
applied
sciences

Article

3DLEB-Net: Label-Efficient Deep Learning-Based Semantic
Segmentation of Building Point Clouds at LoD3 Level

Yuwei Cao * and Marco Scaioni

����������
�������

Citation: Cao, Y.; Scaioni, M.

3DLEB-Net: Label-Efficient Deep

Learning-Based Semantic

Segmentation of Building Point

Clouds at LoD3 Level. Appl. Sci. 2021,

11, 8996. https://doi.org/10.3390/

app11198996

Academic Editors: Sungho Kim and

Jose Santamaria Lopez

Received: 7 June 2021

Accepted: 23 September 2021

Published: 27 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano Via Ponzio
31, 20133 Milano, Italy; marco.scaioni@polimi.it
* Correspondence: yuwei.cao@polimi.it; Tel.: +39-389-827-0313

Abstract: In current research, fully supervised Deep Learning (DL) techniques are employed to train
a segmentation network to be applied to point clouds of buildings. However, training such networks
requires large amounts of fine-labeled buildings’ point-cloud data, presenting a major challenge in
practice because they are difficult to obtain. Consequently, the application of fully supervised DL
for semantic segmentation of buildings’ point clouds at LoD3 level is severely limited. In order to
reduce the number of required annotated labels, we proposed a novel label-efficient DL network that
obtains per-point semantic labels of LoD3 buildings’ point clouds with limited supervision, named
3DLEB-Net. In general, it consists of two steps. The first step (Autoencoder, AE) is composed of a
Dynamic Graph Convolutional Neural Network (DGCNN) encoder and a folding-based decoder. It
is designed to extract discriminative global and local features from input point clouds by faithfully
reconstructing them without any label. The second step is the semantic segmentation network. By
supplying a small amount of task-specific supervision, a segmentation network is proposed for
semantically segmenting the encoded features acquired from the pre-trained AE. Experimentally, we
evaluated our approach based on the Architectural Cultural Heritage (ArCH) dataset. Compared
to the fully supervised DL methods, we found that our model achieved state-of-the-art results on
the unseen scenes, with only 10% of labeled training data from fully supervised methods as input.
Moreover, we conducted a series of ablation studies to show the effectiveness of the design choices of
our model.

Keywords: 3D point cloud; autoencoder; label-efficient; LoD3 building; unsupervised deep learning

1. Introduction

The diffusion of buildings’ point clouds at a high Level of Detail (LoD) [1] such as
LoD3 provides very detailed geometrical representation and semantic information [2],
which enables and promotes new applications in a variety of fields such as cultural heritage
documentation and preservation [3–5], construction engineering [6,7], emergency decision
making [8] and smart cities [9]. However, point clouds of buildings generally provide the
representation of the entire premises including only a few types of architectural elements
with no semantic information, limiting the efficient exploitation in the abovementioned
application domains [10]. Hence, it is essential to investigate the methods of extracting
semantic information from buildings’ point clouds to acquire high-LoD models [11].

Thanks to the growing resolution and accuracy of 3D laser scanning sensors, point-
cloud analysis has attracted a lot of interest in research. Inspired by the success of Deep
Neural Networks (DNNs) used in Computer Vision (CV) to accomplish subset tasks (e.g.,
classification, detection and semantic segmentation), Deep Learning (DL) approaches have
appeared in the last few years for understanding 3D point clouds [12]. Semantic segmenta-
tion is a fundamental task in 3D point-cloud analysis. As a result of the success in recent
DL-based point-cloud analysis studies, DL-based approaches have been demonstrated to
be a promising alternative to traditional segmentation methods. They aim to segment build-
ings by automatically learning features from labeled point clouds, rather than hand-crafted

Appl. Sci. 2021, 11, 8996. https://doi.org/10.3390/app11198996 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1803-1406
https://orcid.org/0000-0003-4058-6176
https://doi.org/10.3390/app11198996
https://doi.org/10.3390/app11198996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11198996
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11198996?type=check_update&version=2

Appl. Sci. 2021, 11, 8996 2 of 24

features. This principle has been successfully applied in numerous applications, such as
indoor [13], urban [14] and buildings’ scenes [15]. Even though important results were
achieved, the existing DL approaches for building point clouds are strongly supervised,
and these methods have substantial demands for finely labeled data [16].

However, it is not feasible to create such an amount of labeled training data in many
real-world problems. A building point cloud composed of thousands of 3D points would
need to be individually annotated in the case of segmentation. This cumbersome process
results in a lack of annotated 3D architectural datasets. For example, to the best of our
knowledge, only the Architectural Cultural Heritage (ArCH) dataset [17] is publicly avail-
able to provide pointwise annotations and support for generating high-resolution LoD3
building models. Furthermore, in order to train a satisfactory segmentation network, bil-
lions of pointwise accurate labels are demanded [16], which is extremely time-consuming
to obtain. For instance, some studies [3,5] on the application of DL in architectural semantic
segmentation have been done only after the setup of the fine-labeled ArCH dataset.

In the CV domain, the problem of hunger for fine-labeled pointwise training data is of-
ten tackled by using unsupervised methods. Unsupervised learning plays an essential role in
the CV field as it provides a way to pre-train feature extractors on large unlabeled datasets.
The pre-trained extractor may initialize the parameters of downstream networks for more
efficient and effective training on downstream tasks [18]. However, these approaches
are mostly designed for 2D images, which are fundamentally different from unordered
point clouds. Unlike 2D images that are projective observations from the built environ-
ment, 3D point clouds provide a metric reconstruction of the building scenes without scale
ambiguity [19]. Furthermore, the application of label-efficient unsupervised learning to
downstream tasks in the 3D field is still limited to either single-object or low-level tasks
such as registration and classification [20]. Therefore, from a scientific viewpoint, it is still
an open issue when using unsupervised DL-based methods in the semantic segmentation
task of buildings’ point clouds.

For the abovementioned reasons, in this paper, we decided to put our efforts into
developing an unsupervised DL method for high-level semantic segmentation of buildings’
point-clouds. We explored the possibility of learning a point-cloud segmentation network
by only supplying limited task-specific labeled data. To conduct such a label-efficient un-
supervised DL network (3DLEB-Net) we introduced the Autoencoder (AE) architecture to
simultaneously learn reconstruction and discriminative features of the input 3D building
point clouds without any label. To achieve this, we leveraged the Dynamic Graph Convo-
lutional Neural Network (DGCNN) [21] as our encoder and FoldingNet [22] as decoder to
acquire powerful embeddings from complex buildings’ point clouds without any labeled
data. To this end, with limited labeled data, we designed three fully connected layers in an
end-to-end segmentation network to achieve the downstream segmentation task.

In particular, our contributions may be summarized as follows:

1. We proposed a novel AE network to learn powerful feature representations from a
non-labeled complex-building point-cloud dataset, and the pre-trained AE may be
used in the high-level downstream semantic segmentation task;

2. We trained an end-to-end segmentation network for the buildings’ segmentation task. The
output of our model is a semantically enriched LoD3 3D building representation; and

3. We experimentally demonstrated how to exploit limited labeled point clouds to
segment input point clouds of buildings. The result shows that our result either
surpasses or achieves performance comparable to the one of recent state-of-the-art
methods, with only 10% of training data.

2. Related Work

Laser scanning techniques are able to collect dense and accurate point clouds of
buildings. At the same time, the massive amount of data requires a semantic interpretation
at a high Level of Detail (LoD) in order to increase the exploitation of these datasets [23,24].
While several types of fully supervised Deep Neural Networks (DNNs) are continuously

Appl. Sci. 2021, 11, 8996 3 of 24

developed and improved in the analysis of 3D point clouds, fine-grained labels are always
required in the training processes. These include pointwise labels and shape class labels
for the semantic segmentation task and part-segmentation task, respectively. Thus, DNNs’
application to LoD3 buildings’ point clouds has been limited. This question has sparked
the interest of various research on this problem. Several unsupervised approaches have
emerged to tackle the scarcity of labeled data.

In this section, the state-of-the-art methods to figure out the possibility of unsupervised
DL methods applied to buildings’ point clouds is dealt with. We review these approaches
from two aspects as follows:

1. Fully supervised methods on 3D point clouds; and
2. Label-efficient unsupervised methods.

2.1. Fully Supervised Methods on 3D Point Clouds

Three-dimensional point clouds of buildings generally represent complex geomet-
ric structures, where the semantic content is not directly included. Therefore, semantic
segmentation of it is still a challenging task. In traditional data-driven approaches [25,26],
points with some notions of similarity are clustered together to map point clouds into
classes by constructing feature descriptors (e.g., verticality, planarity and elevation). In
conventional model-fitting approaches [27–29], some geometric models are sought to detect
specific objects, such as houses, roofs, trees, etc. Despite the impressive performances
from these traditional approaches, models or geometric descriptors cannot interpret the
complexity of real data. Moreover, conventional semantic segmentation approaches heavily
rely on hand-crafted features, making the generalization difficult. Thus, their efficient
application to obtain high-LoD building models still remains quite challenging.

Due to these reasons, the chance of using DNN-based fully supervised learning to
effectively and automatically extract features in an end-to-end fashion gives rise to the
application of these promising methods for semantic segmentation of buildings’ point
clouds. Based on the DNN input data format, existing point-cloud semantic segmentation
methods can be grouped into direct and indirect methods. The latter usually first parti-
tion the 3D space into regular representations such as image [30–32] or voxel [33,34] data
structures to take advantage of well-established 2D/3D DL networks for feature learning
and semantic segmentation. However, due to point clouds’ inherent nature, the process of
transferring point clouds to another intermediate representation degrades the resolution of
the measured objects, which would result in quantization error and inefficiency [35]. In
contrast, direct methods do not introduce explicit information loss [36]. More recently, the
pioneering direct method PointNet [35] was proposed. It directly operates on point clouds,
using a Multilayer Perceptron (MLP) to learn high-dimensional features for each point
independently. Subsequently, pointwise features are stacked to a global feature through a
max pooling layer. Since pointwise features are learned individually from each point in
PointNet, the local context information between points is ignored. This work was subse-
quently extended in a variety of ways to extract local information within a point cloud.
For example, Dynamic Graph Convolutional Neural Network (DGCNN) [21] improves
the performance of segmentation by considering the relations between points in the local
neighborhoods and by aggregating them into a global feature in the EdgeConv layers,
which can be plugged into existing architectures. Since current state-of-the-art methods
have shown that aggregating local and global information may increase the network’s
capabilities of capturing context information, our network will exploit the feature extraction
power of EdgeConv layers, which directly consumes points and incorporates the local
neighbor information obtained from point clouds.

DL techniques for 3D point-cloud segmentation have been successfully applied in
recent years, while the development in the built-environment domain has just started
to be explored. A limited number of studies use DL methods to segment point clouds
of buildings. Compared to the improvement of DL methods in indoor scenes, the seg-
mentation methods of high-LoD buildings’ point clouds are still at the initial stage of

Appl. Sci. 2021, 11, 8996 4 of 24

development. Most existing studies focus on LoD1 [15,24,29,37,38], LoD2 [39,40] or one
category of building elements [41].

Moreover, as was pointed out in the introduction of this paper, only the ArCH
dataset [17] with pointwise annotations is publicly available. The process to acquire
pointwise point clouds is also very time-consuming. For instance, the period required for
manually labeling the ArCH dataset is one month [3]. The lack of semantic segmentation
labels indicates the challenge for human beings to provide pointwise labels. Thus, there is
also just a handful of DL-based research in higher-LoD building point-cloud (i.e., LoD3
and superior) segmentation tasks. Pierdicca [5] proposed to employ DGCNNs [21] for
the point-cloud segmentation task applied on the ArCH dataset. By adding radiometric
(HSV value) and normal features in DGCNN-Mod [5], they further improved the segmen-
tation performance. Their work showed the potential offered by DL techniques for the
segmentation task. By fusing spectral information and hand-crafted geometric features,
DGCNN-Mod+3Dfeat [3] combines the positive aspects and advantages of machine learning
and DL for semantic segmentation of point clouds in the field of cultural heritage. But 3D
features in DGCNN-Mod+3Dfeat are hand-designed and extracted by machine-learning
methods, and thus this solution is excluded from our consideration.

Despite the intensive efforts to improve the segmentation performance of buildings’
point clouds, (1) most existing algorithms are insufficient to model details (e.g., they can
only be applied to the entire building or low LoDs) and are associated with a heavy work-
load, which meets current requirements in the development phase; (2) existing methods
mostly use both 3D coordinates and hand-crafted features (i.e., geometric features) as their
input to enhance performance; and (3) the aforementioned DL-based approaches for 3D
point-cloud analysis are strongly supervised and rely on massive amounts of labeled 3D
building data.

2.2. Label-Efficient Methods

Unsupervised learning does not require any human-annotated labels. Due to the scarcity
of fine-labeled point-cloud datasets, unsupervised-learning methods have become popular
alternatives to fully supervised learning to exploit the inherent and underlying information
in large unlabeled data, which may dramatically decrease the need for labeled training
data. Unsupervised Autoencoder (AE) methods on 3D point-cloud data is a relatively new
research topic. Therefore, our review of the label-efficient unsupervised approach is not
limited to the built-environment domain in this section.

2.2.1. Label-Efficient Methods for Images

Recently, some unsupervised methods have been proposed and achieved satisfac-
tory performances in 2D CV tasks. There are many classes of unsupervised methods
for learning representations: Generative Adversarial Networks (GANs) [42–45], Autoen-
coders (AEs) [44,46] and auto-regressive models [47]. Being much harder to annotate, 3D
point-cloud analyses are potentially the biggest beneficiaries of unsupervised learning.
Our work builds upon the AE, which is trained to learn a compressed representation by
faithfully reconstructing original input data (i.e., image, point cloud). However, due to
the irregular and unordered nature of point clouds, it is non-trivial to directly apply such
image unsupervised methods to this type of data.

2.2.2. Label-Efficient Methods for Point Clouds

Following the impressive results that have been achieved with unsupervised learning
in the image analysis, previous efforts to perform unsupervised learning on point clouds
have been adaptations of these methods. Several unsupervised methods (e.g., GAN, AE)
applied to 3D point clouds are reported in the literature, partly due to the common criticism
that a huge amount of labeled data is required for training in a DNN. We provide a quick
overview of both types of methods, GANs and AEs.

Appl. Sci. 2021, 11, 8996 5 of 24

Generative Adversarial Networks (GANs). Typically, GANs consist of a generator
that learns from a latent space to a data distribution of interest. A discriminator distin-
guishes generated point clouds produced by the generator from the true data distribution.
For example, Achlioptas [48] investigated and compared GAN-based methods for generat-
ing point clouds in raw-data space and latent space of a pre-trained AE. Li [49] proposed
a “sandwiching” reconstruction method that combines a modification of Wasserstein
GAN [50] loss with Earth Mover’s Distance (EMD). AtlasNet [51] introduces a shape
generation framework that represents a 3D shape as a collection of parametric surface
elements by locally mapping a set of squares to the target surface of a 3D shape. Although
impressive results were achieved, GAN-based methods focus more on generative models
of point clouds, which aim to generate point clouds or complete shapes of point clouds.

Autoencoders (AEs). AE is one of the key ingredients in current state-of-the-art
unsupervised visual representation learning. An AE is trained to learn a compressed
representation by faithfully reconstructing an input original image/point cloud [52]. In
FoldingNet [22], the authors adopted the idea of the folding-based decoder to deform a
canonical 2D grid onto the underlying 3D object surface of a point cloud, in which the
learned representation achieves high linear Support Vector Machines (SVM) classifica-
tion accuracy on the ModelNet40 dataset. Built on the fully supervised PPFNet [53] and
FoldingNet, in PPF-FoldNet [54], the authors improved their earlier solution by involving
more features in their network in an unsupervised fashion. PPF-FoldNet achieves better
reconstruction performance at rotations and different point densities, but their research
focuses on reconstruction rather than downstream tasks. 3D-PointCapsNet [55] employed
a dynamic routing scheme to extract discriminative representation while considering the
geometric relations between parts, and the extracted representation can lead to improve-
ments in point-cloud classification and part-segmentation tasks. BAE-NET [56] proposed a
branched AE network that trains with a collection of objects from the ShapeNetPart dataset
trained with a shape co-segmentation task.

Existing methods achieve state-of-the-art performances in their downstream tasks (i.e.,
classification, part-segmentation and co-segmentation). However, most of these existing
unsupervised AE methods for 3D point clouds are: (1) trained and tested using simple
3D objects; and (2) designed for low-level tasks such as reconstruction, denoising and
completion that are not designed for high-level downstream semantic segmentation.

Overall, learning to automatically generate powerful and robust representations from
inhomogeneous point clouds, especially architectural point clouds with complex geometric
structures, still poses a challenge. To address these mentioned issues, in this paper, we
propose a novel label-efficient DL approach to benefit from the ability of AEs to learn
features from unlabeled data, thereby reducing the need of pointwise labels of building
point clouds. Moreover, our method improves the encoding capability of FoldingNet [22]
by incorporating the local-region information and global-shape information using the Edge-
Conv layers, allowing unsupervised-learning methods to perform high-level downstream
semantic segmentation tasks on point clouds of complex buildings.

3. Method

In FoldingNet [22], an AE is utilized to reconstruct input point clouds, whilst dis-
criminative representations are learned without any labeled data. Inspired by this, our
label-efficient method aims to: (1) extract features without any labeled data by constructing
an AE network; and (2) with just 10 times fewer (3 scenes) labeled data of fully supervised
methods, we train a segmentation network for the high-LoD (LoD3) buildings’ point-cloud
semantic segmentation task. Specifically, we propose an AE network that can learn pow-
erful representations by a dynamically updated graph-based encoder and folding-based
decoder without any labels, thereby reducing our need for large amounts of fine labels in
the building segmentation task.

Instead of the encoder in FoldingNet, we employed the EdgeConv layers in
DGCNN [21] to exploit local geometric structures and generate discriminative represen-

Appl. Sci. 2021, 11, 8996 6 of 24

tations. Then, we used the learned representations as input to our downstream task. In
general, the proposed network architecture consists of three components: a DGCNN-based
encoder, a folding-based decoder, and a segmentation network. The input of the encoder is
given by the N coordinates (x, y, z) of buildings’ points, and outputs are discriminative
features, which are also the input of both decoder and the segmentation network. The out-
comes are a matrix of size (m, 3) representing the reconstructed point cloud and per-point
classification scores (N, n_classes) for decoder and segmentation network, respectively,
where m represents the number of points in the reconstructed point cloud and n_classes
denotes the number of classes in the point cloud. The architecture of our AE is illustrated in
Figure 1, and the illustration of the proposed segmentation network is shown in Figure 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 25

3. Method
In FoldingNet [22], an AE is utilized to reconstruct input point clouds, whilst dis-

criminative representations are learned without any labeled data. Inspired by this, our
label-efficient method aims to: (1) extract features without any labeled data by construct-
ing an AE network; and (2) with just 10 times fewer (3 scenes) labeled data of fully super-
vised methods, we train a segmentation network for the high-LoD (LoD3) buildings’
point-cloud semantic segmentation task. Specifically, we propose an AE network that can
learn powerful representations by a dynamically updated graph-based encoder and fold-
ing-based decoder without any labels, thereby reducing our need for large amounts of
fine labels in the building segmentation task.

Instead of the encoder in FoldingNet, we employed the EdgeConv layers in DGCNN
[21] to exploit local geometric structures and generate discriminative representations.
Then, we used the learned representations as input to our downstream task. In general,
the proposed network architecture consists of three components: a DGCNN-based en-
coder, a folding-based decoder, and a segmentation network. The input of the encoder is
given by the N coordinates (𝑥, 𝑦, 𝑧) of buildings’ points, and outputs are discriminative
features, which are also the input of both decoder and the segmentation network. The
outcomes are a matrix of size (𝑚, 3) representing the reconstructed point cloud and per-
point classification scores (𝑁, 𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠) for decoder and segmentation network, respec-
tively, where m represents the number of points in the reconstructed point cloud and
n_classes denotes the number of classes in the point cloud. The architecture of our AE is
illustrated in Figure 1, and the illustration of the proposed segmentation network is shown
in Figure 2.

Figure 1. The architecture of our 3D Autoencoder (AE) branch, consisting of a DGCNN (Dynamic Graph Convolutional
Neural Network)-based encoder module (top) and a folding-based decoder module (bottom).

Figure 1. The architecture of our 3D Autoencoder (AE) branch, consisting of a DGCNN (Dynamic Graph Convolutional
Neural Network)-based encoder module (top) and a folding-based decoder module (bottom).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 25

Figure 2. The architecture of semantic segmentation step of our label-efficient Deep Learning (DL) method.

3.1. DGCNN-Based Encoder
To capture the context information from discrete point sets, it is essential to extract

the correlation of points inside the local neighborhood. Both encoders of FoldingNet and
DGCNN use graph-based layers to extract the local geometric information in each point’s
neighborhood and a max pooling layer to aggregate information. The local feature of Fold-
ingNet at i-th vertex is computed as follows: x′ = max:(,)∈ ℎ 𝑥 −𝑥 (1)

In the edge function ℎ 𝑥 −𝑥 , 𝑥 is the central point belonging to point set 𝑋 ={𝑥 , 𝑥 , ⋯ , 𝑥 } ⊆ ℛ, 𝑥 is the local neighbor around the central point 𝑥 , and ℎ is imple-
mented by a fully connected multi-perceptron layer, which includes learnable parameters.
FoldingNet obtains the local information by encoding 𝑥 −𝑥 edge features. Then the
learned local information is aggregated by a local max pooling operation on the con-
structed graphs 𝐺 = (𝑉, 𝐸) , where 𝑉 = {1, 2, ⋯ , 𝑁} and 𝐸 ⊆ |V| × |V| are the vertices
and the edges, respectively, and 𝑁 is the number of vertices.

However, FoldingNet ignores the capture of the global-shape information. On the
other hand, the operation on the constructed graph 𝐺 of DGCNN is the EdgeConv oper-
ation, which may extract both local geometric and global-shape information from the con-
structed graph. Firstly, the EdgeConv layer computes an edge feature set of size k for each
input point cloud through an asymmetric edge function (Equation (2)): e = ℎ 𝑥 , 𝑥 −𝑥 (2)

In this edge function, EdgeConv captures the global shape by encoding the coordinates of 𝑥 and then obtains the local information by encoding 𝑥 −𝑥 . The output feature is aggre-
gated by edge features from each connected vertex and itself in the constructed graph: 𝑥′ = 𝑚𝑎𝑥:(,)∈ ℎ 𝑥 , 𝑥 −𝑥 (3)

Thus, EdgeConv can explicitly combine the global-shape structure information with local
neighborhoods’ information.

Furthermore, in FoldingNet, the graph is constructed by computing pairwise dis-
tances using initial input point coordinates. Hence their graph 𝐺 is fixed. In contrast, we
calculate the pairwise distance in the feature space at each layer and choose the nearest 𝑘
points per each central point, and then we dynamically construct 𝐺 = (𝑉 , 𝐸) at layer l.
Meanwhile, the receptive field becomes larger while such dynamic graph updates in each
EdgeConv layer. The local information around central points and global information in
different receptive fields are aggregated and stacked in the last layer before the max pool-
ing layer.

Figure 2. The architecture of semantic segmentation step of our label-efficient Deep Learning (DL) method.

3.1. DGCNN-Based Encoder

To capture the context information from discrete point sets, it is essential to extract
the correlation of points inside the local neighborhood. Both encoders of FoldingNet
and DGCNN use graph-based layers to extract the local geometric information in each
point’s neighborhood and a max pooling layer to aggregate information. The local feature of
FoldingNet at i-th vertex is computed as follows:

x′ i = max
j:(i,j)∈E

hΘ
(

xj − xi
)

(1)

Appl. Sci. 2021, 11, 8996 7 of 24

In the edge function hΘ
(

xj − xi
)
, xi is the central point belonging to point set

X = {x1, x2, · · · , xn} ⊆ R, xj is the local neighbor around the central point xi, and
hΘ is implemented by a fully connected multi-perceptron layer, which includes learnable
parameters. FoldingNet obtains the local information by encoding xj − xi edge features.
Then the learned local information is aggregated by a local max pooling operation on the
constructed graphs G = (V, E), where V = {1, 2, · · · , N} and E ⊆ |V| × |V| are the
vertices and the edges, respectively, and N is the number of vertices.

However, FoldingNet ignores the capture of the global-shape information. On the
other hand, the operation on the constructed graph G of DGCNN is the EdgeConv op-
eration, which may extract both local geometric and global-shape information from the
constructed graph. Firstly, the EdgeConv layer computes an edge feature set of size k for
each input point cloud through an asymmetric edge function (Equation (2)):

eij = hΘ
(
xi, xj − xi

)
(2)

In this edge function, EdgeConv captures the global shape by encoding the coordinates
of xi and then obtains the local information by encoding xj − xi. The output feature is
aggregated by edge features from each connected vertex and itself in the constructed graph:

x′ i = max
j:(i,j)∈E

hΘ
(
xi, xj − xi

)
(3)

Thus, EdgeConv can explicitly combine the global-shape structure information with local
neighborhoods’ information.

Furthermore, in FoldingNet, the graph is constructed by computing pairwise distances
using initial input point coordinates. Hence their graph G is fixed. In contrast, we calculate
the pairwise distance in the feature space at each layer and choose the nearest k points per
each central point, and then we dynamically construct Gl =

(
V l , El

)
at layer l. Meanwhile,

the receptive field becomes larger while such dynamic graph updates in each EdgeConv
layer. The local information around central points and global information in different
receptive fields are aggregated and stacked in the last layer before the max pooling layer.

The procedure for producing feature representations in DGCNN-based encoder is
displayed in Figure 1. We remove the encoder of FoldingNet and replace it with three
EdgeConv layers in the architecture of DGCNN. The outputs of the three EdgeConv lay-
ers are concatenated and then passed to a feature-wise max pooling layer to produce a
Cout-dimensional “codeword” θ. The outcomes of three EdgeConv layers and the “code-
word” θ are stored in the pre-trained AE model, which will be the basis for our
segmentation network.

3.2. Folding-Based Decoder

We use the “codeword” output from the DGCNN-based encoder and a 2D grid
as input to our decoder. A folding-based decoder is then utilized to reconstruct input
“codeword” with a 2D grid to 3D point clouds by two successive folding operations.

The folding-based decoder in our AE network is adopted from FoldingNet’s decoder
that contains two successive folding operations. The first one folds the 2D manifold
into 3D space, and the second one operates inside the 3D space directly. As shown
in Figure 1, we modified the decoder of FoldingNet to make it usable with different
sizes of input “codeword” θ (512-dimensional and 1024-dimensional) instead of a fixed-
size 512-dimensional representation in FoldingNet. Before feeding the “codeword” into
the folding-based decoder, we replicate the “codeword” θ m times and concatenate the
replicated “codeword” (m, Cout) matrix with an (m, 2) matrix, which contains the m grid
points (U) on a square centered at the origin. As each row of U is a 2D grid point, we define
the i-th row of U as ui. Thus, the i-th row of the input matrix to the folding operation is
[ui, C] after above concatenation, where C = Cout + 2. The following two folding operations
essentially form a universal 2D-to-3D mapping by two successive MLPs. The MLPs are

Appl. Sci. 2021, 11, 8996 8 of 24

applied in parallel to each row of the input matrix. We denote the i-th row of the output
matrix as f ([ui, C]), where f is approximated by the MLPs, which can be tuned by the input
“codeword” and learn a “force” to reconstruct the input into arbitrary point-cloud surfaces.
During the training process, as shown in Equation (4), we use Chamfer distance [57] as our
reconstruction loss Lrec, which measures the similarity of the reconstructed point cloud
and the input point cloud:

Lrec(x, y) = ∑
xi∈x

min
yiεy
‖xi − yi‖2

2 + ∑
yi∈y

min
xiεx
‖xi − yi‖2

2 (4)

With the graph-based encoder and folding-based decoder, we learn a set of powerful
and separable features and continue to the downstream semantic segmentation task (see
next Section 3.3).

3.3. Semantic Segmentation Network Architecture

We create a semantic segmentation network to semantically segment buildings’ point
clouds. The goal here is to assign a semantic label to each of the points given an input point
cloud. Hence, we treat this semantic segmentation task as a per-point classification task.
The output of the pre-trained encoder is a Cout-dimensional representation (“codeword”)
and three stacked edge features, which are learned from non-labeled buildings’ point
clouds. We replicate the codeword N times and concatenate it with the outputs of three
EdgeConv layers in the pre-trained AE. A standard 3-layer shared MLP with a cross-entropy
loss is then employed as our semantic segmentation classifier after the above concatenation.
Considering the features obtained by the proposed AE are already distinctive, we chose
this simplest MLP for the segmentation of the buildings’ point clouds. This semantic
segmentation network is trained independently from the proposed AE. The procedure
for acquiring per-point classification scores (N, n_classes) in the semantic segmentation
network is illustrated in Figure 2.

3.4. Evaluation Matrix

To evaluate the performance of our model, the benchmark dataset is evaluated using
the Overall Accuracy (OA) and the mean Intersection over Union (mIoU) score. OA is the
percentage of points that were correctly classified and total number of points, ignoring
incorrect classifications. In the semantics segmentation task, Intersection over Union (IoU) is
the ratio of the intersection of the pointwise classification results with the ground truth to
their union, and mIoU is the class-averaged IoU. Specifically, IoU (Equation (5)) and mIoU
(Equation (6)) can be computed as:

IoU =
TPc

TPc + FPc + FNc
(5)

mIoU =
1
C

c

∑
c=1

TPc

TPc + FPc + FNc
(6)

where TPc is the number of true positives for class c, FPc is the number of false positives for
class c, FNc is the number of false negatives belonging to that class, and C is the number of
classes. Meanwhile, mIoU computes the class-averaged ratio of true positives to the sum
of false positives (false alarms), false negatives (misses), and true positives.

As we can see, IoU and mIoU measures are more informative compared to OA
because they take false alarms (incorrect classified points in point clouds) into consideration,
whereas OA does not. Therefore, we use both OA and mIoU as evaluation criteria for
segmentation results.

Appl. Sci. 2021, 11, 8996 9 of 24

4. Experiment
4.1. Dataset

We qualitatively and quantitatively evaluated our method on the Architectural Cul-
tural Heritage (ArCH) dataset [17]. In the state of the art, the most used datasets to train
unsupervised learning are: ModelNet40 [13] with more than 100 k CAD models of ob-
jects from 40 different categories (e.g., table, chair, lamp, etc.) for classification tasks and
ShapeNetPart [58] dataset with 31,693 meshes classified into 16 common object classes
(e.g., plane, table, chair, etc.); each object has two to five parts for part-segmentation tasks.
However, none of them can be used for the segmentation of buildings’ point-cloud. Other
outdoor datasets used in this task, such as Semantic3D [59] and Oakland [60], feature LoD1
or LoD2 for the architectural elements. To date, there are no published datasets focusing
on point clouds of urban buildings with a sufficient level of details, such as LoD3.

A building in LoD3 has detailed surface structures such as walls, roof and openings
(doors and windows). The components of architectural heritage including detailed roof,
façade structures, openings and some specific structures such as vaults, columns and front
porches are similar to but more involved than in standard modern buildings. Networks
trained on these kinds of datasets are easy to generalize to other building scenes. Therefore,
we chose an immovable CH asset dataset with fine per-point labels, named ArCH dataset,
to evaluate our method. For data acquisition techniques, it is acquired by static terrestrial
laser scanners, namely a FARO Focus 3D X 120 and 130, and a Riegl VZ-400, and by
applying structure-from-motion photogrammetry [61,62] based on images collected by
Nikon D880E, D3100 and D3X cameras, and a DJI Phantom UAV platform equipped with a
SONY ILCE 5100L camera.

The ArCH dataset consists of 17 indoor and outdoor labeled scenes, 15 for training
and 2 for testing purposes, respectively. It includes different types of scenes such as rooms,
churches, chapels, cloisters, pavilions, squares and porticoes. Many of these scenes are part
of (or candidate to be listed in) the UNESCO World Heritage List (WHL- whc.unesco.org/
en/list. Accessed on 24 September 2021). These scenes represent various historical periods
and architectural styles of historical built heritage. As a consequence, the use of this kind
of dataset as training data may improve the generalization ability of our network among
various types of buildings.

Our primary motivation to study unsupervised classification problems was that the
number of training data is limited. To test the performance when the number of unlabeled
and labeled data is small, as shown in Figure 3, we select three small outdoor scenes
(namely, “SMV_1”, “SMV_24”, “SMV_28”) from the 15 labeled scenes as the training
data in both unsupervised AE training and supervised segmentation training stages. The
training data in our experiment are only 10% of total number of points with respect to the
standard of the state of the art [5], where all scenes are used as training data. Then we
follow the settings adopted by [5] that removed the “others” category. Since validation data
is used in deep learning to tune parameters, to choose features, and so on, the availability
of validation data has no effect on our ability to evaluate the model’s performance. As a
result, unlike [5], where “Scene A” and “Scene B” are used as validation and test sets, we
use two unseen scenes (“A_SMG_portico” as “Scene_A” and “B_SMV_chapel_27to35” as
“Scene_B”) as our test data (see Figure 3). It is worth mentioning that our training data
include only the type of the outdoor chapel, but our test data include both indoor and
outdoor and different types of architectural elements (“portico” and “chapel”), which is
more challenging than the supervised methods including different types of scenes in their
training data.

whc.unesco.org/en/list
whc.unesco.org/en/list

Appl. Sci. 2021, 11, 8996 10 of 24

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 25

Our primary motivation to study unsupervised classification problems was that the
number of training data is limited. To test the performance when the number of unlabeled
and labeled data is small, as shown in Figure 3, we select three small outdoor scenes
(namely, “SMV_1”, “SMV_24”, “SMV_28”) from the 15 labeled scenes as the training data
in both unsupervised AE training and supervised segmentation training stages. The train-
ing data in our experiment are only 10% of total number of points with respect to the
standard of the state of the art [5], where all scenes are used as training data. Then we
follow the settings adopted by [5] that removed the “others” category. Since validation
data is used in deep learning to tune parameters, to choose features, and so on, the avail-
ability of validation data has no effect on our ability to evaluate the model’s performance.
As a result, unlike [5], where “Scene A” and “Scene B” are used as validation and test sets,
we use two unseen scenes (“A_SMG_portico” as “Scene_A” and “B_SMV_chapel_27to35”
as “Scene_B”) as our test data (see Figure 3). It is worth mentioning that our training data
include only the type of the outdoor chapel, but our test data include both indoor and
outdoor and different types of architectural elements (“portico” and “chapel”), which is
more challenging than the supervised methods including different types of scenes in their
training data.

(a) (b) (c)

(d) (e) (f)

Figure 3. The network takes the three scenes in Architectural Cultural Heritage (ArCH) dataset as training data, in the top
row, from (a) to (c): “SMV_1”, “SMV_24” and “SMV_28”. In the bottom row, from (d) to (f) are: “Scene_A”, “Scene_B
south side” and “Scene_B indoor part”, which are employed as our test data. Copyright © 2021 ArCH dataset.

4.2. Implementation Details
We choose 1 × 1 square-meter area as the block size for splitting each building scene

into blocks along the horizontal direction to train. Prior to training, the input point clouds
are aligned to a common reference frame. In addition, for training convenience, points in
each block are sampled into a uniform number of 8192 points. During training, we ran-
domly sampled n (2048 or 4096) points in each block on the fly. To train our AE network,
we employed ADAM [63] as an optimizer with an initial learning rate of 0.001, batch size
16 and weight decay 10−6 with 250 epochs. The setting of hidden layers in our encoder is

Figure 3. The network takes the three scenes in Architectural Cultural Heritage (ArCH) dataset as training data, in the top
row, from (a–c): “SMV_1”, “SMV_24” and “SMV_28”. In the bottom row, from (d–f) are: “Scene_A”, “Scene_B south side”
and “Scene_B indoor part”, which are employed as our test data. Copyright © 2021 ArCH dataset.

4.2. Implementation Details

We choose 1× 1 square-meter area as the block size for splitting each building scene
into blocks along the horizontal direction to train. Prior to training, the input point clouds
are aligned to a common reference frame. In addition, for training convenience, points
in each block are sampled into a uniform number of 8192 points. During training, we
randomly sampled n (2048 or 4096) points in each block on the fly. To train our AE network,
we employed ADAM [63] as an optimizer with an initial learning rate of 0.001, batch size
16 and weight decay 10−6 with 250 epochs. The setting of hidden layers in our encoder
is the same as the one of the DGCNN (github.com/WangYueFt/dgcnn. Accessed on
24 September 2021), but we removed those layers after the max pooling layer. The architec-
ture of the encoder incorporates the following steps:

1. Three EdgeConv layers to extract local and global geometric features. The EdgeConv
layers take a tensor of shape n × f as input, where f is input features of point cloud,
then acquire edge features for each point by applying an MLP with the number of
layer neurons defined as {a1, a2, . . . , an}. The number of nearest neighbors k is set as
20 at every EdgeConv layer;

2. Features generated in three EdgeConv layers are concatenated to aggregate features
in different receptive fields; and

3. Lastly, the dimension of the MLP layer before the last max pooling layer is set as Cout
(512 or 1024) to globally aggregate a 1D global descriptor “codeword” θ.

In our graph-based decoder, we used two consecutive three-layer MLPs to warp a fixed
2D grid into point-cloud surfaces as FoldingNet (ai4ce.github.io/publication/yang-2018-
foldingnet. Accessed 24 Sepember 2021). Before feeding the “codeword” into the folding-
based decoder, we replicated the “codeword” m times and concatenated the replicated
(m, Cout) matrix with a (m, 2) matrix. According to the input point-cloud size (2048 or
4096), m is set as 2025 or 4096. Then the size of two three-layer shared MLPs is (Cout + 2,

github.com/WangYueFt/dgcnn

Appl. Sci. 2021, 11, 8996 11 of 24

Cout, 3) and (Cout + 3, Cout, 3), implemented by six 1D convolutional layers, each followed
by a ReLU layer. The output is the reconstructed point cloud with size (m, 3).

Similarly, in the semantic segmentation network, we also used ADAM as our optimizer
(learning rate 0.01, batch size 8 or 16, 250 training epochs). According to the dimension
of Cout, our shared MLPs are (Cout + 64 + 64 + 64, 512, 256, 128, n_classes) with layer
output size (512, 256, 128, n_classes) on each point. The evaluation matrix of Overall Point
Accuracy (OA) and mean Intersection over Union (mIoU) are calculated on the ArCH dataset.
The method was implemented using PyTorch. All experiments were conducted on an
NVIDIA Tesla T4 GPU.

4.3. Results and Analysis

If the features obtained by the proposed AE are already distinctive, the required
number of labeled data in the semantic segmentation network training process should
be small. In this section, to demonstrate this intuitive statement, we report our exper-
iment’s results for the ArCH dataset. We evaluated our model on two unseen scenes
(“Scene_A” and “Scene_B”) for testing. In Table 1, the overall performances are reported
and compared with respect to the state-of-the-art (SOTA) methods, i.e., PointNet [35], Point-
Net++ [64], PCNN [65] and DGCNN [21], which are trained with 10 scenes and retrieved
from Pierdicca [5]. For a fair comparison, we maintain consistency of input features for all
methods (including only x, y, z coordinates such as most SOTA methods). The DGCNN
was improved in [5] by adding additional input features, which we will compare and
analyze in Section 4.4.

Table 1. Our results vs. prior work on ArCH dataset. OA and mIoU denote Overall Accuracy and
mean Intersection over Union, respectively. Our method performs best on mIoU with only 3 scenes
(about 10% of total number of points in 10 scenes).

Method Training Scenes Test Scene mIoU OA

PointNet [35] 10 scenes Scene_B 0.114 0.35
PointNet++ [64] 10 scenes Scene_B 0.121 0.528

PCNN [65] 10 scenes Scene_B 0.26 0.629
DGCNN [21] 10 scenes Scene B 0.29 0.74
DGCNN [21] 15 scenes Scene A 0.376 0.784
DGCNN [21] 15 scenes Scene B 0.353 0.752
DGCNN [21] 3 scenes Scene A 0.243 0.499
DGCNN [21] 3 scenes Scene B 0.163 0.362

Ours 3 scenes Scene_A 0.463 0.773
Ours 3 scenes Scene_B 0.408 0.666

Note: The OA and mIoU of SOTA methods (PointNet, PointNet++, PCNN and DGCNN) that use 10 scenes
(9 for training and 1 for validation) are retrieved from Tables 5 and 6 of Pierdicca [5], respectively. Perfor-
mances of DGCNN that use 15 scenes are updated in ArCH dataset website (archdataset.polito.it/. Accessed on
24 September 2021).

Overall, with only about 10% of training data of the SOTA methods in both AE and
segmentation network training stages, our model achieves the best results for the ArCH
dataset with the same training strategy (only input x, y, z coordinates), as shown in Table 1.
In particular, the test mIoU of “Scene_A” is 0.463, which overcomes the previous SOTA
result (0.376). The mIoU of “Scene_B” is 0.408, which also outperforms the 0.353 of SOTA.
As mIoU takes the false alarms and the unbalance of different categories into consideration,
our mIoU is higher than SOTA methods, while OA is lower. Furthermore, we compared
our results for “Scene_A” and “Scene_B” with the SOTA when training on the same subset
(three scenes), as shown in Table 1. The results of “Ours” also outperform the ones from
the SOTA methods.

The results of per-class quantitative evaluations for “Scene_B” are provided in Table 2.
We can see that the proposed model performs better than other competitive methods in
many classes. In particular, we achieve considerable gains in the arch, column, wall and
vault categories. In the ArCH dataset, the vault is pasted onto the roof and difficult to

archdataset.polito.it/

Appl. Sci. 2021, 11, 8996 12 of 24

delineate geometrically, but it is apparent from Figure 4 that our model can still segment
them out.

Table 2. Our per-class IoU and class-averaged mIoU results vs. prior work on “Scene_B” of ArCH dataset. Each column
represents the IoU of the category it belongs to. Our method performs better than others in many classes with only 3 scenes
(about 10% of 10 scenes).

Method mIoU Arch Column Molding Floor Door–Window Wall Stair Vault Roof

PointNet [35] 0.114 0.000 0.000 0.001 0.294 0.000 0.411 0.000 0.337 0.094

PointNet++ [64] 0.121 0.000 0.000 0.002 0.009 0.000 0.514 0.000 0.074 0.608

PCNN [65] 0.26 0.072 0.062 0.198 0.482 0.004 0.581 0.082 0.468 0.658

DGCNN [21] 0.29 0.060 0.064 0.142 0.470 0.006 0.603 0.290 0.520 0.845

Ours 0.408 0.880 0.243 0.117 0.471 0.005 0.676 0.035 0.577 0.659

Note: The IoU of SOTA methods (PointNet, PointNet++, PCNN and DGCNN) that use 10 scenes (9 for training and 1 for validation) are
retrieved from Table 6 of Pierdicca [5], and mIoU are calculated by Equitation (6).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 25

Figure 4. Qualitative results of a part of “Scene_B” of ArCH dataset. The vault is pasted onto the
roof and difficult to delineate geometrically, but our model can still segment them out.

Figure 5. The confusion matrix for the segmentation result for the whole “Scene_A” of ArCH da-
taset. Each row represents the instances in a predicted class, and each column represents the in-
stances in an actual class. The darkness of cells is proportional to the number of points labeled with
the corresponding category.

Figure 4. Qualitative results of a part of “Scene_B” of ArCH dataset. The vault is pasted onto the
roof and difficult to delineate geometrically, but our model can still segment them out.

Figures 5 and 6 describe the confusion matrices of the segmentation results when
using nine features on “Scene_A” and “Scene_B”, respectively. Each row of the confusion
matrix represents the instances in a predicted class, while each column represents the
instances in an actual class. It is easy to see whether our model is confusing two categories
by a confusion matrix. For example, in Figure 5, the column and molding classes are
often confused with the wall, possibly due to the columns and moldings having a similar
geometrical shape/appearance to walls. Meanwhile, the door_window class is also often
confused with the wall, as the large-scale variation and their spatial distance are very close
(e.g., door_window is inside of a wall, and the size of door_window is much smaller than
a wall), which could result in the features being eliminated while training. The semantic
segmentation’s qualitative results in the case of “Scene_A” and “Scene_B” are shown in
Figures 7 and 8, respectively. Our network is able to output smooth predictions.

Appl. Sci. 2021, 11, 8996 13 of 24

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 25

Figure 4. Qualitative results of a part of “Scene_B” of ArCH dataset. The vault is pasted onto the
roof and difficult to delineate geometrically, but our model can still segment them out.

Figure 5. The confusion matrix for the segmentation result for the whole “Scene_A” of ArCH da-
taset. Each row represents the instances in a predicted class, and each column represents the in-
stances in an actual class. The darkness of cells is proportional to the number of points labeled with
the corresponding category.

Figure 5. The confusion matrix for the segmentation result for the whole “Scene_A” of ArCH dataset.
Each row represents the instances in a predicted class, and each column represents the instances
in an actual class. The darkness of cells is proportional to the number of points labeled with the
corresponding category.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 25

Figure 6. The confusion matrix for the segmentation result for the whole “Scene_B” of ArCH dataset.
Each row represents the instances in a predicted class, and each column represents the instances in
an actual class.

(a)

(b)

Figure 7. Qualitative results for semantic segmentation of “Scene_A” from ArCH dataset. The top row is the ground truth
(a), and the second row is the prediction result (b). Different colors correspond to different classes of architectural ele-
ments. Same scenes are displayed from the same camera viewpoint.

Figure 6. The confusion matrix for the segmentation result for the whole “Scene_B” of ArCH dataset.
Each row represents the instances in a predicted class, and each column represents the instances
in an actual class. The darkness of cells is proportional to the number of points labeled with the
corresponding category.

Appl. Sci. 2021, 11, 8996 14 of 24

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 25

Figure 6. The confusion matrix for the segmentation result for the whole “Scene_B” of ArCH dataset.
Each row represents the instances in a predicted class, and each column represents the instances in
an actual class.

(a)

(b)

Figure 7. Qualitative results for semantic segmentation of “Scene_A” from ArCH dataset. The top row is the ground truth
(a), and the second row is the prediction result (b). Different colors correspond to different classes of architectural ele-
ments. Same scenes are displayed from the same camera viewpoint.

Figure 7. Qualitative results for semantic segmentation of “Scene_A” from ArCH dataset. The top row is the ground truth
(a), and the second row is the prediction result (b). Different colors correspond to different classes of architectural elements.
Same scenes are displayed from the same camera viewpoint.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 25

(a) (b)

(c) (d)

Figure 8. Qualitative results for semantic segmentation of “Scene_B” from ArCH dataset. The top row is the ground truth
(a) and the prediction result (b) on the north side. The bottom row is the ground truth (c) and output semantic segmenta-
tion result (d) from another side. Different colors correspond to different classes. Scenes in the same row are displayed
from the same camera viewpoint.

4.4. Ablation Study and Analysis
The following part of this paper describes in greater detail the design choices of our

label-efficient model by a set of experiments. We also show the effects of our chosen hy-
per-parameters.

Effectiveness of DGCNN Encoder: In Table 3, we show the positive effects of our
proposed DGCNN-based encoder. In order to compare the performance of FoldingNet’s
encoder and our improved encoder on the semantic segmentation task, we set up two sets
of controlled experiments. In the first set of experiments, we used one scene as training
data, and in the second set, we used three scenes that we commonly used in this study as
training data to compare the segmentation results.

Table 3. Comparison of semantic segmentation results for “Scene_B” of ArCH dataset using differ-
ent encoders. “1 scene” (“SMV_24”) and “3 scenes” (“SMV_1”, “SMV_24”, “SMV_28”) in “Training
Scenes” denote that we used it only for one scene or three scenes in both AE and segmentation
network training stage.

Encoder Training Scene OA 1
FoldingNet 1 scene 0.425
FoldingNet 3 scenes 0.42

DGCNN-based 1 scene 0.493
DGCNN-based 3 scenes 0.561

1 Note: This controlled experiment was carried out without any data augmentation, and reconstruction loss is
modified Chamfer distance.

Figure 8. Qualitative results for semantic segmentation of “Scene_B” from ArCH dataset. The top row is the ground truth
(a) and the prediction result (b) on the north side. The bottom row is the ground truth (c) and output semantic segmentation
result (d) from another side. Different colors correspond to different classes. Scenes in the same row are displayed from the
same camera viewpoint.

Appl. Sci. 2021, 11, 8996 15 of 24

4.4. Ablation Study and Analysis

The following part of this paper describes in greater detail the design choices of our
label-efficient model by a set of experiments. We also show the effects of our chosen
hyper-parameters.

Effectiveness of DGCNN Encoder: In Table 3, we show the positive effects of our
proposed DGCNN-based encoder. In order to compare the performance of FoldingNet’s
encoder and our improved encoder on the semantic segmentation task, we set up two sets
of controlled experiments. In the first set of experiments, we used one scene as training
data, and in the second set, we used three scenes that we commonly used in this study as
training data to compare the segmentation results.

Table 3. Comparison of semantic segmentation results for “Scene_B” of ArCH dataset using different
encoders. “1 scene” (“SMV_24”) and “3 scenes” (“SMV_1”, “SMV_24”, “SMV_28”) in “Training
Scenes” denote that we used it only for one scene or three scenes in both AE and segmentation
network training stage.

Encoder Training Scene OA 1

FoldingNet 1 scene 0.425
FoldingNet 3 scenes 0.42

DGCNN-based 1 scene 0.493
DGCNN-based 3 scenes 0.561

1 Note: This controlled experiment was carried out without any data augmentation, and reconstruction loss is
modified Chamfer distance.

As shown in Table 3, compared to FoldingNet, the performance of the DGCNN-based
encoder has a 7% boost while using one scene in the training stage and a 14% improvement
while using three scenes in the training stage, testing on “Scene_B”.

Effectiveness of Data Augmentation: In Table 4, we demonstrate the positive effects
of data augmentation. Compared to excluding translation (but using random rotation and
jitter data augmentations), there is an 11% performance boost when all three augmenta-
tions are used together on “Scene_A”. In the same case, a 4% improvement is obtained
when testing on “Scene_B”. Since “Scene_B” contains both indoor and outdoor elements,
while our three training scenes contain only outdoor elements, it is more challenging to
perform semantic segmentation on “Scene_B” than on “Scene_A”, and it is also harder
to improve the performance. The following experiment was conducted with the data
augmentation strategies.

Table 4. Ablation analysis of using or not data augmentation. Semantic segmentation results for
the “Scene_A” and “Scene_B” of ArCH dataset. The names “wo_translation” and “w_translation”
denote without using translation and using translation in the training process.

Data Augment OA_Scene_A OA_Scene_B

wo_translation 0.631 0.649
w_translation 0.747 0.681

Effectiveness of Reconstruction Loss: Table 5 demonstrates the positive effects of
using original Chamfer Distance (CD) loss [57] as our reconstruction loss. Compared
to using modified CD loss in FoldingNet [22], our performance on “Scene_A” of the
ArCH dataset has a 6% boost while using a 512-dimensional codeword in the AE training
stage and a 1% improvement while using a 1024-dimensional codeword and original CD
loss in the AE training stage. The following experiment utilized the original CD loss as
reconstruction loss.

Appl. Sci. 2021, 11, 8996 16 of 24

Table 5. Ablation analysis of using various reconstruction losses, tested on the “Scene_A” of ArCH
dataset in different settings. Acronyms “CD” and “CD_M” denote that we used Chamfer distance or
modified Chamfer distance as our reconstruction loss in our training process. “Codeword_dims”
denotes the dimension of the codeword. “Seg_n_points” represents the input point size in the seg-
mentation network training phase. “AE_n_points” denotes input point size in the AE training stage.

Reconstruction_Loss Codeword_Dims AE_n_Points Seg_n_Points 1 OA_Scene_A

CD 512 2048 4096 0.773
CD_M 512 2048 4096 0.71

CD 1024 2048 2048 0.722
CD_M 1024 2048 2048 0.71

1 Note: The reason why we chose to set the different “Seg_n_points” in the second controlled experiment (4096 in
the first controlled experiment and 2048 in the second controlled experiment) is that if “Codeword_dims” is set to
1024 and 4096 points used in the segmentation network training stage, the AE training time would take too long,
and the improvement of performance would not be significant or even decrease.

Comparison with Different Dimensions of Codeword: We used a 512-dimensional
codeword and a 1024-dimensional codeword as controlled experiments to compare the
segmentation result of buildings’ point clouds. In the AE training phase, the input point-
cloud size was fixed at 2048, and we set up two control groups to compare the segmentation
results for different codeword dimensions:

1. The input point size was 2048 in the segmentation training stage; and
2. The input point size was 4096 in the segmentation training stage.

The semantic segmentation result of “Scene_A” is shown in Table 6. The model
performs better when the dimension of the codeword is 512 than when the dimension
of the codeword is 1024, regardless of whether the input point size is 2048 or 4096 in the
semantic segmentation network.

Table 6. Ablation analysis of the varying codeword dimensions (512 and 1024) for codewords learned
from AE. “Codeword_dims” was set as 512-dimensional codeword and 1024-dimensional codeword,
respectively. Input point size in the AE training stage was fixed at 2048.

Codeword_Dims Seg_n_Points OA_Scene_A

512 2048 0.747
1024 2048 0.722
512 4096 0.773

1024 4096 0.694

Comparison with Different Input Point Size in AE and Segmentation Network: To
optimize the hyper-parameters, we further investigated the effect of the different input
point-cloud size (number of sampled points in each block) on the semantic segmentation
results of the 3D buildings’ point cloud. For this purpose, we set up four sets of experiments,
conducted in codeword dimensions at 512 and 1024, respectively:

1. Trained on 2048 points with (x, y, z) coordinates when training the AE and segmenta-
tion network;

2. Trained on 2048 points with (x, y, z) coordinates when training the AE, and segmenta-
tion network training with 4096 points;

3. Trained on 4096 points with (x, y, z) coordinates when training the AE, and segmenta-
tion network training with 2048 points; and

4. Trained on 4096 points with (x, y, z) coordinates when training the AE and segmenta-
tion network.

Table 7 shows the effect on the segmentation result of “Scene_A” with different input
point size (2048 or 4096) in the AE and segmentation network training stages. This table is
quite revealing in several ways:

Appl. Sci. 2021, 11, 8996 17 of 24

• Comparing rows 1 and 5, rows 2 and 6, rows 3 and 7, and rows 4 and 8, we found that
whether 2048 or 4096 points are used as input in the segmentation network with the
codeword dimension 512 or 1024, using 2048 points as input in the AE performs much
better than if 4096 points are used;

• When analyzing the effect of the input point size in the segmentation network, differ-
ent results are found: when the dimension of the codeword is 1024, point-cloud size
of 2048 in the segmentation network provides better results than 4096; however, when
the dimension of the codeword is 512, the segmentation network with a point-cloud
size of 4096 outperforms or draws the case of the point cloud with 2048 points; and

• The best overall accuracy (0.773) was achieved when the input point-cloud size was
2048 and 4096 in the AE and segmentation steps, respectively, and was 2.6% better
than the second performing network, which had a point-cloud size of 2048 in both
steps. However, considering that the training time of the network will be much longer
when the input point-cloud size is 4096, in this paper, the experiments were mostly
based on input point clouds of size 2048 in both steps.

Table 7. Ablation analysis of the varying number of input point size in the AE training stage and
segmentation network training stage.

Seg_n_Points AE_n_Points Codeword_Dims OA_Scene_A

2048 2048 512 0.747
4096 2048 512 0.773
2048 2048 1024 0.722
4096 2048 1024 0.694
2048 4096 512 0.497
4096 4096 512 0.494
2048 4096 1024 0.520
4096 4096 1024 0.502

Comparison with Different Number of Input Point Features in AE and Segmenta-
tion Network: We demonstrate the effects of involving more features of input in our model.
The codeword dimensions for all four experiments were taken as 512. Input point size was
2048 both in the AE training stage and the segmentation network training stage. Results
are described in Table 8.

1. The input point feature only contains coordinates (x, y, z);
2. The input point feature contains coordinates and radiometric information

(x, y, z, r, g, b);
3. The input point size contains coordinates, radiometric information and geometric

information (x, y, z, r, g, b, normal); and
4. The input point size contains coordinates, normalized coordinates’ radiometric in-

formation and geometric information (x, y, z, x′, y′, z′, h, s, v, normal), where the
normalized coordinate is following the setting in DGCNN_Mod [5].

From the data in Table 8, it is apparent that increasing the number of features per
point is beneficial for training a good network in most cases. For example, by adding
color features, our performance on “Scene_B” slightly goes up, and when adding color and
normal features at each point, performance is optimal on both test scenes (0.513 and 0.464 of
mIoU on “Scene_A” and “Scene_B”, respectively). It is worth noting that adding geometric
information (normal) results has a more significant improvement than adding radiometric
information (RGB values). However, the performance of our model will decrease rather
than increase when involving too many input features (12 features per point). This is
probably due to the fact that our training dataset is very small, and too many features
will result in over-fitting our training process. Compared to the fully supervised DGCNN-
Mod [5], our results are slightly lower than theirs when employing more features in our
model. Our mIoU is 0.513 on “Scene_A” compared to 0.535 obtained from DGCNN-Mod,
while the results of “Scene_B” are very close (0.464 vs. 0.470).

Appl. Sci. 2021, 11, 8996 18 of 24

Table 8. Ablation analysis of the varying number of input point-cloud features in the AE and the
segmentation network training stage evaluated on “Scene_A” and “Scene_B” of ArCH dataset.

Input Feature OA_Scene_A mIoU OA_Scene_B mIoU

DGCNN 1 0.784 0.376 0.752 0.353
DGCNN-Mod 2 0.896 0.535 0.837 0.470

Ours:
(x, y, z) 0.747 0.459 0.681 0.383

(x, y, z, r, g, b) 0.700 0.433 0.693 0.384
(x, y, z, r, g, b, normal) 0.815 0.513 0.764 0.464

(x, y, z, x′, y′, z′, h, s, v, normal) 3 0.701 0.407 0.544 0.240
1 DGCNN denotes only using coordinates and is trained with 15 scenes. 2 DGCNN-Mod denotes using all
12 features and is trained with 15 scenes. 3 x′, y′, z′ denotes normalized coordinates which following the setting
in DGCNN-Mod.

Comparison with Different Training Data Size: To evaluate the impact of the train-
ing data size (both labeled and unlabeled) we further provided more solid experiments on
four aspects:

1. To add one scene (“4_CA_church”, as shown in Figure 9) as unlabeled training data
in the AE training stage;

2. To add one scene (“4_CA_church”) as labeled training data in the segmentation
network training stage;

3. To add one scene (“4_CA_church”) both in the AE and the segmentation network
training stage; and

4. To decrease the labeled training data size whilst keeping one scene (“7_SMV_chapel_24”)
in the segmentation network training stage.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 25

2. To add one scene (“4_CA_church”) as labeled training data in the segmentation net-
work training stage;

3. To add one scene (“4_CA_church”) both in the AE and the segmentation network
training stage; and

4. To decrease the labeled training data size whilst keeping one scene
(“7_SMV_chapel_24”) in the segmentation network training stage.

Figure 9. Photo of the church represented in the “4_CA_church” scene in ArCH dataset. Copyright
© 2021 ArCH dataset.

The segmentation results of “Scene_A” are shown in Table 9. These achievements
suggest that, if we add labeled training data in the segmentation network training stage,
our performance could further improve. For instance, when we add one labeled scene in
the segmentation network training stage, our performance on the AE pre-trained network
increases by 1% and 3% on three scenes and four scenes, respectively. Furthermore, no
increase was detected when we tried to add the unlabeled training data, which infers that
training the AE from three scenes provides a good representation to learn. More im-
portantly, we can further prove that our network is label efficient. Even if the labeled data
were decreased to just one scene (4% of overall labeled data in the supervised method),
our overall accuracy still remained at 0.695.

Table 9. Ablation analysis of the varying size of training data in the AE training stage and seg-
mentation network training stage. Columns “AE_training_scene” and “Seg_training_scene” de-
note the number of scenes of ArCH dataset used in our AE and segmentation training phases,
respectively.

AE_Training_Scene Seg_Training_Scene OA_Scene_A
3_scene 1_scene 0.695
3_scene 3_scene 0.747
3_scene 4_scene 0.76
4_scene 3_scene 0.743
4_scene 4_scene 0.772

5. Discussion
As mentioned in the literature review, previous DL-based approaches for 3D point-

cloud analysis are strongly supervised and rely on a massive amount of labeled 3D build-
ing data. An initial objective of this paper was to identify if it is possible to reduce our
need for a large amount of fine labels in point clouds of the building segmentation task.
In response to the research purpose, in this study, the results indicate that nowadays it is
possible to provide good results for semantic segmentation, while 10 times fewer labeled
training data are provided. The most important relevant finding was, as reported in Table
1, that under the same training strategy, our method may achieve SOTA performance but
with only approximately 10% of training data with respect to fully supervised methods in
both AE and segmentation network training stages. An implication of this is the possibil-
ity that the proposed AE architecture may learn good representations from unlabeled

Figure 9. Photo of the church represented in the “4_CA_church” scene in ArCH dataset. Copyright ©
2021 ArCH dataset.

The segmentation results of “Scene_A” are shown in Table 9. These achievements
suggest that, if we add labeled training data in the segmentation network training stage,
our performance could further improve. For instance, when we add one labeled scene in
the segmentation network training stage, our performance on the AE pre-trained network
increases by 1% and 3% on three scenes and four scenes, respectively. Furthermore, no
increase was detected when we tried to add the unlabeled training data, which infers
that training the AE from three scenes provides a good representation to learn. More
importantly, we can further prove that our network is label efficient. Even if the labeled
data were decreased to just one scene (4% of overall labeled data in the supervised method),
our overall accuracy still remained at 0.695.

Appl. Sci. 2021, 11, 8996 19 of 24

Table 9. Ablation analysis of the varying size of training data in the AE training stage and segmenta-
tion network training stage. Columns “AE_training_scene” and “Seg_training_scene” denote the
number of scenes of ArCH dataset used in our AE and segmentation training phases, respectively.

AE_Training_Scene Seg_Training_Scene OA_Scene_A

3_scene 1_scene 0.695
3_scene 3_scene 0.747
3_scene 4_scene 0.76
4_scene 3_scene 0.743
4_scene 4_scene 0.772

5. Discussion

As mentioned in the literature review, previous DL-based approaches for 3D point-
cloud analysis are strongly supervised and rely on a massive amount of labeled 3D building
data. An initial objective of this paper was to identify if it is possible to reduce our need for
a large amount of fine labels in point clouds of the building segmentation task. In response
to the research purpose, in this study, the results indicate that nowadays it is possible to
provide good results for semantic segmentation, while 10 times fewer labeled training data
are provided. The most important relevant finding was, as reported in Table 1, that under
the same training strategy, our method may achieve SOTA performance but with only
approximately 10% of training data with respect to fully supervised methods in both AE
and segmentation network training stages. An implication of this is the possibility that the
proposed AE architecture may learn good representations from unlabeled data, and this
learned representation may be further used in downstream tasks such as semantic segmen-
tation. For more detailed analysis, we found: (1) considerable gains in the arch, column,
wall and vault categories; (2) the worst performing classes—door-window, moldings and
stairs—were also the categories with fewer labels (see Figure 10): the unbalances of the
number of labels between these categories result in the lower performance.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 25

data, and this learned representation may be further used in downstream tasks such as
semantic segmentation. For more detailed analysis, we found: (1) considerable gains in
the arch, column, wall and vault categories; (2) the worst performing classes—door-win-
dow, moldings and stairs—were also the categories with fewer labels (see Figure 10): the
unbalances of the number of labels between these categories result in the lower perfor-
mance.

Figure 10. Comparison of the number of labels in different categories in selected training scenes
from ArCH dataset, Scene_A and Scene_B.

In addition, as described in Subsection 4.4., we noticed that our results benefit from
our network design choices, such as the use of a DGCNN-based encoder, data augmenta-
tion and reconstruction loss. It is worth noting that our results demonstrate (referring to
Table 3) that the DGCNN-based encoder enables AE unsupervised learning to be ex-
ploited for downstream semantic segmentation tasks. Our improvement over the Fold-
ingNet-based encoder (14% on “Scene_B”) demonstrates, on the other hand, the effective
improvement on the AE architecture. Moreover, we further demonstrated the successful
choice of our hyper-parameters, such as various dimension size of the codeword (refer-
ring to Table 6), different input point numbers in the AE and the segmentation training
stage (referring to Table 7). We found that the representation size (dimension of the code-
word) strongly influences the representation quality. Increasing the representation size
might hurt representation usefulness in the few training data cases, which is in contrast
with the observation in relatively large datasets. From this design and hyper-parameter
choices, we achieved SOTA performances.

We further investigated the impact of the input feature number. With more features
as input, our performances are comparable to the fully supervised method (referring to
Table 8). For instance, by adding RGB and normal features at each point, the performance
was optimal on both test scenes: 0.513 and 0.464 of mIoU on “Scene_A” and “Scene_B”,
respectively. Intuitively, we believe that the segmentation performances should be better
with more features involved in the training phase. What is surprising is that our experi-
ments showed that our performances were degraded when we followed the SOTA setup
in the supervised learning approach [5], which uses 12 features (coordinates, normalized
coordinates, HSV and normal). As shown in Figure 11, our model shows over-fitting dur-
ing the training process. The training accuracy was rapidly increased in the first 20 epochs,
and the training accuracy reached more than 0.9 on epoch 40, while the test accuracy of
“Scene_B” is just 0.544. It is easy to see that the model was trained to perfectly fit training

Figure 10. Comparison of the number of labels in different categories in selected training scenes from
ArCH dataset, Scene_A and Scene_B.

In addition, as described in Section 4.4, we noticed that our results benefit from our
network design choices, such as the use of a DGCNN-based encoder, data augmentation
and reconstruction loss. It is worth noting that our results demonstrate (referring to Table 3)
that the DGCNN-based encoder enables AE unsupervised learning to be exploited for
downstream semantic segmentation tasks. Our improvement over the FoldingNet-based
encoder (14% on “Scene_B”) demonstrates, on the other hand, the effective improvement on

Appl. Sci. 2021, 11, 8996 20 of 24

the AE architecture. Moreover, we further demonstrated the successful choice of our hyper-
parameters, such as various dimension size of the codeword (referring to Table 6), different
input point numbers in the AE and the segmentation training stage (referring to Table 7).
We found that the representation size (dimension of the codeword) strongly influences
the representation quality. Increasing the representation size might hurt representation
usefulness in the few training data cases, which is in contrast with the observation in
relatively large datasets. From this design and hyper-parameter choices, we achieved
SOTA performances.

We further investigated the impact of the input feature number. With more features
as input, our performances are comparable to the fully supervised method (referring to
Table 8). For instance, by adding RGB and normal features at each point, the performance
was optimal on both test scenes: 0.513 and 0.464 of mIoU on “Scene_A” and “Scene_B”,
respectively. Intuitively, we believe that the segmentation performances should be better
with more features involved in the training phase. What is surprising is that our experi-
ments showed that our performances were degraded when we followed the SOTA setup in
the supervised learning approach [5], which uses 12 features (coordinates, normalized coor-
dinates, HSV and normal). As shown in Figure 11, our model shows over-fitting during the
training process. The training accuracy was rapidly increased in the first 20 epochs, and the
training accuracy reached more than 0.9 on epoch 40, while the test accuracy of “Scene_B”
is just 0.544. It is easy to see that the model was trained to perfectly fit training data rather
than unseen scenes, which is an obvious signal of over-fitting. This inconsistency may be
due to the fact that we input too many features in the training data, which means that the
classifier trained by the network will be inclined to distribute the training data. This result
is especially exacerbated by the fact that we only used very few labeled data in the training
process and graph-based DNNs typically have millions of parameters, as can be seen from
the over-fitting results.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 25

data rather than unseen scenes, which is an obvious signal of over-fitting. This incon-
sistency may be due to the fact that we input too many features in the training data, which
means that the classifier trained by the network will be inclined to distribute the training
data. This result is especially exacerbated by the fact that we only used very few labeled
data in the training process and graph-based DNNs typically have millions of parameters,
as can be seen from the over-fitting results.

Another important finding was the impact of using different amounts of training
data demanded in our model (both unlabeled and labeled data). The most obvious finding
that emerged from the analysis is that from three unlabeled scenes, discriminative repre-
sentation may be already learned in the pre-trained AE. Moreover, although segmentation
results are increased or decreased by varying labeled training data in the segmentation
network training stage, the magnitude of the change is very small. These results (referring
to Table 9) further support the idea that our method is label-efficient in nature.

This combination of findings provides some support for the conceptual premise that
our proposed AE architecture may learn powerful representations from unlabeled data,
and these representations may be further used in our downstream tasks. Furthermore, the
results of this study indicate the effectiveness of the design choices.

Figure 11. The training accuracy while using 12 features in input point cloud.

6. Conclusions
In this study, we presented an effective label-efficient unsupervised network for

LoD3 buildings’ point-cloud semantic segmentation. The results in our experiment pro-
vide support that our proposed Autoencoder architecture may learn powerful represen-
tations from unlabeled data, and these representations may be further used in down-
stream tasks. Furthermore, our network supplies a unified approach for the segmentation
task of building point clouds while obtaining equal or better results with respect to the
state-of-the-art methods but on the basis of only 10% training data from the ArCH dataset.
We also provided detailed ablation studies to validate our design choices.

However, our network has the following limitations: (1) In the data preprocessing
stage, the block size is fixed. Thus, the network is trained on a small region of building
scenes, and the performance is degraded, resulting in wrong segmentation. (2) The result
of the proposed model is not enhanced when involving 12 features in input point clouds
due to the limitation of training data size.

In future work, it might be possible to improve the performance by breaking through
the input block size and incorporating more features of the input point cloud of buildings
while using the very limited amount of labeled training data.

Author Contributions: Conceptualization, Y.C.; methodology, Y.C.; writing—original draft prepa-
ration, Y.C.; visualization, Y.C.; writing—review and editing, M.S. and Y.C.; supervision, M.S. All
authors have read and agreed to the published version of the manuscript.

Figure 11. The training accuracy while using 12 features in input point cloud.

Another important finding was the impact of using different amounts of training data
demanded in our model (both unlabeled and labeled data). The most obvious finding that
emerged from the analysis is that from three unlabeled scenes, discriminative representation
may be already learned in the pre-trained AE. Moreover, although segmentation results
are increased or decreased by varying labeled training data in the segmentation network
training stage, the magnitude of the change is very small. These results (referring to Table 9)
further support the idea that our method is label-efficient in nature.

This combination of findings provides some support for the conceptual premise that
our proposed AE architecture may learn powerful representations from unlabeled data,
and these representations may be further used in our downstream tasks. Furthermore, the
results of this study indicate the effectiveness of the design choices.

Appl. Sci. 2021, 11, 8996 21 of 24

6. Conclusions

In this study, we presented an effective label-efficient unsupervised network for LoD3
buildings’ point-cloud semantic segmentation. The results in our experiment provide
support that our proposed Autoencoder architecture may learn powerful representations
from unlabeled data, and these representations may be further used in downstream tasks.
Furthermore, our network supplies a unified approach for the segmentation task of building
point clouds while obtaining equal or better results with respect to the state-of-the-art
methods but on the basis of only 10% training data from the ArCH dataset. We also
provided detailed ablation studies to validate our design choices.

However, our network has the following limitations: (1) In the data preprocessing
stage, the block size is fixed. Thus, the network is trained on a small region of building
scenes, and the performance is degraded, resulting in wrong segmentation. (2) The result
of the proposed model is not enhanced when involving 12 features in input point clouds
due to the limitation of training data size.

In future work, it might be possible to improve the performance by breaking through
the input block size and incorporating more features of the input point cloud of buildings
while using the very limited amount of labeled training data.

Author Contributions: Conceptualization, Y.C.; methodology, Y.C.; writing—original draft prepa-
ration, Y.C.; visualization, Y.C.; writing—review and editing, M.S. and Y.C.; supervision, M.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the China Scholarships Council, grant number 201906860014.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: ArCH dataset at http://archdataset.polito.it (Accessed on
24 September 2021).

Acknowledgments: Financial support from the program of the China Scholarships Council (grant
number: 201906860014) is acknowledged. We thank F. Matrone and all contributors for the
ArCH dataset.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript or
in the decision to publish the results.

References
1. Kutzner, T.; Chaturvedi, K.; Kolbe, T.H. CityGML 3.0: New Functions Open up New Applications. PFG–J. Photogramm. Remote

Sens. Geoinf. Sci. 2020, 88, 43–61. [CrossRef]
2. Löwner, M.-O.; Gröger, G.; Benner, J.; Biljecki, F.; Nagel, C. Proposal for a New LoD and Multi-Representation Concept for

CityGML. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, IV-2/W1, 3–12. [CrossRef]
3. Matrone, F.; Grilli, E.; Martini, M.; Paolanti, M.; Pierdicca, R.; Remondino, F. Comparing Machine and Deep Learning Methods

for Large 3D Heritage Semantic Segmentation. ISPRS Int. J. Geo-Inf. 2020, 9, 535. [CrossRef]
4. Brunetaud, X.; Luca, L.D.; Janvier-Badosa, S.; Beck, K.; Al-Mukhtar, M. Application of Digital Techniques in Monument

Preservation. Eur. J. Environ. Civ. Eng. 2012, 16, 543–556. [CrossRef]
5. Pierdicca, R.; Paolanti, M.; Matrone, F.; Martini, M.; Morbidoni, C.; Malinverni, E.S.; Frontoni, E.; Lingua, A.M. Point Cloud

Semantic Segmentation Using a Deep Learning Framework for Cultural Heritage. Remote Sens. 2020, 12, 1005. [CrossRef]
6. Bosché, F.; Guenet, E. Automating Surface Flatness Control Using Terrestrial Laser Scanning and Building Information Models.

Autom. Constr. 2014, 44, 212–226. [CrossRef]
7. Ham, Y.; Golparvar-Fard, M. Three-Dimensional Thermography-Based Method for Cost-Benefit Analysis of Energy Efficiency

Building Envelope Retrofits. J. Comput. Civ. Eng. 2015, 29, B4014009. [CrossRef]
8. Fazeli, H.; Samadzadegan, F.; Dadrasjavan, F. Evaluating the Potential of RTK-UAV for Automatic Point Cloud Generation in 3D

Rapid Mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B6, 221–226. [CrossRef]
9. Hu, P.; Yang, B.; Dong, Z.; Yuan, P.; Huang, R.; Fan, H.; Sun, X. Towards Reconstructing 3D Buildings from ALS Data Based on

Gestalt Laws. Remote Sens. 2018, 10, 1127. [CrossRef]
10. Czerniawski, T.; Leite, F. Automated Digital Modeling of Existing Buildings: A Review of Visual Object Recognition Methods.

Autom. Constr. 2020, 113, 103131. [CrossRef]

http://archdataset.polito.it
http://doi.org/10.1007/s41064-020-00095-z
http://doi.org/10.5194/isprs-annals-IV-2-W1-3-2016
http://doi.org/10.3390/ijgi9090535
http://doi.org/10.1080/19648189.2012.676365
http://doi.org/10.3390/rs12061005
http://doi.org/10.1016/j.autcon.2014.03.028
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000406
http://doi.org/10.5194/isprs-archives-XLI-B6-221-2016
http://doi.org/10.3390/rs10071127
http://doi.org/10.1016/j.autcon.2020.103131

Appl. Sci. 2021, 11, 8996 22 of 24

11. Wang, Q.; Kim, M.-K. Applications of 3D Point Cloud Data in the Construction Industry: A Fifteen-Year Review from 2004 to
2018. Adv. Eng. Inform. 2019, 39, 306–319. [CrossRef]

12. Cao, Y.; Previtali, M.; Scaioni, M. Understanding 3D Point Cloud Deep Neural Networks by Visualization Techniques. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B2-2020, 651–657. [CrossRef]

13. Wang, C.; Hou, S.; Wen, C.; Gong, Z.; Li, Q.; Sun, X.; Li, J. Semantic Line Framework-Based Indoor Building Modeling Using
Backpacked Laser Scanning Point Cloud. ISPRS J. Photogramm. Remote Sens. 2018, 143, 150–166. [CrossRef]

14. Kumar, B.; Lohani, B.; Pandey, G. Development of Deep Learning Architecture for Automatic Classification of Outdoor Mobile
LiDAR Data. Int. J. Remote Sens. 2019, 40, 3543–3554. [CrossRef]

15. Huang, J.; Zhang, X.; Xin, Q.; Sun, Y.; Zhang, P. Automatic Building Extraction from High-Resolution Aerial Images and LiDAR
Data Using Gated Residual Refinement Network. ISPRS J. Photogramm. Remote Sens. 2019, 151, 91–105. [CrossRef]

16. Meng, Q.; Wang, W.; Zhou, T.; Shen, J.; Van Gool, L.; Dai, D. Weakly Supervised 3D Object Detection from Lidar Point Cloud. In
Proceedings of the European Conference on Computer Vision—ECCV 2020, Glasgow, UK, 23 August 2020; Springer: Glasgow,
UK, 2020; Volume 12358, pp. 515–531.

17. Matrone, F.; Lingua, A.; Pierdicca, R.; Malinverni, E.S.; Paolanti, M.; Grilli, E.; Remondino, F.; Murtiyoso, A.; Landes, T. A
Benchmark for Large-Scale Heritage Point Cloud Semantic Segmentation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020,
XLIII-B2-2020, 1419–1426. [CrossRef]

18. Liu, Y.; Yi, L.; Zhang, S.; Fan, Q.; Funkhouser, T.; Dong, H. P4Contrast: Contrastive Learning with Pairs of Point-Pixel Pairs for
RGB-D Scene Understanding. arXiv 2012, arXiv:201213089.

19. Han, X.; Laga, H.; Bennamoun, M. Image-Based 3D Object Reconstruction: State-of-the-Art and Trends in the Deep Learning Era.
IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1578–1604. [CrossRef]

20. Xie, S.; Gu, J.; Guo, D.; Qi, C.R.; Guibas, L.; Litany, O. PointContrast: Unsupervised Pre-Training for 3D Point Cloud Understand-
ing. In Proceedings of the European Conference on Computer Vision—ECCV 2020, Glasgow, UK, 23 August 2020; Springer:
Glasgow, UK, 2020; Volume 12348, pp. 574–591.

21. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM
Trans. Graph. Tog 2019, 38, 1–12. [CrossRef]

22. Yang, Y.; Feng, C.; Shen, Y.; Tian, D. FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2018; pp. 206–215.

23. Previtali, M.; Díaz-Vilariño, L.; Scaioni, M. Indoor Building Reconstruction from Occluded Point Clouds Using Graph-Cut and
Ray-Tracing. Appl. Sci. 2018, 8, 1529. [CrossRef]

24. Griffiths, D.; Boehm, J. Improving Public Data for Building Segmentation from Convolutional Neural Networks (CNNs) for
Fused Airborne Lidar and Image Data Using Active Contours. ISPRS J. Photogramm. Remote Sens. 2019, 154, 70–83. [CrossRef]

25. Forlani, G.; Nardinocchi, C.; Scaioni, M.; Zingaretti, P. Complete Classification of Raw LIDAR Data and 3D Reconstruction of
Buildings. Pattern Anal. Appl. 2006, 8, 357–374. [CrossRef]

26. Verma, V.; Kumar, R.; Hsu, S. 3D Building Detection and Modeling from Aerial Lidar Data. In Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17 June 2006; IEEE:
New York, NY, USA, 2006; Volume 2, pp. 2213–2220.

27. Haala, N.; Brenner, C.; Anders, K.-H. 3D Urban GIS from Laser Altimeter and 2D Map Data. Int. Arch. Photogramm. Remote Sens.
1998, 32, 339–346.

28. Maas, H.-G.; Vosselman, G. Two Algorithms for Extracting Building Models from Raw Laser Altimetry Data. ISPRS J. Photogramm.
Remote Sens. 1999, 54, 153–163. [CrossRef]

29. Chen, D.; Zhang, L.; Mathiopoulos, P.T.; Huang, X. A Methodology for Automated Segmentation and Reconstruction of Urban
3-D Buildings from ALS Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4199–4217. [CrossRef]

30. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-View Convolutional Neural Networks for 3D Shape Recognition. In
Proceedings of the 2015 IEEE/CVF International Conference on Computer Vision (ICCV), Santiago, Chile, 11 December 2015;
IEEE: Santiago, Chile, 2015; pp. 945–953.

31. Ma, C.; Guo, Y.; Yang, J.; An, W. Learning Multi-View Representation With LSTM for 3-D Shape Recognition and Retrieval. IEEE
Trans. Multimed. 2019, 21, 1169–1182. [CrossRef]

32. Yang, Z.; Wang, L. Learning Relationships for Multi-View 3D Object Recognition. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; IEEE: Seoul, Korea, 2019; pp.
7505–7514.

33. Riegler, G.; Osman Ulusoy, A.; Geiger, A. OctNet: Learning Deep 3D Representations at High Resolutions. In Proceedings of the
2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE:
Honolulu, HI, USA, 2017; pp. 6620–6629.

34. Wang, P.-S.; Liu, Y.; Guo, Y.-X.; Sun, C.-Y.; Tong, X. O-CNN: Octree-Based Convolutional Neural Networks for 3D Shape Analysis.
Acm Trans. Graph. Tog 2017, 36, 1–11. [CrossRef]

35. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings
of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
IEEE: Honolulu, HI, USA, 2017; pp. 652–660.

http://doi.org/10.1016/j.aei.2019.02.007
http://doi.org/10.5194/isprs-archives-XLIII-B2-2020-651-2020
http://doi.org/10.1016/j.isprsjprs.2018.03.025
http://doi.org/10.1080/01431161.2018.1547929
http://doi.org/10.1016/j.isprsjprs.2019.02.019
http://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1419-2020
http://doi.org/10.1109/TPAMI.2019.2954885
http://doi.org/10.1145/3326362
http://doi.org/10.3390/app8091529
http://doi.org/10.1016/j.isprsjprs.2019.05.013
http://doi.org/10.1007/s10044-005-0018-2
http://doi.org/10.1016/S0924-2716(99)00004-0
http://doi.org/10.1109/JSTARS.2014.2349003
http://doi.org/10.1109/TMM.2018.2875512
http://doi.org/10.1145/3072959.3073608

Appl. Sci. 2021, 11, 8996 23 of 24

36. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. IEEE Trans. Pattern
Anal. Mach. Intell. 2020, 1. [CrossRef]

37. Zhang, L.; Zhang, L. Deep Learning-Based Classification and Reconstruction of Residential Scenes from Large-Scale Point Clouds.
IEEE Trans. Geosci. Remote Sens. 2017, 56, 1887–1897. [CrossRef]

38. Zhang, L.; Li, Z.; Li, A.; Liu, F. Large-Scale Urban Point Cloud Labeling and Reconstruction. ISPRS J. Photogramm. Remote Sens.
2018, 138, 86–100. [CrossRef]

39. Hensel, S.; Goebbels, S.; Kada, M. Facade Reconstruction for Textured LoD2 CityGML Models Based on Deep Learning and
Mixed Integer Linear Programming. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, IV-2/W5, 37–44. [CrossRef]

40. Jarząbek-Rychard, M.; Borkowski, A. 3D Building Reconstruction from ALS Data Using Unambiguous Decomposition into
Elementary Structures. ISPRS J. Photogramm. Remote Sens. 2016, 118, 1–12. [CrossRef]

41. Axelsson, M.; Soderman, U.; Berg, A.; Lithen, T. Roof Type Classification Using Deep Convolutional Neural Networks on Low
Resolution Photogrammetric Point Clouds From Aerial Imagery. In Proceedings of the 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15 April 2018; IEEE: Calgary, AB, Canada, 2018;
pp. 1293–1297.

42. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Networks. In Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS), Montreal, QC,
Canada, 8–13 December 2014; MIT Press: Cambridge, MA, USA, 2014; Volume 2, pp. 2672–2680.

43. Donahue, J.; Krähenbühl, P.; Darrell, T. Adversarial Feature Learning. arXiv 2016, arXiv:160509782.
44. Mescheder, L.; Nowozin, S.; Geiger, A. Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative

Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August
2017; Volume 70, pp. 2391–2400.

45. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; IEEE
Computer Soc.: Long Beach, CA, USA, 2019; pp. 4396–4405.

46. Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507.
[CrossRef]

47. Van den Oord, A.; Kalchbrenner, N.; Vinyals, O.; Espeholt, L.; Graves, A.; Kavukcuoglu, K. Conditional Image Generation with
PixelCNN Decoders. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona,
Spain, 5–10 December 2016; Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 4797–4805.

48. Achlioptas, P.; Diamanti, O.; Mitliagkas, I.; Guibas, L. Learning Representations and Generative Models for 3D Point Clouds.
In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; PMLR.org:
Stockholm, Sweden, 2018; Volume 80, pp. 40–49.

49. Li, C.-L.; Zaheer, M.; Zhang, Y.; Poczos, B.; Salakhutdinov, R. Point Cloud GAN. arXiv 2018, arXiv:181005795.
50. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; PMLR.org: Sydney, Australia, 2017; Volume 70,
pp. 214–223.

51. Groueix, T.; Fisher, M.; Kim, V.G.; Russell, B.C.; Aubry, M. A Papier-Mâché Approach to Learning 3d Surface Generation. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–23 June 2018; IEEE: Salt Lake City, UT, USA, 2018; pp. 216–224.

52. Sauder, J.; Sievers, B. Self-Supervised Deep Learning on Point Clouds by Reconstructing Space. In Proceedings of the 2019
Advances in Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 8–14 December 2019; Curran Associates,
Inc.: Vancouver, BC, Canada, 2019; Volume 32, pp. 12962–12972.

53. Deng, H.; Birdal, T.; Ilic, S. Ppfnet: Global Context Aware Local Features for Robust 3d Point Matching. In Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018;
IEEE: Salt Lake City, UT, USA, 2018; pp. 195–205.

54. Deng, H.; Birdal, T.; Ilic, S. Ppf-Foldnet: Unsupervised Learning of Rotation Invariant 3d Local Descriptors. In Proceedings of
the European Conference on Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Springer International
Publishing AG: Munich, Germany, 2018; Volume 11209, pp. 602–618.

55. Zhao, Y.; Birdal, T.; Deng, H.; Tombari, F. 3D Point Capsule Networks. In Proceedings of the 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; IEEE: Long Beach, CA, USA, 2019;
pp. 1009–1018.

56. Chen, Z.; Yin, K.; Fisher, M.; Chaudhuri, S.; Zhang, H. Bae-Net: Branched Autoencoder for Shape Co-Segmentation. In
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November
2019; IEEE: Seoul, Korea, 2019; pp. 8490–8499.

57. Fan, H.; Su, H.; Guibas, L. A Point Set Generation Network for 3D Object Reconstruction from a Single Image. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE:
Honolulu, HI, USA, 2017; pp. 2463–2471.

http://doi.org/10.1109/TPAMI.2020.3005434
http://doi.org/10.1109/TGRS.2017.2769120
http://doi.org/10.1016/j.isprsjprs.2018.02.008
http://doi.org/10.5194/isprs-annals-IV-2-W5-37-2019
http://doi.org/10.1016/j.isprsjprs.2016.04.005
http://doi.org/10.1126/science.1127647

Appl. Sci. 2021, 11, 8996 24 of 24

58. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d Shapenets: A Deep Representation for Volumetric Shapes.
In Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015; IEEE: Boston, MA, USA, 2015; pp. 1912–1920.

59. Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H. ShapeNet: An
Information-Rich 3D Model Repository. arXiv 2015, arXiv:151203012.

60. Munoz, D.; Bagnell, J.A.; Vandapel, N.; Hebert, M. Contextual Classification with Functional Max-Margin Markov Networks. In
Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami Beach, FL, USA, 20–25
June 2009; IEEE: Miami Beach, FL, USA, 2009; pp. 975–982.

61. Barazzetti, L.; Remondino, F.; Scaioni, M. Combined Use of Photogrammetric and Computer Vision Techniques for Fully Auto-
mated and Accurate 3D Modeling of Terrestrial Objects. In Proceedings of the Videometrics, Range Imaging, and Applications X,
San Diego, CA, USA, 2 August 2009; Volume 7447.

62. Fugazza, D.; Scaioni, M.; Corti, M.; D’Agata, C.; Azzoni, R.S.; Cernuschi, M.; Smiraglia, C.; Diolaiuti, G.A. Combination of UAV
and Terrestrial Photogrammetry to Assess Rapid Glacier Evolution and Map Glacier Hazards. Nat. Hazards Earth Syst. Sci. 2018,
18, 1055–1071. [CrossRef]

63. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the Conference Track Proceedings of 3rd
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; ICLR (Poster) 2015: San Diego, CA,
USA, 2015.

64. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Neural
Information Processing Systems (NIPS): Long Beach, CA, USA, 2017; Volume 30, pp. 5105–5114.

65. Atzmon, M.; Maron, H.; Lipman, Y. Point Convolutional Neural Networks by Extension Operators. Acm Trans. Graph. Tog 2018,
37, 71. [CrossRef]

http://doi.org/10.5194/nhess-18-1055-2018
http://doi.org/10.1145/3197517.3201301

	Introduction
	Related Work
	Fully Supervised Methods on 3D Point Clouds
	Label-Efficient Methods
	Label-Efficient Methods for Images
	Label-Efficient Methods for Point Clouds

	Method
	DGCNN-Based Encoder
	Folding-Based Decoder
	Semantic Segmentation Network Architecture
	Evaluation Matrix

	Experiment
	Dataset
	Implementation Details
	Results and Analysis
	Ablation Study and Analysis

	Discussion
	Conclusions
	References

