the solid
modulus cannot be decomposed. An IVMD method based on the mutual information (MI)
method is proposed for K selection.

MI reflects the correlation between two random variables and allows better identifica-
tion of the degree of correlation [15]. MI is as follows:

I(X, Y) = H(Y)− H(X|Y ) (12)

where H(Y) is the entropy of Y, and H(Y|X ) is the conditional entropy of Y when X is
known. When I(X, Y) = 0, X and Y are independent of each other.

The mutual information Ik of the original signal and each IMF obtained by the IVMD
decomposition is calculated and normalised by Equation (13). Then the correlation between
each modal component and the original signal is judged, that is, whether the original signal
is completely decomposed.

σi =
Ii

max(Ii)
(13)

where σi is the normalized mutual information value of each IMF, i =1, 2, . . . k. Refer to
reference [20], when σi is less than 0.02, it is considered that the IMF does not contain valid
feature information. The original signal has been decomposed completely.

The specific algorithm for adaptive determination of K using MI method is as follows:
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Step 1: Initialize n = n + 1, assign K = 1;
Step 2: K = K + 1, perform outer circulation;
Step 3: Initialize m1

k , w1
k , λ1 and n, assign n = 0;

Step 4: Order n = n + 1 to execute the inner loop;
Step 5: For all w ≥ 0, according to Equations (9) and (10), mk and wk are updated,

respectively;
Step 6: Update λ according to Equation (11);

Step 7: For a given discriminate accuracy e > 0, if the iteration condition ∑
k

‖mn+1
k −mn

k ‖
2
2

‖mn
k ‖

2
2

< e

is satisfied, the process is terminated, otherwise loop step 2 to step 6;
Step 8: Circulate step 2 to 7 until the set threshold σ is greater than the normalized

mutual information σi, that is, if I( f −∑ mk, f ) < σ, end the cycle.
The flow chart of the above calculation steps is shown in Figure 1.
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3. Chaotic Characteristics Analysis of Pipeline Vibration Response

The pipe material is stainless steel. Model 891–2 vibration sensors are used in the
test, which are divided into four grades: small speed, medium speed, large speed and
acceleration. So speed sensors are used in this test. Taking the No. 2 pressure pipeline of
the Jingdian Project pumping station No. 3 as a research objective, the No. 4 and No. 5
units of a 1200S–56 horizontal centrifugal pump are connected with the branch pipe. Six
measurement points are selected on the main pipe and two branches of the pipeline. Each
point is equipped with vibration sensors in X, Y and Z directions. The measuring points
are arranged as shown in Figure 2.
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In the prototype test, four working conditions were selected to collect the vibration
responses of the pipeline. The descriptions of each working condition, sampling time and
sampling frequency are shown in Table 1.

Table 1. Four working conditions.

Cases Description of Working Conditions Sampling Time/s Sampling
Frequency/Hz

1 No. 4 unit stable operating 900 512
2 No. 4 unit opening 1800 512
3 No. 4 unit closing 1800 512
4 No. 4 and 5 units stable operating 900 180
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The velocity-time history of points under typical conditions is shown in Figure 3.
The chaotic characteristic analysis of the vibration responses under different conditions is
carried out as follows:
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(b) Z-axis vibration of point 1 under condition 4.

First, the reconstruction of the phase space of the time series is performed, that is, the
calculation of the time delay τ and embedding dimension m. The CAO method essentially
uses the minimum error method to determine the embedding dimension, which was
proposed by Liangyue Cao in 1997. This paper calculates τ by the autocorrelation function
method and chooses the CAO method to obtain m [21]. The calculation process of τ and m
is illustrated by taking the Z-axis vibration of point 1 under condition 4 as an example.

In the process of calculating τ by the autocorrelation function method, when the value
drops to 1–1/e of the initial value, the corresponding time delay is τ. The result of the
autocorrelation function is shown in Figure 4.
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Figure 4. τ Calculation of point 1 Z-axis vibration under condition 4.

After obtaining τ, the embedding dimension is determined by the CAO method. E1(m)
represents the minimum embedding dimension. E2(m) represents the characteristics of
time series. When E1(m) obviously no longer changes with the increase, and the E2(m)
value tends towards 1, the corresponding m is the optimal embedding dimension. From
Figure 5, we can see that the optimal embedding dimension m of point 1 Z-axis vibration
under condition 4 is 11.



Appl. Sci. 2021, 11, 8864 8 of 15
Appl. Sci. 2021, 11, 8864 9 of 16 
 

 

0 2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E(
m

) f
uc

tio
n

Embedding dimension m

 E1(m)
 E2(m)

m=11

 
Figure 5. m  Calculation of point 1 Z-axis vibration under condition 4. 

The G-P algorithm [22] and the small data sets are chosen to calculate the saturation 
correlation dimension and the largest Lyapunov exponent. Two types of indexes are 
used to analyse the chaotic characteristics of time series. 

The G-P algorithm is a chaotic eigenvalue calculation method proposed by 
Grassberger and Procaccia to calculate the saturation correlation dimension 2D . 

The embedding dimension is selected as 2,4,6, 20m = …,  and the τ  has been 
calculated above. According to the correlation function relation in Equation (3), the 

( )2 2log ~ logC r r  double logarithmic relation graph of different m  is plotted, 
respectively. The slope fitted by the near line segment of the curve is the correlation 
dimension under the corresponding embedding dimension. As the embedding 
dimension increases, it is the saturation dimension 2D  when the correlation dimension 
reaches saturation. Figure 6 is the diagram representing the calculation of the saturation 
correlation dimension of specific points. 

 

-6 -5 -4 -3 -2 -1 0
-25

-20

-15

-10

-5

0

Lo
g 2C

(r)

Log2r

m=2~20

 

 

-6 -5 -4 -3 -2 -1
0

2

4

6

8

10

12

14

Sl
op

e

log2r

m=2~20

 

(a) (b) 
 

0 2 4 6 8 10 12 14 16 18 20 22
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Co
rre

la
tio

n 
di

m
en

sio
n

Embedding dimension m

m=10,D2=4.985

 
(c) 

Figure 6. Calculation of point 1 z-axis vibration under condition 4 (a) Double logarithmic curve, (b) Slope of double 
logarithmic curve, and (c) Relation between D2 and m. 

Figure 5. m Calculation of point 1 Z-axis vibration under condition 4.

The G-P algorithm [22] and the small data sets are chosen to calculate the saturation
correlation dimension and the largest Lyapunov exponent. Two types of indexes are used
to analyse the chaotic characteristics of time series.

The G-P algorithm is a chaotic eigenvalue calculation method proposed by Grassberger
and Procaccia to calculate the saturation correlation dimension D2.

The embedding dimension is selected as m = 2, 4, 6, · · · , 20 and the τ has been
calculated above. According to the correlation function relation in Equation (3), the
log2 C(r) ∼ log2 r double logarithmic relation graph of different m is plotted, respec-
tively. The slope fitted by the near line segment of the curve is the correlation dimension
under the corresponding embedding dimension. As the embedding dimension increases, it
is the saturation dimension D2 when the correlation dimension reaches saturation. Figure 6
is the diagram representing the calculation of the saturation correlation dimension of
specific points.
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To reveal the distribution law of the saturation correlation dimension, the D2 variation
curves of points in each direction under different conditions are shown in Figure 7.
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As can be seen from Figure 7:

(1) In general, D2 ranges from 1.156 to 5.283, and they are fractional, indicating that the
responses of the pipeline in all directions are chaotic;

(2) Compared with the other two directions, the correlation dimension of the axial
measurement points (Y-axis) of the main pipe is obviously smaller than that of the
other two directions. It shows that the axial vibration of the pipeline has a smaller
dimension chaotic attractor and requires fewer independent control variables to
describe the dynamic system. This is mainly because the direction of the centrifugal
force generated by the centrifugal pump of units is not in the axial direction of the
main pipeline;

(3) At the same points, the D2 of each point in condition 4 (No. 4 and 5 units in stable
operation) is greater than in other conditions, while the corresponding D2 in condition
3 (No. 4 unit in closing) is less. It indicates that the pipeline vibration is more
complicated in the stable conditions of the two units and the complexity of the
pipeline vibration is relatively weak in the closed condition. Unit operation increases
the uncertainty of the pipeline vibration;

(4) In the same condition, the points near the units (point 1 and 5) and the bifurcated
pipe (point 4) reach a relatively larger D2, indicating that the vibration complexity
of the pumping station pipe is greatly affected by the unit’s vibration and the flow
pattern stability.
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To verify the validity of the above analysis results, the chaotic characteristics of the
pumping station pipeline are further analyzed by using the largest Lyapunov exponent λ1.
According to the time delay τ and embedding dimension m, the small data sets calculate
the largest Lyapunov exponent. Figure 8 is the λ1 calculation diagram of typical points,
and the value of the separation factor y(i) tends to be stable after nearly linear growth. The
linear slope is adjusted by the least square method, and the value is λ1. The λ1 of each
point in different vibration directions are shown in Figure 9.
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As shown in Figure 9:

(1) The largest Lyapunov exponents λ1 of different points are between 0.0323 and 0.0734,
greater than 0. It shows that the measured vibration responses of pipelines have
obvious chaotic characteristics. Also, the axial points λ1 of the main pipeline (Y-axis)
are obviously larger than the other two directions in the same condition, indicating
the chaotic characteristics of the points separated from the influence of centrifugal
force generated by pumping station units are more obvious;

(2) The λ1 of measuring points under condition 4 (No. 4 and 5 units in stable operation)
are lower than in other conditions, while the λ1 of condition 3 (No. 4 unit closing) is
relatively larger. The largest Lyapunov exponent λ1 decreases with the start-up of the
two units, indicating that the units’ operation weakens the chaotic characteristics of
the pipeline vibration;

(3) In the same condition, the λ1 of the points near the units (point 1 and 5) are smaller.
In contrast, while the λ1 of the points at the pipeline’s bifurcation (point 4) are greater
than that of other measuring points, indicating that the sudden change of the flow
state in the pipeline makes the vibration more chaotic, and the units’ operation reduces
the chaotic degree of vibration signals near the units.

The above analysis is complementary to the calculation results of the saturation
correlation dimension D2, which further confirms that the unit’s operation and flow state
changes greatly impact the chaotic characteristics of the pumping station pipeline.

4. The Analysis of Multi-Time-Scale Chaotic Characteristics Based on IVMD

The vibration characteristics of the pumping station pipeline are different from those of
the general pipeline, which is mainly reflected in the influence of the pumping station unit
on the vibration of the connecting pipeline. The vibration sources are primarily composed
of low-frequency water pulsations caused by the pipeline flow and blade frequency, rotation
frequency and frequency doubling produced by the unit’s operation [23].

Taking the vibration response of the specific point (point 1 Z-axis vibration under
condition 4) as an example, the spectrum analysis is shown in Figure 10. Concerning the
author’s previous article [23,24], 20, 40 and 60 Hz are the blade frequency, the rotation
frequency and the frequency doubling, respectively, and 0.5 Hz is the low-frequency water
pulsation. Spectrum analysis shows that the frequency band of the vibration excitation
caused by water pulsation (0.5 Hz) is relatively wide. The wide-peak power spectrum is
the typical characteristic of the chaotic system [25,26]. The pipeline vibration excitation
produced by the unit’s operation (20 Hz, 40 Hz, and 60 Hz) corresponds to the peak power
spectrum and has high periodicity. Therefore, it is speculated that the chaotic characteristics
of the pipeline are mainly caused by water pulsation, while the unit vibration masks the
chaotic characteristics of the pump station pipeline.

The excitation components of different time scales must be effectively separated to
clarify the vibration excitation with chaotic characteristics. As a new signal decomposition
method, IVMD can adaptively decompose a signal into a series of IMFs with different scale
characteristics. Therefore, the IVMD method is used to identify the vibration excitation
that causes the chaotic characteristics of the pipeline.

The multi-time scale chaotic vibration response characteristics of the specific point
(point 1 Z-axis vibration under condition 4) are analysed.
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The modal parameters K of IVMD are determined as 4 by the MI method. Four
IMFs are obtained by the IVMD decomposition of point 1 Z-axis vibration response under
condition 4. Figure 11 is the time history of decomposed IMFs.
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Figure 11. Time histories of IMFs decomposed by IVMD.

Mutual information value: IMF1 is 1.000, IMF2 is 0.025, IMF3 is 0.038, IMF4 is 0.0661.
It can be seen that the normalized mutual information values of the IMFs are all above
the threshold of 0.02, which meets the decomposition requirements. Figure 11 shows
that IVMD can sequentially decompose the original vibrational response to obtain four
IMFs with increasing frequency. The frequencies from IMF1 to IMF4 correspond to four
major frequency bands in the original response spectrum: 0.5, 20, 40 and 60 Hz, respec-
tively, and the decomposition effect is improved. Then the chaotic characteristics of the
decomposed IMFs are analysed using the saturation correlation dimension and the largest
Lyapunov exponent.

The calculation process of typical IMF chaotic eigenvalues is shown in Figure 12. From
Figure 12a,b the saturation correlation dimension D2 of IMF1 is 1.115, and the largest
Lyapunov exponent λ1 is 0.0774, indicating that IMF1 has prominent chaotic characteristics.
The near-linear region of the D2 logarithmic curve cannot be found from IMF2 to IMF4;
these components have no chaotic characteristics. Due to space limitations, only the slope
of the IMF2 double logarithmic curve is given in Figure 12c.
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By comparing the results of the chaotic eigenvalues of the IMFs with those of the
vibrational response before decomposition, it can be concluded that:

(1) IMF1, which represents the water pulsation excitation, the saturated correlation di-
mension 1.115 is a fractal dimension, and the largest Lyapunov exponent is 0.0774
greater than zero, has prominent chaotic characteristics. IMF2 to IMF4, which repre-
sent the vibration excitation of the unit’s operation, do not have any chaotic character-
istics, indicating that the unit’s operation cannot cause chaotic characteristics of the
pumping station pipeline vibration;

(2) After eliminating the IMFs (IMF2 to IMF4) caused by the unit’s operation with no
chaotic characteristics, the saturation correlation dimension D2 of the pipeline vibra-
tion response decreases from 4.985 to 1.115. At the same time the largest Lyapunov
exponent increases from 0.0513 to 0.0774, that is, the complexity of the pipeline vi-
bration decreases, and its chaotic characteristics are more evident. This shows that
when the pumping station pipeline vibrates, the water pulsation excitation makes
its vibration have obvious chaotic characteristics. In contrast, vibration excitation
generated by the unit’s operation masks the chaotic characteristics of the pumping
station pipeline and increases the uncertainty of the pipeline vibration.

5. Conclusions

(1) Comparing the saturation correlation dimension D2 among the vibration responses
of the pumping station pipeline under different conditions, the D2 of the measuring
points are distributed in the range of 1.156–5.283, and all are fractions, which show
that the vibration of the pumping station pipeline has chaotic characteristics. The
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axial vibration of the pipeline presents a chaotic attractor with a lower dimension
(1.156~2.569), and the vibration form is relatively simple. At the same time, the D2 of
conditions and points which are greatly affected by the unit’s operation have a larger
value (3.021~5.283), and the vibration form is more complex;

(2) The Lyapunov exponents λ1 of measuring points under different conditions are
between 0.0513 and 0.0774. With the opening of two units, the largest Lyapunov
exponent λ1 decreases accordingly, suggesting that the unit’s operation weakens the
chaotic characteristics of the pipeline vibration. The λ1 of points at the bifurcation are
larger than those of other points under the same condition. The chaotic characteristics
of the vibration at the bifurcation are enhanced by the sudden expansion of the pipe
diameter at the bifurcation and the impact of water heads at different flow velocities;

(3) After the IVMD decomposition of the vibration response of specific points under the
unit’s operation conditions, the chaotic characteristics of the IMFs are analysed. The
results show that the saturation correlation dimension D2 of IMF1 representing water
pulsation excitation in the pipeline is 1.115, and the largest Lyapunov exponent is
0.0774. The IMF2 to IMF4 representing the blade frequency, the rotation frequency,
and the frequency doubling vibration excitation generated by the unit’s operation do
not have chaotic characteristics. It indicates that the chaotic character of the pumping
station pipeline is mainly caused by water pulsation in the pipeline, and the vibration
caused by the unit masks the chaotic characteristic of the pipeline, which makes the
pipeline vibration system more complex.

In this paper, the chaotic characteristics of the vibration system of the pumping station
pipeline are shown by the analysis of the measured vibration responses, and the chaotic
excitation is found by combination with IVMD, which provides a theoretical basis for the
complete description of the vibration characteristics of the pumping station pipeline. A new
way of chaotic characteristics analysis based on IVMD decomposition is also proposed.
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