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Abstract: The magnitude of pollution in Lake Hawassa has been exacerbated by population growth
and economic development in the city of Hawassa, which is hydrologically closed and retains
pollutants entering it. This study was therefore aimed at examining seasonal and spatial variations in
the water quality of Lake Hawassa Watershed (LHW) and identifying possible sources of pollution
using multivariate statistical techniques. Water and effluent samples from LHW were collected
monthly for analysis of 19 physicochemical parameters during dry and wet seasons at 19 monitoring
stations. Multivariate statistical techniques (MVST) were used to investigate the influences of an
anthropogenic intervention on the physicochemical characteristics of water quality at monitoring
stations. Through cluster analysis (CA), all 19 monitoring stations were spatially grouped into two
statistically significant clusters for the dry and wet seasons based on pollution index, which were
designated as moderately polluted (MP) and highly polluted (HP). According to the study results,
rivers and Lake Hawassa were moderately polluted (MP), while point sources (industry, hospitals
and hotels) were found to be highly polluted (HP). Discriminant analysis (DA) was used to identify
the most critical parameters to study the spatial variations, and seven significant parameters were
extracted (electrical conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD),
total nitrogen (TN), total phosphorous (TP), sodium ion (Na+), and potassium ion (K+) with the
spatial variance to distinguish the pollution condition of the groups obtained using CA. Principal
component analysis (PCA) was used to qualitatively determine the potential sources contributing
to LHW pollution. In addition, three factors determining pollution levels during the dry and
wet season were identified to explain 70.5% and 72.5% of the total variance, respectively. Various
sources of pollution are prevalent in the LHW, including urban runoff, industrial discharges, diffused
sources from agricultural land use, and livestock. A correlation matrix with seasonal variations was
prepared for both seasons using physicochemical parameters. In conclusion, effective management
of point and non-point source pollution is imperative to improve domestic, industrial, livestock,
and agricultural runoff to reduce pollutants entering the Lake. In this regard, proper municipal
and industrial wastewater treatment should be complemented, especially, by stringent management
that requires a comprehensive application of technologies such as fertilizer management, ecological
ditches, constructed wetlands, and buffer strips. Furthermore, application of indigenous aeration
practices such as the use of drop structures at critical locations would help improve water quality in
the lake watershed.

Keywords: monitoring; mitigations; spatial and temporal variabilities; principal component analysis;
cluster analysis; discriminant analysis; water quality; pollution; correlation
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1. Introduction

Studies have shown that urban, agricultural, and industrial discharges have a direct
effect on surface water quality. Similarly, urban wastewaters cause fecal contamination
of surface waters, and urban stormwater runoff, which contains large amounts of fecal
microbes, also affects surface water quality [1]. Surface water bodies are vital natural
resources that are vulnerable to pollution. The contaminants are chemical, physical, and
biological constituents resulting from anthropogenic activities and are of greater environ-
mental consideration [2]. Surface water bodies are extensively used as the major sources
for domestic, non-domestic, industrial, and irrigation purposes. Therefore, monitoring and
assessment of water bodies is imperative to obtain reliable information on water quality
for effective management [3]. Anthropogenic uses of the waterbodies in the study basin
can degrade the quality of surface water and impair its usability as potable water supply
or for industry, agriculture, recreation, or other purposes. Hence, regular monitoring of
water quality of rivers and lake is indispensable [4,5]. The most affected river stretches are
those that flow through urbanized and exceedingly populated urban areas where there
is no adequate sanitation. Upstream rural areas are mainly affected by pollutants from
non-point sources such as agricultural runoff, whereas urban areas are polluted by point
sources, sewage discharges, urban runoff, and pollutants from upstream areas [6,7].

Studies have shown that some lakes and wetlands around the world have disappeared
or are showing changes in their ecosystem. Furthermore, factors such as intensive land use
for urbanization and agriculture have had significant impact on the hydrology, ecology,
and ecosystem services of lakes, which has eventually led to a decline in lake levels [8].
In addition, pollutants have long been a concern, as their accumulation can have serious
effects on fauna, flora, and human health when the huge amount of urban and industrial
wastewater reaches the shores [9].

Lake Hawassa is located near the city of Hawassa and is surrounded by agricultural
land, industries and residential areas. Therefore, it is susceptible to a variety of pollutants
that enter the lake directly or indirectly. On the other hand, the Lake Hawassa Watershed
is experiencing rapid land cover change, and natural resources have overwhelmingly
diminished. The lake is hydrologically closed and has no apparent outlet, so all pollutants
entering the lake are retained. As a result, the lake faces numerous problems, and the water
quality deteriorates over time, threatening biodiversity [10].

Significant industrialization, augmented with rapid urbanization and increasing eco-
nomic development, has increased the extent of pollution [11]. The pollution is mainly from
non-point sources caused by urban and agricultural runoff, overgrazing, deforestation, soil
erosion, land development, and industrial effluents. This leads to numerous environmental
concerns that have resulted in substantial hydrological disturbances. The main factories in
the study area are a ceramics factory, a flourmill, a cement products factory, a Moha soft
drink factory, a BGI (St. George Brewery factory), an Etabs soap factory, an industrial park
in Hawassa, and other small-scale industries. They are virtually all concentrated along the
main road, which is close to the shallow swamp, and discharge their effluents into the lake
through streams. On the other hand, deforestation and irrigation of the land have caused
the drying up of Lake Cheleleka by reducing the streamflow [12].

Various studies have been conducted to examine water quality in the LHW catchment
and identify sources of pollution. Teshome [11] investigated the eastern catchment of
Lake Hawasa Watershed to assess the seasonal water quality and its suitability for the
designated uses. The findings revealed that the rivers in the eastern part of Lake Hawassa
Watershed are suitable for agriculture and livestock but unpleasant for aquatic life, and the
lake is hypereutrophic.

Amare [13] investigated the primary sources of non-point source pollution and their
relative contribution in Lake Hawassa Watershed using the Annualized Agricultural
Non-Point Source (AnnAGNPS) model. The pollutant-loading model revealed non-point
source pollutants originating from agricultural lands and associated with deleterious
anthropogenic activities responsible for the water quality impairment of Lake Hawassa.
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These point sources have been determined to be the source of numerous pollutants in the
lake ecosystem if the effluent control system put in place is unsuitable [14].

Kebede [15] studied the impact of land cover changes on water quality and streamflow
in Lake Hawassa Watershed and concluded that water quality in the upper watershed of
the three rivers was better than the lower sections of the catchment with respect to the
parameters studied, which might be correlated to the observed land use.

A study conducted by Lencha et al. [16] at Lake Hawassa revealed that most of
the population, including the inner part of the city, are using latrines. Larger buildings
have conventional flushing systems but without any wastewater treatment. Furthermore,
industrial and commercial point sources are known to discharge their effluents into streams
or rivers that end up in the Lake. In addition, Hawassa Industrial Park and Referral
Hospital discharge their effluents directly into the lake. This is a threat to the people who
rely on rivers, streams, and the lake for domestic and other purposes and to the survival of
aquatic life as well.

To sum up, some studies regarding the water quality have been conducted in either
the eastern or the western catchment of Lake Hawassa, while others have been carried out
only at Lake Hawassa. Nonetheless, there is no sufficient water quality study to connect
agricultural and urban land use with the watershed pollution level to identify the sources
of pollution. The previous studies mainly relied on random monitoring and data from
literature and focused only on a few water quality parameters, which cannot reflect the
whole picture of water quality in the watershed. Additionally, some previous studies
also obtained contradictory findings. On the other hand, urbanization, industrialization,
commercial activities, and population growth are increasing rapidly, which could increase
sewage and effluents production. Through monitoring data, consistent data analysis,
and homogenization of parameters, this study aimed to (1) statistically analyze multiple-
parameter data by using principal component analysis (PCA), cluster analysis (CA), and
discriminant analysis (DA); (2) investigate the broad-spectrum variation in the parameters
of LHW; and (3) cluster monitoring stations with similar characteristics and identify
potential sources of pollution in LHW.

2. Materials and Methods
2.1. Study Area

Lake Hawassa Watershed (LHW) is located 275 km from the capital Addis Ababa,
in the capital of Sidama regional state, on the main road leading to Nairobi, Kenya via
Moyale. LHW has a total area of 1431 km2 and lies between 6◦45′ to 7◦15′ N latitude and
38◦15′ to 38◦45′ E longitude (Figure 1). LHW comprises five sub-watersheds [17].

The watershed is known for its flat plains and dissevered undulating landscape with
elevation ranging from 1571 to 2962 m above sea level [18]. The area comprises mountains
and low-lying areas, with a wide flat wetland called Cheleleka. Perennial rivers and
streams on the north and northeast sides of the catchment and runoff on the east wall feed
Cheleleka. The sub-basin of Tikur-Wuha consists of only a tributary called Tikur-Wuha
that flows into Lake Hawassa. In this lake system, no surface water flows out from the lake
except by evaporation and abstraction, so the catchment can be considered hydrologically
closed [15]. The climate of the Hawassa sub-basin is sub-humid and distinctly seasonal.
The months from April to October are wet and humid, and the main rainy season is
between July and September, with a mean annual precipitation of about 955 mm. The mean
minimum precipitation is 17.8 mm in December (dry season) and the mean maximum
precipitation is 119.8 mm in August (rainy season) [19].
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Figure 1. Study area map and monitoring station locations (a) = countries sharing boundaries with
Ethiopia, (b) = major river basins in Ethiopia, (c) = Rift Valley lake basin and (d) = Lake Hawassa
sub-basin and monitoring stations).

2.2. Sampling and Monitoring Parameters

The monitoring sites and sampling strategy were planned to cover a wide range of
factors contributing to the water quality of the river, taking into account tributaries and
point sources whose effluents end up in the lake and have a substantial impact on the
water quality of the lake. The criteria for selecting monitoring points were hydrological,
with confluence of sub-basins having distinct characteristics and land use types, with the
intention of transferring parameters to unmonitored sub-basins. Furthermore, factors such
as availability of point and non-point sources, land use type, and urban and wastewater
drains were considered in the selection of monitoring sites.

Hence, a total of nineteen (19) monitoring stations were selected (Table 1 and Figure 1).
Four (4) monitoring sites were selected purposively at the Wesha, Hallow, Wedessa, and
Tikur-Wuha river mouths of the respective sub-watersheds.

Eleven (11) monitoring sites were distributed evenly along the entire course of Lake
Hawassa for water quality monitoring. Three (3) monitoring sites were selected near the
industrial disposal site, and one (1) was at the health care center.

The monitoring sites in the Tikur-Wuha catchment were Wesha River (MS1), Hallo
River (MS2), and Wedessa River (MS3), which are located in the upstream part of Lake
Hawassa, where agricultural runoff from the catchment flows directly or through its
tributaries into the Cheleleka wetland. The three rivers were purposively selected based on
their size and spatial location to represent their respective sub-basins. Monitoring station 6
(MS6) is a critical area with mostly fresh water where factories discharge their effluent into
the Tikur-Wuha River, and the river eventually flows into Lake Hawassa. This is an area
where river inputs to the lake are high.
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Table 1. Monitoring stations in Lake Hawassa Watershed.

No Monitoring Stations Site Code Location

1 Wesha River MS1 LHW upstream
2 Hallo River MS2 LHW upstream
3 Wedessa River MS3 LHW upstream
4 BGI effluent discharge site MS4 LHW middle
5 Pepsi factory oxidation pond MS5 LHW middle
6 Tikur-Wuha River MS6 LHW middle
7 Amora-Gedel (fish market) MS7 Eastern side of LH
8 Amora-Gedel (Gudumale) MS8 Eastern side of LH
9 Nearby Lewi resort MS9 Eastern side of LH
10 Fikerhayk center (FH) MS10 Center of LH
11 Fikerhayk (meznegna) MS11 Eastern side of LH
12 Center of LH (Towards HR) MS12 Center of LH
13 Nearby Haile resort MS13 Eastern side of LH
14 Tikur-Wuha site MS14 Eastern side of LH
15 Referral Hospital MS15 Eastern side of LH
16 Ali-Girma site (opposite to HR) MS16 Western side of LH
17 Sima Site (opposite to Mount Tabor) MS17 Western side of LH
18 Dore-Bafana Betemengist MS18 Southern part of LH
19 Hawassa Industrial Park MS19 LHW middle

The site codes are indicated in Figure 1. FH designates Fikerhayk, HR labels Haile Resort, LHW designates Lake
Hawassa Watershed, LH designates Lake Hawassa.

Monitoring sites for point sources were selected from available industries in the
catchment that directly or indirectly feed Lake Hawassa. The selected sites were the St.
George Brewery factory, BGI (MS4), and the Moha soft drink factory (MS5), whose effluents
discharge into the Cheleleka wetland and eventually enter Lake Hawassa via Tikur-Wuha
River, as well as the Referral Hospital (MS15) and Hawassa Industrial park (MS19), which
discharge their effluents directly in to Lake Hawassa.

The monitoring stations for Lake Hawassa were selected based on the presence of
major pollution sources in the lake, existence of point sources, health facilities, industrial
effluent emission sites, availability of boating and recreational activities, presence of ser-
vice rendering facilities such as Haile and Lewi resorts, fish market (Amora-Gedel and
Gudumale), and also the central part of the lake where the disturbance is minimum.

For this purpose, eight (8) monitoring sites were selected in the eastern part (northeast to
southeast) of the lake and designated as MS7, MS8, MS9, MS10, MS11, MS12, MS13, and MS14.

The other three (3) monitoring sites were located on the western (northwest to south-
west) sides of the lake and were designated as MS16 for the local village Ali-Girma site
(opposite Haile Resort), MS17 for Sima site that is opposite side of Mount Tabor, and
MS18 for Dore-Bafana Betemengist site. In this part of the lake, although there is no point
source pollution, there is enormous anthropogenic activity in the form of non-point source
pollution from recreational activities, agricultural runoff, and animal waste.

The analyses of physicochemical water quality parameters at selected sites and periods
were conducted from May 2020 to January 2021 to see seasonal variation. Sample collection
for the wet season was event-based, i.e., samples were collected after rainfall events. The
coordinates of each sampling stations was determined using GNSS.

Composite samples were collected in pre-cleaned 2L polyethylene plastic bottles (ster-
ilized glass bottles were used for biochemical oxygen demand (BOD) and chemical oxygen
demand (COD) analyses) for different parameters. The bottles were washed with concen-
trated nitric acid and distilled water before sample collection and thoroughly rinsed with
sample water during collection to avoid possible contamination. The water samples were
aseptically handled, labelled, preserved in sterile glass bottles, stored in the cooler (Mobi-
cool v30 AC/DC, Germany) and ice box, and transported to the laboratory of Hawassa
University Environmental Engineering, Addis Ababa City Government Environmental
Protection, and Green Development Commission and Engineering Corporation of Oromiya
for analysis.
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The collection, handling, preservation, and treatment of the water samples followed
the standard methods outlined for the examination of water and wastewater by the Ameri-
can Public Health Association guidelines [20] and all the parameters were presented with
their respective analytical methods and instruments used for analysis in Table 2 below.

Table 2. Analytical methods and instruments used for analysis.

Parameter Analytical Method and Instrument

pH, EC, TDS, and Temperature Portable multi-parameter analyzer (Zoto, Germany)
Turbidity Nephelometric (Hach, model 2100A)

DO Modified Winkler
BOD Manometric, BOD sensor
COD Closed Reflux, colorimetric

SRP and TP Spectrophotometrically by molybdovandate (Hach, model DR 3900)
TN Spectrophotometrically by TNT Persulfate digestion (Hach, model DR 3900)

NO2
− and TAN

(NH3−N + NH4−N) Spectrophotometrically by salicylate (Hach, model DR 3900)

NO3
− Photometric measurements, Wagtech Photometer 7100 at 520 nm wavelength

SS Filtration by standard glass fiber filter
Mg2+, Na+, Ca2+, and K+ Atomic Absorption Spectrophotometer, AAS, model NOVAA400

Total ammonium nitrogen (TAN), electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), biochemical oxygen
demand (BOD5), chemical oxygen demand (COD), soluble reactive phosphorous (SRP), total phosphorous (TP), nitrate (NO3

−), nitrite
(NO2

−), magnesium ion (Mg+2), sodium ion (Na+), potassium ion (K+), calcium ion (Ca+2), and suspended solids (SS).

Un-Ionized Ammonia Determination from Total Ammonium Nitrogen (TAN)

The un-ionized free ammonia was calculated by the mass action law in its logarithmic
form (1). The pKa as function of temperature was taken from Emerson et al. [21]:

% Un− ionized NH3−N =
1(

1 + 10(pKa−pH)
) (1)

pKa =
0.09108+2729.92

(Tk)
(2)

where Tk is temperature in Kelvins (273 + ◦C).

3. Multivariate Statistical Techniques and Data Treatment
3.1. Multivariate Statistical Techniques

Multivariate statistical techniques (MVST) are a valuable tool to estimate efficiently
the spatio-temporal variability in a watershed and the influences of human intervention on
the characteristics of physicochemical parameters at monitoring stations [22]. In addition,
MVST like cluster analysis (CA), discriminant analysis (DA), and PCA/factor analysis
can be implemented to interpret complex databases to offer better visualization of water
quality in the studied watershed [23]. The statistical techniques PCA, CA, and DA are vital
to determine the primary relationships among the physicochemical parameters measured
in experimental data standardized to the Z-scale to avoid inaccurate grouping because of
the huge variability in the data dimensionality [5,24–26].

Principal component analysis (PCA), cluster analysis (CA) and discriminant Analy-
sis (DA) were carried out to examine the seasonal variations, identify possible pollution
sources, and analyze and interpret surface water quality data to draw meaningful in-
formation in China [2,7,27–30], South Asia—Bangladesh [31], the Middle East—Iran [3],
India [23,32,33], South African [34], Ethiopia [22,35], South Asia Malaysia [36], the Middle
East—Lebanon [6,37], Spain [38], and Serbia [39].

XLSTAT 2016 (Addinsoft, New York, USA), Microsoft Excel 2016, and “Statistical
Package for the Social Sciences Software, IBM SPSS 25 for Windows” were employed to
perform statistical analysis integrally.
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3.2. Data Treatment and Multivariate Statistical Methods

PCA is sensitive to outliers, missing data, and poor linear correlation among variables
due to insufficient assigned variables. Thus, the data treatment needs to be performed for
missing data and outliers in the monitored water quality data before executing multivariate
statistical analysis. There might be a real shift in the value of an observation that arises
from non-random causes. In this study, outliers were detected according to Grubbs [40]
test method using XLSTAT 2016. On the other hand, data collection and analysis were
conducted with great prudence to minimize the amount of missing data. However, the
incidence of missing data is inevitable and was handled by the multiple imputation of
missing values technique using Markov Chain Monte Carlo (MCMC) [41].

The raw water quality parameters were standardized to a mean of 0 and variance of 1
using Z-scale transformation to examine the normality of the distribution of data sets and to
ensure that the different variables were equally weighted in the statistical analyses [36]. The
data were further checked for normality using Kaiser–Meyer–Olkin (KMO) and Bartlett’s
sphericity tests to determine if our measured variables may be factorized efficiently. KMO
is the degree of sampling adequacy, which shows the percentage of variance that is likely
attributable to the underlying factors. Generally, the KMO index ought to be greater than 0.5
for satisfactory factor analysis. When the KMO index is close to 1, the PCA of the variables
is suitable; however, when it is close to 0, the PCA is not relevant. In this study, the KMO
had a value of 0.68. Bartlett’s test of sphericity shows whether the correlation matrix is an
identity with variables that are unrelated. The significance level, which is 0 in this study
(less than 0.05), indicates that there are significant relationships among the variables.

3.2.1. Principal Component (PCs)/Factor Analysis (FA)

PCA reduces the dimensionality of the data set by explaining the correlations amongst
a large number of variables in terms of a smaller number of underlying factors without
losing much information [42,43]. The original variables of PCs produce loadings that have
correlation coefficients with PCs. The PCs’ formula was taken from [33,36]:

Ymn = Zm1X 1n+Zm2X 2n+Zm3X 3n . . . +ZmiX in (3)

where z is the component loading, y is the component score, x is the measured value of a
variable, m is the component number, n is the sample number, and m is the total number
of variables.

Meanwhile, FA attempts to extract a lower-dimensional linear structure from the data
set and extracts the new group of variables known as varifactors (VFs) via rotation along
the PCA axis. In FA, the basic concept is borrowed from [33,36]:

Ymn = Zp1P1m+Zp2P2m+Zp3P3m+ . . . +ZprPrm+ epm (4)

where y is the measured value of the variable, z refers to the factor loading, p is the factor
score, m is the sample number, n is the variable number, r is the total number of factors,
and e is the residual term accounting for errors or other sources of variation.

In this study, PCA was employed for qualitative determination of pollution sources.

3.2.2. Discriminant Analysis

DA was used for discriminating between and among groups by applying discrim-
inating variables. These variables measure characteristics regarding which the groups
are expected to differ [44]. DA applies a linear equation of a regression analysis on raw
data with prior knowledge of membership of objects to particular clusters and provides
statistical classification of samples, expressed in the following equation [43,45]:

f(Gi) = Ki +
n

∑
i=1

(Wij ∗ Pij) (5)
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where Ki is a constant specific to each particular group, i is the number of groups (G), n is
the number of parameters used in group classification, and Wij is the weight coefficient
designated by DA for the specific parameter (Pij).

Independent variables are entered into DA either all together or stepwise, using
both backward and forward approaches. In the first approach of variable entry, the
discriminant function is calculated by engaging all the independent variables at once. This
approach is used when there are a limited number of independent variables in the interest
of discovering how well certain variables perform as discriminants in the absence of others.
The stepwise method, on the other hand, involves entering the independent variables
into the discriminant function (DF) one at a time. This stepwise input is based on the fact
that variables with relative importance to the cluster variables with greater discriminant
weights were entered first [46].

In this study, standard, forward, and backward stepwise approaches of DA were
applied to each matrix of the primary data. In the forward stepwise mode, discriminant
function analysis (DFA) variables were added stepwise until no significant change oc-
curred, while in the backward stepwise mode, variables were removed starting from least
significant until a significant change occurred. For this purpose, two groups obtained from
CA were selected for spatial evaluations [35].

3.2.3. Pollution Index (PI)

Pollution index (PI) is a simple technique to examine surface water quality and was
applied by Tiwan EPA. The parameters such as DO, BOD, SS, and NH3−N employed
to determine PI were classified into four index scores (Table 3) and computed using the
equation formulated by [47,48]. In particular, PI refers to the arithmetic mean of the index
values with respect to the water quality.

PI =
1
4

4

∑
K=1

Si (6)

Table 3. Classification system for pollution index.

Rank

Item Non-Polluted
(Good)

Slightly
Polluted

(LP)

Moderately
Polluted

(MP)

Highly Polluted
(HP)

DO (mg/L) >6.5 4.6–6.5 2.0–4.5 <2.0
BOD5 (mg/L) <3 3.0–4.9 5.0–15.0 >15

SS (mg/L) <20 20–49 50–100 >100
NH3−N (mg/L) <0.5 0.5–0.9 1.0–3.0 >3.0

Index score 1 3 6 10

PI classifies water quality into four categories: (0–2) for good or non-polluted, (2–3)
for slightly polluted, (3–6) for moderately polluted, and (>6) for highly polluted. Anthro-
pogenic activities have been associated with water quality degradation [47,49].

3.3. Cluster Analysis

Hierarchical agglomerative CA was carried out on the normalized data set using
Ward’s approach, where Euclidean distances were used as the degree of similarity among
samples, and a distance was represented by the distinction among analytical values. In
hierarchical clustering, sequentially higher clusters formed [23,45,50–52]. In cluster analysis,
cases are classified into classes based on similarities between two samples, which are usually
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given by the Euclidean distance between analytical values of the two samples. The squared
Euclidean distance can be calculated by [53]:

Distance
(

Qi, Qj

)
=

n

∑
j=1

(
X1i − X2j

)2 (7)

where Qi is the ith object, and Xij is the value of the jth variable of the ith object.
The dendrogram provides a visual summary of the clustering process to classify a

sample of entities into a smaller number of mutually exclusive groups on the basis of
multivariate similarities among entities [33].

Therefore, CA, DA, PCA, and pollution index were applied in this study to identify
the underlying interrelationship among the parameters and monitoring stations. CA was
applied based on prior knowledge of monitoring stations and the results of DA and pollution
index to accurately cluster monitoring stations. PCA was employed to qualitatively identify
pollution sources and the type of contaminants contributing to pollution.

4. Results and Discussion
4.1. Correlation Matrix Evaluation and Seasonal Variation

Correlation coefficients are established to portray a correlation among variables and
measure statistical significance between pairs of water quality variables [54,55]. Correlation
analysis measures the proximity between the identified dependent and independent variables.
Correlation coefficients that are close to −1 or +1 demonstrates a strong correlation between
x and y, which have a linear correlation. The correlation between the parameters is referred to
as strong from (+0.8 to 1.0) or (−0.8 to−1.0), moderate from (+0.5 to 0.8) or (−0.5 to−0.8) and
weak from (+0.0 to 0.5) or (−0.0 to−0.5) [56]. In cases where the correlation coefficient between
variables is zero, there could be no correlation with a degree of p < 0.05 between the two
variables [57]. In this study, a correlation matrix was constructed for each dry and wet season
using the physicochemical parameters. Pearson’s correlation coefficient (r) is determined using
correlation matrix to identify the highly correlated and interrelated water quality parameters.
To test the significance of the pair of parameters, the p-value is determined.

In the wet season, strong positive correlations were observed between TDS values and
EC, temperature, TP, TN, and Na+ values (r = 0.992, r = 0.874, r = 0.850, r = 0.836; p < 0.05),
and strong negative correlations between TDS and DO with −0.825 at p < 0.05. Moderate
positive correlations were found between TDS and PO4−P, BOD, COD, and K+ values
(r = 0.797, r = 0.698, r = 0.695, r = 0.523; p < 0.05), and low positive correlation between TDS
and pH with r = 0.26; p < 0.05 (Table 4). Strong negative correlations were found between
DO and EC, TDS, TP, and TN (r = −0.825, r = −0.850, r = −0.851, r =−0.806; p < 0.05), and
moderate negative correlations were observed between DO and temperature, BOD, COD,
and Na+ values (r = −0.526, r = −0.544, r = −0.692, r = −0.599; p < 0.05).

Table 4. Correlation matrix Pearson (r) and alpha (p) values for the wet season.

Parameters TDS EC NH3−N NO3−N PO4−P DO BOD COD TN TP Temp Mg2+ Ca2+ Na+ K+

TDS 1
EC 0.992 1

NH3−N 0.446 0.379 1
NO3−N 0.183 0.172 −0.030 1
PO4−P 0.797 0.824 0.416 −0.116 1

DO −0.825 −0.850 −0.216 −0.275 −0.793 1
BOD 0.698 0.719 0.106 −0.173 0.712 −0.526 1
COD 0.695 0.714 0.204 −0.111 0.730 −0.544 0.965 1
TN 0.874 0.855 0.481 0.059 0.825 −0.851 0.587 0.602 1
TP 0.850 0.871 0.249 0.255 0.602 −0.806 0.485 0.482 0.736 1

Temperature 0.860 0.864 0.331 0.410 0.594 −0.692 0.454 0.447 0.669 0.82 1
Mg2+ −0.005 0.029 −0.317 0.070 −0.013 −0.085 0.224 0.159 0.046 0.09 −0.020 1
Ca2+ 0.375 0.397 −0.085 −0.080 0.350 −0.394 0.523 0.528 0.429 0.24 0.137 0.401 1
Na+ 0.836 0.853 0.314 0.268 0.709 −0.599 0.619 0.632 0.572 0.68 0.849 −0.062 0.19 1
K+ 0.523 0.431 0.531 0.155 0.290 −0.429 0.149 0.190 0.700 0.34 0.320 −0.080 0.20 0.19 1

Values in bold are different from 0 with a significance level alpha = 0.05.
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Strong positive correlations were observed between temperature and the values of
EC, TDS, Na+ and TP (r = 0.86, r = 0.864, r = 0.849, r = 0.821; p < 0.05), and a moderate
positive correlation was observed between temperature and the values of TN and PO4−P
(r = 0.525, r = 0.669, r = 0.594; p < 0.05). There was also a moderate negative correlation
between temperature and DO, with r = −0.692 at p < 0.005. There was a weak correlation
between temperature and the values of COD and BOD (r = 0.447, r = 0.454; p < 0.05).

NH3−N had a moderate positive correlation with K+, with r = 0.531 at p < 0.005,
and weak positive correlations with TN and temperature (r = 0.331, r = 0.481 at p < 0.05).
NO2−N correlated moderately positively with BOD and COD (r = 0.721, r = 0.664 at
p < 0.05) and weakly positively with PO4−P and Ca+2 (r = 0.449, r= 0.404 at p < 0.05).

A strong positive correlation was found between PO4−P and TN, with r = 0.825 at
p < 0.005, moderate positive correlations were found between PO4−P and COD, BOD, TP,
and temperature (r = 0.712, r = 0.709, r = 0.730, r = 0.602, r = 0.594; p < 0.05), and a moderate
negative correlation was observed between PO4−P and DO values (r = −0.793; p < 0.05).
No statistically significant difference was found between pH and NO3−N and the rest of
the parameters of LHW (p > 0.05).

In the dry season, strong positive correlations were observed between TDS values
and EC, TP, Na+, PO4

−P, and temperature values (r = 0.999, r = 0.814, r = 0.899, r =0.839,
r = 0.933; p < 0.05), moderate positive correlations were observed between TDS and BOD,
COD, K+, and TN values (r = 0.686, r = 0.561, r = 0.645, r = 0.534; p < 0.05), and a strong
negative correlation was found between TDS values and DO (r = −0.819 at p < 0.05).

Strong negative correlations were observed between the values of DO and TDS,
EC, and Na+ (r = −0.819, r = 0.817, r = −0.826; p <0.05), moderate negative correlations
were observed between DO and TN, TP, BOD, K+, and temperature values (r = −0.577,
r = −0.568, r =−0.687, r =−0.639 r =−0.729; p < 0.05), and a moderate negative correlation
was observed between DO and NO3

−N, with r = −0.464 at p < 0.005).
Strong positive correlations were found between temperature and EC and TDS (r = 0.839,

r = 0.842; p < 0.05), and moderate positive correlations were found for temperature with TP
and PO4−P(r = 0.730, r = 0.532; p < 0.05). There was also a moderate negative correlation
observed between temperature and DO, with r =−0.729 at p < 0.005. NH3−N had a moderate
positive correlation with COD, TP, temperature, and Na+ (r = 0.476, r = 0.484, r = 0.550,
r = 0.343; p < 0.005).

A strong positive correlation was found between PO4−P and TP, with r = 0.921 at
p < 0.005, moderate positive correlations were found for PO4−P with BOD, COD, TP, Na+,
and temperature (r = 0.749, r = 0.647, r = 0.680, r = 0.76; p < 0.05), and a moderate negative
correlation was found between PO4−P and DO values r = −0.626; p < 0.05) (Table 5).

Table 5. Correlation matrix Pearson (r) and alpha (p) values for dry season.

Parameters TDS EC NH3−NNO3−NPO4−P DO BOD COD TN TP Tem Mg2+ Ca2+ Na+ K+

TDS 1
EC 0.999 1

NH3−N 0.433 0.419 1
NO3−N 0.208 0.212 −0.10 1
PO4−P 0.814 0.815 0.383 −0.04 1

DO −0.82 −0.82 −0.31 −0.46 −0.63 1
BOD 0.686 0.686 0.450 −0.12 0.749 −0.58 1
COD 0.561 0.564 0.476 −0.19 0.647 −0.41 0.871 1
TN 0.645 0.642 0.410 0.184 0.680 −0.57 0.520 0.619 1
TP 0.899 0.899 0.484 −0.03 0.921 −0.69 0.804 0.683 0.535 1

Temperature 0.839 0.842 0.343 0.237 0.532 −0.73 0.436 0.344 0.291 0.730 1
Mg2+ −0.27 −0.27 −0.25 −0.13 −0.04 0.305 −0.13 −0.20 −0.16 −0.13 −0.42 1
Ca2+ 0.385 0.392 −0.19 0.398 0.091 −0.33 0.235 0.324 0.208 0.17 0.455 −0.33 1
Na+ 0.933 0.931 0.550 0.173 0.760 −0.83 0.813 0.694 0.601 0.881 0.788 −0.38 0.37 1
K+ 0.534 0.531 0.182 0.419 0.261 −0.64 0.237 0.240 0.701 0.197 0.335 −0.39 0.42 0.53 1

Values in bold are different from 0 with a significance level alpha = 0.05.
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The pH of rivers was 7.4 (7.1 to 7.6) in the dry season and 8.2 (7.5 to 8.7) in the wet
season, and the pH of lake was 8.2 (7.3 to 8.9) in the dry season and 8.5 (7.5 to 9) in the wet
season. The pH of point sources was 8.3 (7.1 to 9) in the dry season and 8.3 (8.1 to 8.7) in the
wet season. The recommended pH as per the standard for drinking, irrigation, and aquatic
life is 6.5–8.6, and the pH of LHW was within the accepted limit (Table 6). The EC (TDS) of
rivers was 148mg/L (297 µS/cm) in dry seasons and 89 mg/L (179 µS/cm) in wet seasons,
and EC (TDS) of lakes was 453 mg/L (877 µS/cm) in dry season and 421 mg/L (829 µS/cm)
in wet seasons. The EC (TDS) of point sources was 1655 mg/L (3509 µS/cm) in dry season
and 1395 mg/L (2809 µS/cm) in wet seasons. This shows that the EC (TDS) of rivers, lakes,
and point sources increases significantly with increasing temperature (Table 6). The NO3−N
concentration of rivers was 0.5 mg/L, NO3−N concentration of Lake Hawassa was 1.4 mg/L,
and that of point sources was 1.5 mg/L for the dry season. In the wet season, the NO3−N
concentration was 0.7, 1.9, and 1.9 for rivers, Lake Hawassa, and point sources, respectively.
The value of NO3−N increases in the rainy season due to the contribution of agricultural
runoff and use of fertilizers. The PO4−P concentration of rivers was 6.5 mg/L, PO4−P of
Lake Hawassa was 3.3 mg/L, and that of point sources was 43.8 mg/L in dry season. In the
wet season, the PO4−P concentration was 7.4, 2.9, and 25.7 for rivers, Lake Hawassa, and
point sources, respectively (Table 6). Similarly, Gebre-Mariam [58] reported that Ethiopian
Rift Valley lakes generally have lower EC values in the rainy season than in the dry season,
due to dilution by rain coupled with minimal evaporation rates during the rainy season.

Table 6. Descriptive statistics (mean and standard deviation) of the physicochemical characteristics of LHW collected
during dry season.

Codes SS TDS EC pH NH3−N NO3−N PO4−P DO BOD COD TN TP Mg2+ Ca2+ Na+ K+ Temperature

MS1 17.3 89 178 7.1 0.04 0.6 3.6 4.1 13.8 88.3 5.8 0.001 7.2 20 32.5 6.7 19.2
(1.6) (4) (7) (0.2) (0.01) (0.01) (2) (0.7) (1.5) (26.9) (1.5) (0) (2.1) (7.4) (1.5) (0.6) (0.8)

MS2 27.3 100 200 7.6 0.16 0.4 10.2 3.5 23.7 107.5 7.2 0.5 54.0 9 26.2 8.1 17.7
(5.8) (15) (30) (0.5) (0.07) (0.04) (6.7) (1) (7.2) (32.5) (1.8) (0.5) (16.4) (8.4) (3) (0.6) (1)

MS3 54.5 87 175 7.7 0.10 0.6 5.9 4.4 69.0 313.8 7.5 0.001 153.4 4.6 25.8 6.8 18.1
(3) (6) (12) (0.3) (0.01) (0.1) (0.1) (0.4) (20.5) (93.3) (2.5) (0) (50.2) (4.2) (3) (0.6) (0.7)

MS4 58.0 1575 3825 7.1 7.60 2.8 18.7 1.5 63.3 263.7 23.8 15 11.4 50.4 501.1 19.8 33.8
(10.4) (59) (108) (0.4) (1.49) (0.5) (2.9) (0.1) (10.8) (84.9) (5.9) (3) (0.1) (5.6) (83) (0.3) (0.3)

MS5 27.7 2349 4698 9.5 12.35 0.6 118.3 0.9 190 600 41.3 6.5 2.9 15.0 1078.1 19.3 29
(1.5) (193) (385) (0.6) (5.15) (0.05) (40) (0.1) (1.3) (241) (16.7) (1.6) (1.8) (10.6) (178) (0.8) (0.6)

MS6 23.3 317 635 7.6 0.06 1 6.3 4 5.3 26.3 11.3 0.001 5.7 18.7 111.8 9.4 24.5
(0.1) (63) (126) (0.1) (0.03) (0.2) (0.6) (0.5) (1.8) (5.8) (3.7) (0) (1) (0.7) (24) (0.9) (0.4)

MS7 10.6 388 765 8.8 0.37 0.9 2.5 4.5 5.9 116 6.8 0.8 5.1 16.2 221.9 20.1 22.8
(1.4) (7) (25) (0.003) (0.08) (0.02) (0.5) (0.5) (0.3) (88) (1.2) (0.2) (0.7) (1.1) (15.9) (0.3) (1)

MS8 13.6 518 851 8.9 11.75 1 4.3 5.3 9.5 135 4.5 0.4 3.9 24.2 255.0 22.2 22.8
(0.1) (26) (32) (0.02) (3.9) (0.02) (0.1) (0.3) (1.5) (5) (1.5) (0.1) (0.1) (1.8) (30.1) (0.8) (1)

MS9 9.0 392 748 8.7 0.38 2 3.0 4 9.9 45 3 0.001 12.8 22.2 191.9 20.0 22.7
(1.2) (3) (24) (0.1) (0.11) (1) (0.1) (0) (0) (0) (0) (0) (1) (1.9) (5.4) (0.3) (1.8)

MS10 10.8 473 955 8.5 0.12 0.6 2.5 4.3 71.8 326 1.1 0.1 5.2 18.4 224.2 20.0 21.3
(0.4) (8) (5) (0.04) (0.04) (0.1) (0.7) (0.3) (22.8) (104) (0.1) (0.1) (0.5) (1.4) (7.9) (0.1) (1.4)

MS11 13.5 463 880 8.6 3.71 3.1 2.0 3.3 9.0 96 4.5 0.001 5.4 20.9 205.1 20.7 23.1
(0.2) (3) (20) (0.04) (1.23) (1.8) (0.3) (0.1) (1) (20.5) (1.5) (0) (0.1) (0.1) (4.9) (0.3) (1.3)

MS12 10.3 460 921 8.6 1.34 1 2.3 4.5 10.1 46 4.0 0.001 10.1 26 225.0 23.4 22.6
(1.8) (18) (35) (0.2) (0.56) (0) (0.4) (0) (0.4) (1.8) (1.8) (0) (1.9) (1.9) (10.9) (2.7) (1.1)

MS13 12.5 411 807 8.5 0.15 3.1 3.1 4.0 47.3 255 6.9 0.5 13.5 40.9 280.8 19.0 23.2
(3) (9) (33) (0.2) (0.03) (2.1) (0.6) (0.5) (8.8) (55) (2.1) (0.1) (2.5) (7.1) (29.2) (0.7) (1.3)

MS14 9.3 358 714 7.3 1.19 1.3 3.8 3.5 20.2 134 3.8 0.001 6.3 16.9 150.8 16.7 20.8
(1.3) (82) (166) (0.1) (0.38) (0.1) (0.8) (0.5) (4) (23.8) (1.2) (0) (0.3) (0.2) (37.3) (3.3) (0.9)

MS15 24.2 1632 3266 8.3 24.97 1.6 36.7 1.5 63.5 290 49.5 5.6 13.7 33.7 420.2 44.7 23.9
(0.9) (39) (78) (0.005) (7.06) (0.8) (6.8) (0.03) (9.1) (40) (15.5) (1.9) (2.1) (2.9) (41.3) (3.3) (0.8)

MS16 16.6 483 935 8.6 0.96 1.0 3 4.2 22.6 75.5 6.3 3.8 3.2 8.8 197.2 17.8 21.5
(0.8) (8) (45) (0.1) (0.78) (0.1) (0.3) (0.1) (3.1) (10.5) (0.8) (1.2) (0.3) (1.3) (13.7) (2.3) (0.3)

MS17 14.3 479 935 8.6 3.17 1 2.7 4.2 48 160 5.3 0.001 14.1 33.8 159.0 18.0 22.0
(0.2) (1) (25) (0.01) (0.04) (0.01) (0.1) (0.1) (3) (10) (0.2) (0) (1.7) (1.3) (16.3) (2.3) (0.5)

MS18 96.4 561 1133 8.7 0.86 1 7.8 4.3 55.5 185 12.3 0.8 16 34 243.7 19.1 23
3.0 (34) (48) (0.1) (0.21) (0.01) (0.7) (0.3) (1.5) (5) (2.7) (0.2) (1.7) (2) (11.2) (1.2) (0.3)

MS19 7.2 1065 2246 8.4 0.05 0.8 9.8 4.2 126 420 12.8 2 18.3 53.7 301.4 20.9 21.2
(0.8) (215) (469) (0.1) (0.02) (0.04) (1.4) (0.1) (3) (10) (2.3) (0.3) (3.8) (4.9) (25.5) (0.05) (0.4)

All units in mg/L except pH (Dimensionless), Temperature (◦C), EC (µS/cm) and Turbidity (NTU).
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The TN (TP) of rivers was 8 (0.12) mg/L in dry seasons and 5(0.26) mg/L in wet
season, and TN (TP) of lakes was 5.3 (0.2) mg/L) in dry season and 5.2 (0.6) mg/L in
wet season. Hence, there is an obvious increase of TN in rivers and Lake Hawassa when
temperature increases due to lower dilution and greater agricultural contribution from
the upper stream by irrigation, whereas TP in rivers and Lake Hawassa increases in wet
seasons due to greater agricultural, rural, and urban runoff. The TN (TP) from point sources
was 31.8 (7.2) mg/L in dry season and 13.9 (5.4) mg/L in wet season. This shows that
TN (TP) of point sources increases significantly with increasing temperature due to lower
dilution. The NH3−N of rivers was 0.2 mg/L, NH3−N of Lake Hawassa was 0.83 mg/L,
and that of point sources was 4.72 mg/L in dry season. In the wet season, the NH3−N
values were 0.03, 0.71, and 3.6 for rivers, Lake Hawassa, and point sources, respectively.
The decreases in NH3−N level in the rainy season might be due to dilution effect (Table 6).

The positive correlation between temperature and TN, TP, EC, TDS, NH3−N, and
PO4−P indicates the increase in the concentration of nutrients as the temperature increases
(dry period). It also confirms the major contributors of nutrients were the point sources
that are releasing a relatively higher amount of pollutants than the agricultural and other
sources, as this value lowers during the wet season due to dilution effect. However, the
increase in nutrient (NO3−N) concentration in rivers and Lake Hawassa in the wet season
might be due to the increased contribution of agricultural runoff and use of fertilizers.

Sodium, calcium, magnesium, and potassium concentrations of the rivers were 49.1,
13.06, 55.1, and 7.74 mg/L in dry season and 28.9, 32.7, 10.1, and 5.7 mg/L in wet seasons.
Sodium, calcium, magnesium and potassium concentrations of the lake were 214, 23.8,
8.7, and 19.7 mg/L in dry season and 178.9, 25.1, 7.3, and 17.2 mg/L in wet season. The
sodium, calcium, magnesium, and potassium concentrations of the point sources were
575.2, 38.2, 11.5, and 26.2 mg/L, respectively, in the dry season and 375.2, 38.2, 9.5, and
50.1 mg/L. respectively in the wet season (Table 6). There was an observed decrease in ions
when the temperature decreased in the study area. This can be ascribed to the discharge
of industrial and domestic effluents, which contribute large amounts of alkaline ions to
the river system, as the conductivity depends mainly on the ion concentration in surface
water [52]. The natural range of sodium ions in water and soil is so low that their existence
can show river pollution caused by human activities. Calcium is added to water from soil,
industrial wastes, and natural resources. Magnesium is an essential nutrient required for
numerous biochemical and physiological functions [59].

The TDS of water generally increases with the level of dissolved pollutants (such as
nitrate, ammonium, and phosphate). Conductivity of ions in water depends on water
temperature, and ions move faster when water is warm. Hence, conductivity apparently
increases when water has a higher temperature [60]. In addition, Taylor et al. [61] pointed
out a strong relationship between these variables or ions, such as nitrate, ammonium,
and phosphate, and stated that high concentrations of EC indicate high concentrations of
soluble salts. There are strong correlations between EC/TDS, as evidenced by an increase
in conductivity as the concentration of all dissolved constituents increases [62] Table 6.

The BOD (COD) of rivers was 19.7 (96.5) mg/L in dry seasons and 6.9 (89.4) mg/L in
the wet season, and the BOD and COD of lakes was 28.1 (133.3) mg/L in dry season and
was 19.1 (112.9) mg/L in wet season. The BOD and COD concentrations for point sources
were 116.2 (398.6) mg/L in dry season and 111.6 (353.7) mg/L in wet season (Table 6). The
DO of rivers was 3.5 mg/L in dry season and 6 mg/L in wet season, and the DO of lakes
was 4.2 mg/L in dry season and 4.4 mg/L in wet season. The DO of point sources was
2 mg/L in dry season and 2.3 mg/L in the wet season (Table 6).

The DO of the rivers in the dry seasons and Lake Hawassa were well below the
standard value. This indicates that the discharge of industrial and domestic effluents has
resulted in serious organic pollution of these rivers, as the decrease of DO was mainly
caused by the decomposition of organic compounds. Moreover, an extremely low DO
content usually indicates the degradation of an aquatic system [63].
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The DO showed a negative correlation with most parameters in both dry and rainy
seasons, revealing the value of DO decreases with the increase in other water quality
parameters. This could explain the temporal variations, as more oxygen was available
for reaction with the pollutants, especially metals and organic pollutants, during dry
seasons. Additionally, the characteristics of temporal variation in water quality of LHW
were affected by DO. DO was strongly correlated with organic matters, nutrients, and
metals, and thus seasonal variation should be considered when DO is used as an indicator
to evaluate surface water quality. Low dissolved oxygen (DO) is primarily the result of
excessive algal growth caused by nutrients. As the algae die and decompose, this process
consumes dissolved oxygen. This may result in insufficient dissolved oxygen for fish and
other aquatic life. Temperature was significantly correlated with water quality parameters
such as EC, TDS, TP, PO4−P, and DO in both seasons. Temperature had significant negative
correlation with DO in the dry and wet seasons, indicating that when water temperature
increases, the metabolic rate of microorganisms also increases, and the amount of DO
in the water decreases. This might be because faster biodegradation of organic matter
during dry seasons can effectively improve water quality. The solubility of oxygen was
inversely related to temperature, as the water becomes warmer and more easily saturated
with oxygen, hence holds less DO during the dry season. Singh et al. [32] observed the
inverse relationship between temperature and DO in natural processes, as water can hold
less DO with increasing temperature.

4.2. Pollution Index (PI)

The mean pollution index of the rivers in the lake watershed was 4.5 in dry and 3.3 in
wet season, indicating a moderately polluted condition of rivers. Lake Hawassa PI was 5 in
both dry and rainy season, indicating that the quality of the lake was moderately polluted.
Anthropogenic activities were causing deterioration of the water quality of the rivers and
Lake Hawassa, and the overall status of the water quality is moderately polluted. The PI for
the point sources was measured for comparison purposes, and it was found to be highly
polluted, having a PI index of 6.8 and 7.3 for the wet and dry seasons, respectively (Table 7).

Table 7. Average concentrations of monitoring stations for rivers, Lake Hawassa, and point sources
(PS) observed in both dry and wet seasons.

Parameters Seasons Rivers Lake Hawassa PS

DO (mg/L) dry seasons 4.2 4.2 1.7
wet seasons 6 4.3 2.1

BOD5 (mg/L) dry seasons 19.7 28.1 116.2
wet seasons 6.9 19.1 111.6

SS (mg/L) dry seasons 30.6 19.7 29.3
wet seasons 51.1 20.9 28.1

NH3−N (mg/L) dry seasons 0.2 0.8 1.2
wet seasons 0.002 0.71 14.4

PI
dry seasons 4.5 5 7.3
wet seasons 3.3 5 6.8

Rank
dry seasons MP MP HP
wet seasons MP MP HP

4.3. Cluster Analysis
Spatial and Temporal Similarities

Cluster analysis was applied to find out if the monitoring stations had similar charac-
teristics in terms of water quality parameters. It was implemented with the water quality
data set to group comparable monitoring sites (spatial variability) spread over the water-
shed. Results from CA display high homogeneity within clusters and high heterogeneity
between clusters [64]. Hierarchical agglomerative CA was carried out with the normalized
data set employing Ward’s method, using Euclidean distances as a measure of similarity.
In this approach, the analysis of variance method is used to evaluate the distances between



Appl. Sci. 2021, 11, 8991 14 of 25

clusters, attempting to reduce the sum of squares of all clusters that can be made at each
step. In this method, the clusters are grouped sequentially, beginning with the most com-
parable pair of objects and establishing better clusters one after the other, demonstrated
through a dendrogram [2,65].

The dendrogram presents a visual summary of the clustering processes and provides
the map of the groups with a dramatic reduction in the dimensionality of the original
records [2,5,32,43,44]. The CA grouped all 19 monitoring stations into two statistically
significant clusters for the dry and wet seasons in LHW, and the dendrogram displays the
grouping of stations for the wet and dry seasons, as demonstrated in Figure 2. Regarding
the clustering for the dry and wet seasons, monitoring stations from most of the watershed
upstream, from the eastern and western sides of the lake, and from the center of Lake
Hawassa have been grouped in Cluster 1. Stations in these clusters typically consist of
rivers and Lake Hawassa and are categorized as moderately polluted. The monitoring
stations in these clusters are MS1-MS3, MS6-MS14, and MS16-MS18, which can be labeled
as “moderate anthropogenic effect”. This cluster received pollution from point sources and
non-point sources, consisting of animal waste and runoff. It is characterized by moderate
anthropogenic impact and labelled as moderately polluted.
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The pollution sources for monitoring stations MS1-MS3 were mainly anthropogenic
activities from non-point pollution sources such as agricultural and sewage pollution,
whereas pollution sources for monitoring stations MS6 (Tikur-Wuha river) and Lake
Hawassa (MS7–MS14, MS16–MS18) were mainly industrial pollution, dispersed point
sources, agricultural pollution, urban runoff, and sewage pollution.

Owing to their relative sources, all stations in this cluster were rivers and lakes,
suggesting that clustering is reasonable for both dry and wet seasons.
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The spatial trend of water quality was generally driven by anthropogenic activities
from point and non-point sources of pollution, especially anthropogenic activities with
respect to pollutant loading and land use.

Cluster 2 includes four monitoring stations in the middle part of the LHW and groups
monitoring stations in this cluster as MS4, MS5, MS15, and MS19. Four point sources,
specifically BGI, Pepsi Factory, Referral Hospital, and Industrial Park monitoring stations,
were assigned to this cluster. Consequently, this cluster is characterized by comparatively
heavy pollution.

4.4. Discriminant Analysis

Discriminant analysis (DA) was used to evaluate the spatial variations in water quality
and to distinguish the most critical parameters in relation to variations between clusters.
Both the standard and stepwise modes were applied to the primary data by dividing them
into wet and dry seasons, and the two spatial groups resulting from CA were used in DA. In
this case, the WQ parameters were treated as independent variables, while the clusters were
considered as dependent variables. The confusion matrixes (CM) showed that 100%, 100%,
and 100% of the data points were correctly classified in the standard, forward stepwise, and
backward stepwise modes for both dry and wet seasons, respectively (Table 8).

Table 8. Classification matrix for standard, forward stepwise, and backward stepwise DA of spatial variation in LHW for
both dry and wet seasons, showing percentage of correct assignation for discriminating parameters.

Monitoring
Stations % Correct

Stations Assigned by DA

C1 C2

Standard DA mode for dry season
C1 100 15 0
C2 100 0 4

Total 100 15 4
Standard DA mode for wet season

C1 100 15 0
C2 100 0 4

Total 100 15 4
Forward stepwise DA mode for dry season

C1 100 15 0
C2 100 0 4

Total 100 15 4
Forward stepwise DA mode for wet season

C1 94 15 0
C2 85 0 4

Total 84.5 15 4
Backward stepwise DA mode for dry season

C1 100 15 0
C1 100 0 4

Total 100 15 4
Backward stepwise DA mode for wet season

C1 100 15 0
C2 75 0 4

Total 87.5 15 4

C1: Includes stations (MS1-MS3, MS6-MS14, and MS16-MS18). C2: Includes stations (MS4, MS5, MS15, and MS19).

The standard DA method builds DFs using eighteen parameters, while only three
and seven parameters were the critical parameters useful to make distinction within
the two pollution groups for both the forward stepwise modes and backward stepwise
modes, respectively, for both dry and wet seasons. In forward stepwise mode, most of the
parameters such as turbidity, TDS, pH, NH3−N, NO3−N, PO4−P, DO, COD, NO2−N, TN,
TP, temperature, Mg2+, Ca2+, and K+ were insignificant variables leading to less variation,
and they were deleted in the further process. However, in the forward stepwise DA



Appl. Sci. 2021, 11, 8991 16 of 25

mode, the three significant variables that were useful to make distinctions within the two
pollution groups with 100% correct assignation were EC, BOD, and Na+. The backward
stepwise mode deleted the least significant and identified seven significant variables: EC,
DO, COD, TN, TP, Na+ and K+. These seven parameters, which were 100% correctly
assigned, were the critical parameters useful to make distinctions within the two pollution
groups. This implies that the expected spatial variation in water quality can be explained
sufficiently using variables EC, DO, COD, TN, TP, Na+, and K+. Wilks’ lambda shows that
the discriminant distribution is skewed towards high concentrations.

On the other hand, the standard DA functions was constructed using eighteen pa-
rameters, of which three and four parameters were used for forward stepwise mode and
backward stepwise mode, respectively, for wet season. In forward stepwise mode, the
pollutants that were found to be insignificant variables and had less variation in terms of
their spatial distribution were deleted in the further process. However, in the backward
stepwise DA mode, the three significant variables that were useful to make distinctions
within the two pollution groups with 84.5% correct assignment were EC, Na+, and COD.
The backward stepwise mode deleted the least significant and identified two significant
variables: EC and Ca+2. These two parameters were the critical parameters useful to make
distinctions within the two pollution groups with 87.5% correct assignation (Table 8). This
implies the spatial water quality variation can be sufficiently explained by using variables
EC, Na+, COD, and Ca2+, with Wilks’ lambda value showing discriminatory distribution is
skewed toward high concentration, as shown in Figure 3.
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Figure 3. Box plot of the most discriminating parameters, BOD (mg/L), EC (µS/cm) and Na+ (mg/L) and Wilks’ lambda
showing skewedness of discriminatory distribution toward high concentration.

4.5. Pollution Source Identification of Monitored Variables
Principal Component Analysis

PCA was applied to the normalized data and was able to identify three principal
components (PCs) using the Kaiser criterion [66] based on loading higher than 0.5. The scree
plot graphs are used widely to identify the number of PCs to be retained to understand the
underlying data structure [26]. Based on the scree plot and the eigenvalues >1 criterion,
three factors were chosen as principal factors. The variables with eigenvalues lower than 1
were removed due to their low significance [67].

In this study, the scree plot (Figure 4) shows the sorted eigenvalues from large to small
as a function of the number of PCs. This figure shows a pronounced change in slope after the
third eigenvalue; three components were retained (Table 9). After the third PC (Figure 4a,b),
beginning with the upward curve, the remaining components were circumvented. It was
used to classify the number of PCs to be retained in order to figure out the underlying data
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structure [25]. Consequently, a new set of data is obtained that may explain the variation of
data set having fewer variables.
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Figure 4. Factor loadings derived from scree plot and eigenvalue for LHW and three factors are retained for dry (a) and wet
(b) seasons.

Table 9. Matrix of factor loadings calculated based on water quality parameters measured in the period from May to January
in the Lake Hawassa Watershed and factor loadings of variables on the first three PCs extracted by using eigenvalue for
both wet (a) and dry (b) seasons.

Parameters F1 (a) F2 (a) F3 (a) F1 (b) F2 (b) F3 (b)

Turbidity 0.282 −0.420 c 0.452 c −0.032 −0.781 a −0.320 c

TDS 0.974 a 0.136 0.044 0.962 a 0.020 −0.084
EC 0.978 a 0.078 0.079 0.961 a 0.018 −0.098
pH 0.285 0.324 c −0.710 b 0.056 −0.178 0.775 a

NH3−N 0.416 c 0.516 b −0.313 c 0.521 b −0.244 0.700 c

NO2−N 0.428 c −0.475 c −0.620 b −0.088 −0.531 b −0.064
NO3−N 0.131 0.398 c 0.507 b 0.195 0.599 b −0.168
PO4−P 0.871 a −0.035 −0.174 0.830 a −0.414 c −0.200

DO −0.842 a −0.055 −0.365 c −0.847 a −0.246 0.186
BOD 0.784 a −0.461 c −0.297 0.796 a −0.394 c 0.015
COD 0.793 a −0.388 c −0.302 c 0.721 b −0.320 c 0.135
TN 0.898 a 0.064 0.101 0.724 b −0.015 0.047
TP 0.812 a 0.139 0.436 c 0.897 a −0.333 c −0.105

Temp 0.825 a 0.290 0.194 0.783 a 0.246 −0.143
Mg2+ 0.077 −0.654 b 0.389 c −0.350 c −0.567 b −0.380 c

Ca2+ 0.449 c −0.627 b 0.103 0.401 c 0.524 b −0.246
Na+ 0.832 a 0.205 −0.116 0.973 a 0.001 0.076
K+ 0.477 c 0.335 c 0.035 0.572 b 0.522 b 0.106

Eigenvalue 8.4 2.4 2.2 8.2 2.9 1.6
Variability (%) 46.8 13.4 12.3 45.7 16 8.8
Cumulative % 46.8 60.2 72.5 45.7 61.7 70.5

a strongly correlated factor loadings, b moderately correlated factor loadings, c weakly correlated factor loadings.

Moreover, scree plots are used to visually evaluate which components or factors
elucidate the maximum variability in the data.

The PCA results, which include the loadings (participation of the original variable
in the new one), are summarized in Table 9. The FA in LHW extracted three factors by
retaining the PCs through varimax rotation that explained 72.5% of the total variance for
the wet season. An eigenvalue offers a degree of the importance of the factor, and factors
having the highest eigenvalues are the most significant. Eigenvalues of 1.0 or more are
considered significant. Liu et al. [26] additionally categorized the factor loadings as ‘strong’,
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‘moderate’, and ‘weak’, corresponding to absolute loading values of >0.75, 0.75–0.50, and
0.50–0.30, respectively.

The first factor (F1), accounting for 46.8% of the total variance, showed strong positive
loadings of TDS, EC, PO4−P, BOD, COD, TP, TN, Na+, and temperature with factor
loadings of 0.974, 0.978, 871, 0.811, 0.784, 0.793, 0.898, 0.812, 0.825, and 0.832, respectively; a
weak positive loading of K+ (0.477); and strong negative loading of DO (−0.842) (Table 9).
High positive loadings of temperature and high negative loading of DO might suggest
the impact of seasonal variation, and temperature is inversely related to DO. The strong
and moderate positive loading of BOD and COD signify biodegradation of organic matter
and are negatively affected by DO of water bodies. F1 stands clearly for pollution by BOD
or COD, and nutrients and oxygen depletion is a consequence. When the temperature of
water bodies decreases, the biodegradation of organic matter decreases, and the solubility
of oxygen in the water increases. Similar reports of high concentrations of BOD and
COD exist elsewhere [42,44,45]. Similarly, the strong negative DO loading indicates the
utilization of DO under anaerobic conditions in rivers and lakes for the degradation of
organic matter. F1 showed strongly positive loadings for both COD and BOD, while the
loading for DO was strongly negative. This indicates a group of purely organic pollution
indicator parameters from industrial effluents, domestic discharges, and livestock affecting
water bodies [23,27,51].

High nutrient loadings of factors such as TN and TP represent pollution from point
and non-point sources from industrial setup, agriculture areas, domestic sewage, and
urban runoff. The high loading of metals demonstrates the influences of industrial effluents
and agriculture activities. Phosphorus and nitrogen can originate from point sources such
as sewage pollution, industrial facilities and livestock, as well as from non-point sources,
mainly from agricultural activities, runoff from rural and urban areas, soil erosion, and
livestock. These results are consistent with findings of other reports elsewhere [27,68].
Consequently, the component is more likely to be explained by the combination of domestic
pollution and industrial factors. These factors are characteristic of the monitoring stations
in the upper catchment (MS1 and MS2), in the middle section including point sources (MS5
and MS15), along Tikur-Wuha River (MS6), and on the eastern side of Lake Hawassa (MS7,
MS9, MS12, MS13, and MS14), where domestic and industrial effluents and agricultural
runoff are predominant.

The strongly positive loadings of Na+ and weak positive loadings of K+ are likely due
to industrial effluents discharged into the river Tikur-Wuha and Lake Hawassa. Reports
also indicate that the sources of Na+ and K+ might be domestic sources, fertilizers, and
residential waste in addition to industrial effluents [69]. During field observation, it was
found that the major industries are discharging their treated and untreated effluents directly
into the Tikur-Wuha River and the lake during the rainy period when the flow rate is high,
resulting in high dilution, but during the dry period, the dilution effect is lower and
consequent pollution is higher.

On the other hand, the strong loadings of TN and TP in F1 suggest higher contribution
from point sources in industry and non-point sources such as agricultural land use, urban
drainage, and residential areas during the rainy season. In general, these factors are symbolic
of a blended source of contamination, encompassing industrial discharges, urban runoff, and
agricultural land use. The results are in agreement with those of other studies [5,24,67,69].
Hence, they can be considered as the contamination index for surface water [44,45].

The second factor (F2) explained 13.4% of the total variance. It had a moderately
negative loading of Mg2+ and Ca2+ (−0.654, −0.627) and a moderately positive loading
of NH3–N (0.516). This factor’s moderately negative loading of Mg2+ and Ca2+ is likely
to originate from industrial wastewater discharged into the Tikur-Wuha River and Lake
Hawassa, usually from carbonate minerals, which are naturally present in the soils of the
Lake Hawassa watershed. This factor is more pronounced at monitoring stations affected
by point sources, agricultural lands, and rural and urban runoff, such as MS3 in the upper
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catchment, MS19 in the middle section (point source), and MS8, MS11, MS16, and MS18
monitoring stations on both eastern and western sides of Lake Hawassa.

A moderately positive loading of NH3−N (0.7) indicates biodegradation of organic
matter. This variable is primarily from runoff, with high loading of solids and wastes
from point sources of pollution from domestic and industrial areas. Furthermore, NH3−N
is triggered by the decomposition of organic matter, indicating the discharge of domestic
sewage to surface water. Studies elsewhere have showed comparable results [42,44,45,69,70].

The third factor (F3), explaining 12.3% of the total variance, had a moderately negative
loading for pH (−0.710), suggesting the dominance of physical reactions by aquatic plants
and natural weathering of the basin, possibly due to industrial impact from different
sources [22]. It had weak positive loading of turbidity (0.452), moderate negative loading
of NO2−N (−0.620), and moderate positive loading of NO3−N (0.507). NO3–N may
additionally have derived from agricultural areas in the region, where inorganic nitrogen
fertilizers are in common use and the role of domestic waste is strong, and hence, this
component can be best explained by a “nutrient” factor representing influences from non-
point sources such as agricultural runoff and the domestic pollution factor. The reports
of Yilma et al. [35] in Ethiopia and Zhang et al. [27] elsewhere were comparable with this
result. This factor is typical of the monitoring stations in the middle section including point
sources and eastern and western sides of Lake Hawassa (MS4, MS10, and MS17), where
domestic sewage, industrial effluents, and agricultural runoff are predominant.

The FA in LHW extracted three factors by retaining the PCs through varimax rota-
tion that explained 70.5% of the total variance for the dry season. The first factor (F1),
accounting for 45.7% of the total variance, showed strong positive loadings of TDS, EC,
PO4−P, BOD, DO, TP, Na+, and temperature, having factor loadings of 0.962, 0.961, 0.830,
0.796, 0.897, 0.783, and 0.973, respectively; moderate positive loadings of K+, COD, and
TN (0.572, 0.721, 0.724); and strong negative loadings of DO (−0.847). Strong positive
loadings of temperature and strong negative loadings of DO might suggest the impact of
seasonal variations. The strong and moderate positive loading of BOD and COD signify
biodegradation of organic matters and negatively affect DO of water bodies. F1 stands
clearly for pollution by BOD or COD, and nutrients and oxygen depletion is a consequence.
High temperature increases biodegradation and reduces solubility of oxygen in the water.
This PC was correlated with COD and BOD5, indicating a group of purely organic pollution
indicator parameters from uncontrolled domestic discharges caused by rapid urbanization
and industrial effluents. Biodegradation of organic matter causes concentrations of BOD
and dissolved oxygen in water [23,27,51].

A high loading of nutrients represents pollution from industrial setup and domestic
wastewater. High loading of metals demonstrates the influences of industrial discharges.
Phosphorus and nitrogen may originate from point sources such as sewage pollution,
agricultural runoff in the upper stream due to irrigation, industrial facilities, and livestock.
Consequently, this component is more likely to be explained by the combination of domestic
pollution factors and industrial factors. Strongly positive loading of Na+ and moderate
positive loadings of K+ are likely to originate from industrial effluents discharged directly
into the Tikur-Wuha River and Lake Hawassa. These results are also supported by similar
findings obtained elsewhere [27,69].

This factor is more pronounced at monitoring stations in the upper catchment (MS1
and MS3), monitoring stations in the middle section including point sources (MS4, MS5,
MS15 and MS19), Tikur-Wuha River (MS6), and monitoring stations from both eastern and
western sides of Lake Hawassa (MS9, MS10, MS14, MS16, and MS17), where domestic
sewage, industrial effluents, and agricultural activities are predominant. The major indus-
tries discharge their treated and untreated effluents directly into Tikur-Wuha River and the
lake during the dry period when the flow is low, which might lead to higher pollution. On
the other hand, the strong loadings of TN and TP at F1 suggest a higher contribution of
point sources from industrial facilities and agricultural runoff in the upper stream due to
irrigation. Generally, these factors suggest a blended source of contamination encompass-
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ing municipal and industrial point source and livestock. This result is also confirmed by
other studies [5,23,33,67,69]. Hence, it can be considered to be the contamination index for
surface water [44,45].

The second factor (F2) explained 16% of the total variance and had a strong negative
loading of turbidity (−0.781), a moderate negative loading of NO2−N and Mg+2 (−0.567,
−0.531), and a moderate positive loading of NO3−N and Ca+2 (0.599, 0.524). NO3–N could
be mainly from point sources, and the role of domestic waste is also strong. Hence, this
component can be explained by the “nutrient” factor, which represents influences from
non-point sources such as the domestic pollution factor [24,27,32,35,66,69]. A moderately
positive loading of K+ and a moderately negative loading of Mg2+ in this factor likely
originate from industrial discharges into the Tikur−Wuha River and Lake Hawassa. This
PC is more influenced by industrial discharges, and monitoring stations from the LHW,
where industry is predominant, are more pronounced. This factor is more pronounced in
monitoring stations in the upper catchment (MS2) and the monitoring stations in the eastern
and western sides of Lake Hawassa (MS11, MS12, MS13, and MS18), where domestic,
industrial, and agricultural activities are predominant in the upper stream due to irrigation.

The third factor (F3), explaining 8.8% of the total variance, had a strong positive
loading of pH (0.775), suggesting the dominance of physical reactions by aquatic plants
and natural weathering of the basin, and attributed to industrial impact from different
sources [22]. A moderate positive loading of NH3−N (0.7) indicates the biodegradation
of organic matter causing concentrations of waterborne factors such as NH3−N. This
variable originated primarily from wastes from point sources of pollution from domestic
and industrial areas. Furthermore, NH3−N is triggered by organic matter decomposition,
indicating the discharge of domestic sewage to surface water. Reports elsewhere support
the findings of this study [42,44,45,70]. This factor is more pronounced in monitoring
stations on the eastern side of Lake Hawassa (MS7 and MS8), where domestic sewage,
industrial effluents, and agricultural activities are prevalent.

The bi-plot of PCs on key parameters TDS, EC, PO4−P, DO, BOD, COD, TN, TP,
temperature, Na+, K+, Turbidity, NO2−N, NO3−N, Mg2+, and Ca2+ that characterize
monitoring stations from rivers in the upper and middle catchment, point sources in the
middle catchment, and the eastern and western sides of Lake Hawassa are presented in
Figure 5a,b for dry and wet seasons. In fact, the average values of EC, TDS, BOD, COD,
Na+, K+, Mg2+, Ca2+, and NH3−N of point sources were exceedingly higher than that of
rivers in the upper and middle catchment (MS1–MS3, and MS6) and Lake Hawassa (MS7-
MS14, MS16 and MS18) in Table 6. In addition, NO3−N, NO2−N, TN, TP, and PO4−P
were the main parameters characterizing the stated monitoring sites in both seasons. These
stations predominantly include rural areas, urban and peri-urban areas, and industrial
sites from which domestic sewage, urban runoff, and effluents are discharged into the
lake. Furthermore, the influence of agricultural activities in the upper catchment and
Tikur-Wuha River feeding the lake was evident. The results of this investigation were
comparable to the findings of the studies conducted by Tibebe et al. [71] and Meshesha
et al. [72] on Lake Ziway. In particular, higher EC and TDS values were recorded for similar
monitoring stations in both seasons (Table 6). In an aquatic environment, EC is used to
categorize the pollution status of surface waters, and an increase in conductivity indicates
the presence of dissolved ions that can affect aquatic life and water quality [73].
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Figure 5. PCA biplots (a,b) suggest the projection of the monitoring sites (blue dots) and the variable loadings of the
primary components (F1 and F2). The biplots additionally display the relationship between highly correlated variables and
monitoring stations for dry (a) and wet (b) seasons. High and low values indicate strong positive and negative correlation,
respectively, while values close to 0 imply weak correlation between F1 and F2 and the respective parameter.

4.6. Total Nitrogen to Total Phosphorus (TN:TP) Ratio

The TN:TP ratio in lakes and reservoirs is a key element, as it gives an idea of which
of these nutrients is either in excess or limiting to growth, and it was used to estimate the
nutrient limitation in the lake. According to Smith [74], blue-green algae (cyanobacteria)
has a capacity to dominate in the lake section when the TN:TP ratio was less than 29, and it
tends to be rare in the lake when TN:TP > 29. On the other hand, Fisher et al. [75] used a
more conservative ratio of TN:TP. According to them, the ratio > 20 is designated as the
phosphorus limitation and nitrogen limitation when the ratio is <10, while a TN:TP ratio
of 10 to 16 demonstrates either phosphorus or nitrogen (or both) are limiting for growth.
The estimated ratio for Lake Hawassa was 31, which is higher than 20 and 30, revealing
cyanobacteria dominance in the lake section, which is rare. The TN:TP ratio > 20 in Lake
Hawassa indicated that phytoplankton growth in the lake might be phosphorous deficient.

5. Conclusions

Multivariate statistical techniques help researchers to scrutinize the relationships
between parameters in a broader fashion by applying different approaches such as cluster
analysis, correlation, factor analysis, discriminant analysis, and multiple regressions to
determine the association between dependent and independent variables. They reduce
the dimensionality of data so that the whole picture can be visualized more easily than
looking at specific cases allows. Furthermore, multivariate techniques provide powerful
significance testing compared to univariate techniques. Despite their various merits, the
results of multivariate statistical modeling are not easy to interpret and require a large data
set to get meaningful results due to the high standard errors. In particular, PCA/FA is
likely to lose information if PCs or factors are not chosen judiciously.

This study was conducted to evaluate seasonal and spatial variations in water quality
and to identify potential sources of pollution using multivariate statistical techniques
for the Lake Hawassa Watershed. The results of this study show that the condition of
Lake Hawassa Watershed was classified into moderately and highly polluted categories
in both dry and wet seasons. In data-limited developing countries such as Ethiopia, it is
especially clumsy to identify possible sources of pollution due to certain contaminants, as
this requires frequently monitored water quality data, which are often not available. To
address this serious problem, this study applied MVST. Multivariate statistics were used to
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perform temporal and spatial assessment of surface water quality to reduce the number
of monitoring stations and chemical parameters in LHW. In this study, we used Pearson
correlation, PCA/FA, CA, and DA to evaluate spatial and temporal variance in surface
water quality.

CA grouped the monitoring stations into two statistically significant clusters for
the dry and wet seasons, labelled MP and HP, using PI. Accordingly, this resulted in a
dendrogram with two clusters for the dry and wet seasons. The findings of the study
revealed that rivers in the upstream and middle portion of the lake watershed and Lake
Hawassa were moderately polluted (MP), while point sources (industries, hospitals, and
hotels) in the middle of the LHW were found to be highly polluted (HP).

DA was used to identify the most critical parameters to investigate the spatial vari-
ations and extracted seven significant parameters: EC, DO, COD, TN, TP, Na+, and K+,
with spatial variance to distinguish the pollution statuses of the groups obtained using CA.

PCA/FA techniques helped to identify the potential sources of water quality degra-
dation. This study comprehensively analyzed the water quality of LHW and identified
three significant sources responsible for pollution of Lake Hawassa Watershed in dry and
wet seasons affecting the water quality. Accordingly, the pollution is due to mixed sources
including point sources such as municipal and industrial effluents, natural processes,
livestock, urban runoff, and non-point sources from agricultural activities.

Poor industrial effluent management combined with non-point sources from agricul-
ture and urban runoff contribute significantly to the pollution of Lake Hawassa. Discharge
of industrial effluents into the surface water system is the largest point source of an-
thropogenic pollution. Diffuse sources that contribute enormously to LHW come from
agricultural activities, i.e., intensive farming and livestock (F1, F2, and F3).

We conclude that effective management of point and non-point source pollution is
imperative to improve domestic, industrial, livestock, and agricultural runoff to reduce
pollutant inputs into the lake. A stringent management that requires a comprehensive
application of technologies such as fertilizer management, ecological ditches, constructed
wetlands, and buffer strips should complement proper municipal and industrial wastewa-
ter treatment set-up.

Furthermore, application of indigenous aeration practices such as the use of drop
structures at critical locations would help improve water quality in the lake watershed.
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