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Abstract: This study compared the apatite-forming ability (AFA) levels of flowable and putty
formulations of Nishika Canal Sealer BG Multi (F-NBG and P-NBG, respectively) and attempted
to clarify the cause of differences in the AFA levels of F-NBG and P-NBG. NBG samples were aged
in simulated body fluid (SBF) or 1-, 5-, or 10-g/L bovine serum albumin-containing SBF (BSA-
SBF) and analyzed in terms of their ultrastructures, elemental compositions, and Raman spectra
to identify apatite formation. The phosphate ion consumption rates of NBG samples in the media
were evaluated as an indicator of apatite growth. The original elemental composition, calcium ion
release, and alkalizing ability levels of F-NBG and P-NBG were also evaluated. Apparent apatite
formation was detected on all NBG samples except F-NBG aged in 10-g/L BSA-SBF. P-NBG consumed
phosphate ions faster than F-NBG. As-prepared P-NBG showed more silicon elements on its surface
than as-prepared F-NBG. P-NBG released more calcium ions than F-NBG, although their alkalizing
ability levels did not differ statistically. In conclusion, the AFA of P-NBG was greater than that of
F-NBG, probably because of the greater ability of P-NBG to expose silanol groups on the surface and
release calcium ions.

Keywords: bioactive glass; Nishika Canal Sealer BG Multi; apatite forming ability; albumin; simulated
body fluid

1. Introduction

Bioactive glass (BG) is a biomaterial with the ability to form bone-like carbonated
apatite in the living body by interacting with phosphate ions in body fluids. BG was
developed by Larry L. Hench in 1969 and has been used as a bone substitute. When BG
is implanted in a bone defect, it bonds directly to bone via an apatite layer, without the
interposition of connective tissues [1].

In recent years, BG-containing endodontic cements have been developed and mar-
keted [2,3]. Previous studies have reported that these cements exhibit favorable biocompat-
ibility [4,5]. In addition, these cements are thought to form an apatite layer at the interface
with the dentin wall, dental pulp, or periodontal ligament [6]. The apatite layer formed
between the material and dentin wall contributes to the prevention of bacterial leakage
through the interface [7,8]. In addition, the apatite layer formed between the material
and dental connective tissues acts as a substrate for the attachment, proliferation, and
differentiation of stem cells, thereby supporting tissue healing [9].
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Nishika Canal Sealer BG Multi (NBG) (Nippon Shika Yakuhin Co., Ltd., Yamaguchi,
Japan) is a newly developed BG-containing cement indicated for both root canal fillings
and vital pulp therapy. NBG comes in a semi-liquid, flowable consistency, although it
can be prepared to a putty-like consistency by mixing the flowable NBG (F-NBG) with a
designated BG-based powder (Nippon Shika Yakuhin Co., Ltd.). This putty-like consistency
enables easier handling during vital pulp therapy.

Previous studies have reported that both F-NBG and putty-form NBG (P-NBG) induce
apatite formation within 4 days of immersion in artificial body fluid (simulated body fluid
[SBF]) with an ion concentration close to that of human blood serum [10,11]; however, the
apatite-forming ability (AFA) levels of F-NBG and P-NBG have not been compared. Since
AFA depends on the presence of BG, the AFA of P-NBG, which is prepared by adding
BG-based powder to F-NBG, may be superior to that of F-NBG.

Most previous studies have used SBF to evaluate the AFA of biomaterials [12]; how-
ever, SBF is inorganic, whereas real body fluids contain non-negligible amounts of serum
proteins [13]. Notably, albumin, the most abundant serum protein, is reported to suppress
apatite formation on biomaterials [14,15]; therefore, AFA testing using albumin-containing
SBF will provide more clinically relevant findings than testing using inorganic SBF.

The purpose of this study was to evaluate and compare the AFA levels of F-NBG and
P-NBG in SBF and SBF with various concentrations of bovine serum albumin (BSA). We also
compared the original elemental composition, calcium ion release, and alkalizing ability
levels of F-NBG and P-NBG in order to explore the reason for their different AFA values.

2. Materials and Methods
2.1. Preparation of SBF and BSA-Containing SBF (BSA-SBF)

SBF was prepared according to the protocol of Kokubo and Takadama [16]. Briefly,
8.035 g of NaCl, 0.355 g of NaHCO3, 0.225 g of KCl, 0.231 g of K2HPO4·3H2O, 0.311 g
of MgCl2·6H2O, 0.292 g of CaCl2, and 0.072 g of Na2SO4 were dissolved in 1000 mL of
distilled water. The pH was adjusted to 7.4 by adding 6.118 g of tris-aminomethane and
HCl. BSA-SBF was prepared by adding BSA (Wako Pure Chemical Industries, Ltd., Osaka,
Japan) to the SBF to bring the final concentration to 1, 5, or 10 g/L.

2.2. AFA Test

The composition of NBG is presented in Table 1. F-NBG was prepared by mixing pastes
A and B at a ratio of 1:1. P-NBG was prepared by mixing the BG-based powder and F-NBG
at a ratio of 6:10. The NBG samples (n = 4 each) were inserted into a polytetrafluoroethylene
(PTFE) mold (internal diameter 2 mm, length 5 mm; one side sealed with 1 mm of gutta
percha); immersed in 5 mL of SBF or 1-, 5-, or 10-g/L BSA-SBF; then stored at 37 ◦C for
7 days, refreshing the media every 2 days. After aging the NBG samples, scanning electron
microscopy (SEM) images, elemental composition information, and Raman spectra were
obtained from the surfaces of the NBG samples. To obtain SEM images and elemental
composition information, the samples were dried at room temperature and coated with a
thin layer of gold using an ion sputtering device (IC-50; Shimadzu Corp., Kyoto, Japan).
A representative area (100.7 × 75.5 µm) of each sample was then analyzed using an SEM
equipped with wavelength-dispersive X-ray spectroscopy (EPMA1610; Shimadzu Corp.).
The accelerating voltage was set at 15 kV. Raman spectra were obtained using a micro-
Raman spectroscope (NRS-3100; JASCO, Tokyo, Japan) together with a microscope set at
100× magnification. A laser beam with an excitation wavelength of 532 nm and laser power
of 7.4 mW was used. The charge-coupled device (CCD) detector was cooled down to a
temperature of −50 ◦C. The measurements were carried out at 3 randomly selected points
for each sample. Raman spectra of the as-prepared NBG samples were also measured as
negative controls.
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Table 1. Materials used in this study.

Materials Manufacturer Lot No. Composition

Flowable Nishika Canal Sealer
BG Multi (F-NBG)

Nippon Shika
Yakuhin, Tokyo, Japan L4D

Paste A (50%): Fatty acid, bismuth subcarbonate,
silicon dioxide
Paste B (50%): Magnesium oxide, calcium silicate
glass (Bioactive glass), Silicon dioxide

Putty-form Nishika Canal
Sealer BG Multi (P-NBG)

Nippon Shika
Yakuhin, Tokyo, Japan L4D

Paste A (31%): Fatty acid, bismuth subcarbonate,
Silicon dioxide
Paste B (31%): Magnesium oxide, calcium silicate
glass (bioactive glass), silicon dioxide
Powder (38%): Calcium silicate glass (bioactive
glass), calcium hydroxide

2.3. Evaluation of Phosphate Ion Consumption by F-NBG and P-NBG in SBF and BSA-SBF

PTFE tubes filled with NBG samples were prepared as described in Section 2.2 above
and immersed in 1 mL of SBF or 1-, 5-, or 10-g/L BSA-SBF (n = 6 each). At 1, 3, and 7 days
(24, 72, and 168 h), 100 µL samples were collected from the media and the phosphate ion
concentration was measured using a kit (DPM2-PO4-C; Kyoritsu Chemical-Check Lab
Corp., Tokyo, Japan) based on the molybdenum blue method [17]. The baseline phosphate
ion concentration of the media was also evaluated. A standard curve was prepared using a
phosphate ion standard solution (Wako Pure Chemical Industries, Ltd.), the correlation
coefficient of which was 0.997. The phosphate ion concentrations of F-NBG and P-NBG
soaking in media were statistically compared at each time point using an unpaired t-test.
Differences with p values < 0.05 were considered statistically significant.

2.4. Surface Characterization of As-Prepared NBG Samples

PTFE tubes filled with NBG samples were prepared as described in Section 2.2 above
and stored at 37 ◦C at 100% humidity for 24 h to allow the materials to harden (n = 6
each). A randomly selected area (100.7 × 75.5 µm) of each sample was analyzed using the
EPMA1610, then the SEM images and average elemental composition of six samples were
taken. Differences in the elemental composition were tested using an unpaired t-test, with
p < 0.05 considered statistically significant.

2.5. Analysis of Calcium Ion Release and Alkalizing Ability

PTFE tubes filled with NBG samples were prepared as described in Section 2.2 above,
immersed in 5 mL of distilled water, then stored at 37 ◦C (n = 6 each). After 7 days, the
calcium ion concentration and pH of the soaking water were evaluated using a calcium ion
meter (LAQUAtwin Ca-11; Horiba, Kyoto, Japan) and a pH meter (LAQUAtwin pH-22B;
Horiba), respectively. The data were analyzed using an unpaired t-test, with p values < 0.05
considered statistically significant.

3. Results
3.1. AFA

The surface of each NBG sample was completely covered by apatite-like spherulites
after aging in SBF or 1- or 5-g/L BSA-SBF (Figure 1a–c,e–g). In 10-g/L BSA-SBF, apatite-
like spherulites were observed to cover the surface of P-NBG, although almost none
were observed on the F-NBG (Figure 1d,h). The aged NBG samples exhibited calcium,
oxygen, carbon, and phosphorus elements on the surface as major constituents (Figure 1i,j),
although only the F-NBG aged in 10-g/L BSA-SBF exhibited bismuth elements on the
surface (Figure 1i). Raman bands attributable to apatite (v1 PO4

3− band at 960 cm−1) were
detected on all aged NBG samples, although the band observed on the F-NBG aged in
10-g/L BSA-SBF was weak (Figure 1k,l).
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became smaller with increases in the BSA concentration in the media. 

Figure 1. Representative ultrastructure (a–h), elemental composition (i,j), and Raman spectra (k,l) of
the surface of flowable and putty-form Nishika Canal Sealer BG Multi (F-NBG and P-NBG) aged in
simulated body fluid (SBF) or 1-, 5-, or 10-g/L bovine serum albumin-containing SBF (BSA-SBF). C:
carbon; O: oxygen; Mg: magnesium; Si: silicon; P: phosphorus; Ca: calcium; Bi: bismuth. ND: Not
detected. Scale = 10 µm.

3.2. Phosphate Ion Consumption by F-NBG and P-NBG in SBF and BSA-SBF

Time-course changes of the phosphate ion concentration in the SBF and BSA-SBF
after soaking of the NBG samples are shown in Figure 2. In all tested media, P-NBG
consumed phosphate ions faster than F-NBG. The baseline phosphate ion concentration
became smaller with increases in the BSA concentration in the media.

3.3. Surface Characteristics of As-Prepared NBG Samples

In SEM images, BG-like crystals with an irregular structure were observed on both
types of NBG. The density of crystals on P-NBG appeared to be greater than on F-NBG
(Figure 3a–d). Significantly greater amounts of silicon and oxygen elements and signifi-
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cantly smaller amounts of carbon and magnesium elements were detected on P-NBG than
on F-NBG (Figure 3e).
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Figure 2. Phosphate ion (PO4
3−) concentration in simulated body fluid (SBF) or 1-, 5-, or 10-g/L

bovine serum albumin-containing SBF (BSA-SBF) after the immersion of flowable and putty-form
Nishika Canal Sealer BG Multi (F-NBG and P-NBG). Asterisks indicate p < 0.05 (unpaired t-test,
n = 6).
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Figure 3. Representative ultrastructures (a–d) and average elemental compositions (e) of the sur-
face of as-prepared flowable and putty-form Nishika Canal Sealer BG Multi (F-NBG and P-NBG).
(b,d) Higher-magnification views of boxed regions in (a,c). Arrows in (b,d) indicate bioactive glass-
like irregular shaped crystals. Arrowheads in (b) indicate a bismuth subcarbonate-like rod-shaped
crystal. Data for elemental composition are shown as the mean (SD) % of six samples. Asterisks
indicate p < 0.05 (unpaired t-test, n = 6). C: carbon; O: oxygen; Mg: magnesium; Si: silicon; P:
phosphorus; Ca: calcium; Bi: bismuth. Scale = 10 µm (a,c), 5 µm (b,d).
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3.4. Calcium Ion Release and Alkalizing Ability

P-NBG increased the calcium ion concentration of its soaking water more than the
F-NBG did (Figure 4a). Both F-NBG and P-NBG alkalized the soaking water and pH levels
did not differ statistically between materials (Figure 4b).
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Figure 4. Calcium ion concentrations (a) and pH levels (b) of distilled water after immersion of
flowable and putty-form Nishika Canal Sealer BG Multi (F-NBG and P-NBG). Asterisk indicates
p < 0.05 (unpaired t-test, n = 6).

4. Discussion

Previous studies have reported that the bone-like apatite formed on biomaterials
exhibits a spherical shape [18]; calcium-, phosphorus-, carbon-, and oxygen-rich elemental
composition [19]; and a v1 PO4

3− Raman band at 960 cm−1 [20]. In the present study,
aged NBG samples, except for F-NBG aged in 10-g/L BSA-SBF, displayed surfaces covered
by apatite-like spherical precipitates composed mainly of calcium, phosphorus, carbon,
and oxygen elements, showing clear v1 PO4

3− Raman bands at 960 cm−1 (Figure 1). In
contrast, the surface of F-NBG aged in 10-g/L BSA-SBF exhibited few spherical precipitates,
bismuth elements originating from the NBG content, and a weak Raman band at 960 cm−1

(Figure 1). These findings indicated that both F-NBG and P-NBG formed apatite in all
tested media, although only a scant amount of apatite was formed on F-NBG in 10-g/L
BSA-SBF. The positive AFA values of NBGs in SBF [3,10,11] and the negative effects of BSA
on apatite formation [14,15] are consistent with previous reports.

Next, we further evaluated the phosphate ion consumption rate after immersing NBG
samples in SBF and BSA-SBF, as this reflects apatite growth on NBGs [21,22]. The rates of
phosphate ion consumption of P-NBG were greater than that of F-NBG in all tested media
(Figure 2), which indicated faster apatite growth on P-NBG than on F-NBG. Based on these
findings, it can be concluded that P-NBG has greater AFA than F-NBG. The null hypothesis
that the AFA of P-NBG does not differ from that of F-NBG was, thus, rejected.

The greater AFA of P-NBG may be associated with its greater capacity to expose
apatite nucleation sites on the surface. In the present study, BG-like crystals appeared on
the as-prepared P-NBG at a higher density than on the as-prepared F-NBG. In addition,
the surface elemental composition of the as-prepared P-NBG was silicon- and oxygen-
rich but carbon- and magnesium-deficient compared with that of as-prepared F-NBG
(Figure 3). This result indicated that more BG (SiO2-Na2O-CaO-P2O5 glass) was exposed
on the as-prepared P-NBG than on the as-prepared F-NBG. The BG partially degrades
after contact with body fluids and negatively charged silanol groups are formed on the
surface. The silanol groups then act as nucleation sites of apatite, binding calcium ions in
the surrounding environment [23]. It is, therefore, reasonable to draw the conclusion that
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silanol groups, acting as apatite nucleation sites, were more abundant on P-NBG than on
F-NBG and enabled faster apatite formation on P-NBG.

In the present study, distilled water was used to evaluate the calcium ion release
and alkalizing ability of NBGs. In physiological solutions, NBGs consume calcium and
hydroxyl ions for apatite formation, which obscures the calcium ion release and alkalizing
effect of NBGs; therefore, distilled water is optimal for this purpose.

Apatite growth on biomaterials is accelerated by increases in the calcium ion con-
centration and pH of the surrounding environment [24]. We found that the calcium ion
release from P-NBG was significantly greater than that from F-NBG, whereas no significant
difference in alkalizing ability was observed between NBGs (Figure 4). The greater calcium
ion release may also be responsible for the greater AFA of P-NBG.

Albumin inhibits apatite formation by obstructing apatite nucleation sites [25]. The
sparse formation of apatite on F-NBG aged in 10-g/L BSA-SBF may have resulted from
the almost complete blockage of apatite nucleation sites by albumin. In addition, it has
been reported that albumin binds calcium and phosphate ions in body fluids and reduces
the number of ions available for apatite nucleation [26]. Consistent with the results of
a previous study, free phosphate ions in SBF decreased with the addition of BSA in a
concentration-dependent manner in the present study (Figure 2). This effect of albumin
may have also caused the small amount of apatite formation on F-NBG aged in 10-g/L
BSA-SBF.

During root canal therapy or vital pulp therapy, NBGs come into contact with the
interstitial tissue fluid in the dental pulp or periodontal ligament. The interstitial tissue fluid
contains albumin at a concentration of around 10-g/L [27,28]. Considering the apparent
apatite formation on P-NBG and the limited apatite formation on F-NBG in 10-g/L BSA-
SBF, possibly only P-NBG produces sufficient apatite in clinical settings to prevent bacterial
leakage [7] and support tissue healing [9]. A recent study also suggested that the AFA of
F-NBG may be clinically insufficient, showing no apatite precipitation on F-NBG in rat
subcutaneous tissue [29].

P-NBG was specifically designed for vital pulp therapy. At present, calcium silicate
cements are the gold standard for vital pulp therapy because they are highly biocompati-
ble [30,31] and associated with favorable clinical outcomes [32]. One study reported that
F-NBG induced a favorable quality of reparative dentin formation in rat molars compared
with a representative calcium silicate cement, namely ProRoot MTA [10]. Although the
clinical performance of P-NBG has not yet been evaluated, this study has shown that the
AFA level—a key feature of vital pulp therapy agents—of P-NBG was superior to that of
F-NBG; therefore, P-NBG may be a good option for vital pulp therapy.

A limitation of this study was that the AFA levels of NBGs were compared only
in vitro. Unlike the media used in this study, real body fluids contain various proteins in
addition to albumin. The minor serum proteins have been reported to have positive [33,34]
or negative effects [35] on apatite formation. Moreover, Wang et al. reported that lysozyme,
a serum protein, decreased the inhibitory effect of albumin on apatite formation [36]. In
addition, inflammatory reactions negatively affect apatite formation by reducing the local
pH [37]; therefore, the in vivo AFA levels of NBGs may slightly differ from the in vitro
AFA levels. As such, the in vivo AFA levels of NBGs should be compared in a future study.

The present study has demonstrated that BG-based powder not only changes the
consistency of NBG but also improves the AFA level. Moreover, a previous study reported
that BG-based powder did not affect the solubility or cytocompatibility of NBG [11]. Based
on these findings, it can be speculated that BG-based powder may be helpful in changing
the consistency of other BG-based or non-BG-based endodontic materials, improving the
AFA level. This possibility should be examined in future studies.

5. Conclusions

P-NBG, but not F-NBG, induced apparent apatite formation in 10-g/L BSA-SBF,
overcoming the inhibitory effect of albumin on apatite formation. P-NBG induced faster
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growth of apatite in SBF and BSA-SBF compared with F-NBG. The greater AFA level of
P-NBG than that of F-NBG may be attributable to the greater ability of P-NBG to expose
apatite nucleation sites on the surface and release calcium ions.
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