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Abstract: The most recent end-to-end speech synthesis systems use phonemes as acoustic input
tokens and ignore the information about which word the phonemes come from. However, many
words have their specific prosody type, which may significantly affect the naturalness. Prior works
have employed pre-trained linguistic word embeddings as TTS system input. However, since
linguistic information is not directly relevant to how words are pronounced, TTS quality improvement
of these systems is mild. In this paper, we propose a novel and effective way of jointly training acoustic
phone and word embeddings for end-to-end TTS systems. Experiments on the LJSpeech dataset
show that the acoustic word embeddings dramatically decrease both the training and validation
loss in phone-level prosody prediction. Subjective evaluations on naturalness demonstrate that the
incorporation of acoustic word embeddings can significantly outperform both pure phone-based
system and the TTS system with pre-trained linguistic word embedding.

Keywords: speech synthesis; acoustic input tokens; naturalness; word embedding

1. Introduction

Recently, end-to-end text-to-speech (TTS) synthesis models with sequence-to-sequence
architectures [1–3] have achieved great success in generating naturally sounding speech.
To avoid regressive frame-by-frame generation, non-autoregressive TTS models, such
as FastSpeech [4] and FastSpeech2 [5], are proposed for fast generation speed. Most of
the above end-to-end TTS systems use only phonemes as input tokens and ignore the
information about which word the phonemes come from.

However, word identities are important for the TTS system to generate highly natural
speech. In human communication, we know the words that we are speaking, which is
crucial to pronounce the sentences properly. Our motivation is based on the fact that many
words have their specific prosody type, which significantly affects the naturalness. For
example, when we read “It is so big”, we probably emphasize the word “so”, but not the
word “is”. Similarly, “so” is often the emphasized word in many cases. We want the model
to remember this kind of information for each word. We use the term “prosody” here
to refer to the extra information used in synthesis in addition to “phoneme”, “duration”,
“pitch”, etc.

In this paper, we propose a novel and effective approach that directly trains the
acoustic word embeddings in the TTS system. Similar to the phoneme embeddings that
contain the information about how the phonemes are pronounced, our acoustic word
embeddings directly indicate how the words are pronounced. Both the phoneme and
word sequence are utilized as input to the TTS system and passed through two encoders
separately. The two output hidden states are then concatenated for prosody prediction and
speech synthesis.

Several key factors are investigated in this work. First, we compare three different
model architectures for the word encoder and find that using a convolution layer followed
by Transformer layers achieves the best performance. Second, we determine the influence
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of the word frequency threshold. Finally, we carry out subjective evaluations in terms
of naturalness, which demonstrate that our proposed system is not only better than the
system that uses only phoneme sequence as input, but also better than the prior works that
simply add linguistic word embeddings from pretrained GloVe or BERT.

2. Related Work

In traditional HMM/DNN-based statistical parametric speech synthesis, the model
takes full-context features as input [6]. It is obtained from text analysis and contains various
linguistic contextual information in addition to phoneme identities. Ref. [7] trains a word
language model to obtain linguistic word embeddings and then uses them as part of the
input features. In the end-to-end architectures, there are also several prior works trying
to solve the problem by adding pretrained linguistic word embeddings in TTS. Ref. [8]
obtains word embeddings from a pretrained Chinese to English word translation model
and then takes both the phoneme sequence and word sequence into consideration in TTS.

Recently, the large pretrained language model BERT [9] exhibits an impressive per-
formance on many natural language processing (NLP) tasks, so it is also introduced to
TTS [10–12]. Refs. [10,11] extract hidden states of BERT and pass them to the TTS model.
Ref. [12] tries to fine-tune the BERT parameters with a prosody prediction task but still
freezes the word piece embeddings. All these works report that they have achieved some
gains in naturalness.

However, the word embeddings in all the prior works were obtained from pretrained
NLP models and thus contain only linguistic information, which is not directly relevant
to how the words are pronounced. Therefore, improvement in TTS is often very limited.
In this paper, we train acoustic word embeddings directly with the TTS model instead of
using linguistic word embeddings.

3. End-to-End Speech Synthesis
3.1. FastSpeech2

Recently, non-autoregressive TTS models such as FastSpeech2 [5] have become popular
due to their fast inference speed and stability. Compared with the original FastSpeech [4],
FastSpeech2 is optimized to minimize the mean square error (MSE) LMEL between the
predicted and the ground-truth mel-spectrograms, instead of applying a teacher–student
training. Moreover, the duration target is not extracted from the attention map of an
autoregressive teacher model but the forced alignment of speech and text. Additionally,
ref. [5] condition the prediction of mel-spectrogram on the variance information such as
pitch and energy with a variance adaptor. The adaptor is trained to predict the variance
information with an MSE loss LVAR.

In this work, we use FastSpeech2 as our acoustic model. It contains a phoneme
encoder that transforms the input phoneme sequence p to a hidden state sequence h, that is

h = Encode(p) (1)

The hidden state sequence h is then passed to a variance adaptor and a decoder which
outputs the mel-spectrogram, that is

y = Decode(Adapt(h)) (2)

3.2. Objective Evaluation of Phone-Level Prosody Prediction

In the standard FastSpeech2 system, prosody modeling is not explicitly considered,
which makes it hard to objectively evaluate the prosody prediction performance of the
TTS systems without a subjective listening test. Accordingly, in this work, we introduce
a phone-level prosody prediction module [13] to our models, which autoregressively
predicts the distribution of prosody embeddings for each phoneme. It can not only lead to
improved naturalness compared to the standard FastSpeech2 system, but also allow the use
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of prosody embeddings log-likelihood to easily evaluate phone-level prosody prediction
performance in an objective way. The structure is illustrated in Figure 1.

Specifically, in the training stage, the prosody embeddings

e = [e1, e2, . . ., eK] (3)

are extracted for all the K phonemes by a prosody extractor from the corresponding mel-
spectrogram segment. It is then projected and added to the corresponding hidden state
sequence h in order to better reconstruct the mel-spectrogram. We use ek to represent the
prosody embeddings for the k-th phoneme. In this work, the distribution of ek is assumed
to be a GMM whose parameters are predicted by the prosody predictor. In the inference
stage, we sample the êk from the predicted prosody distribution for each phoneme.

Figure 1. End-to-end speech synthesis with GMM-based prosody modeling.

The training criterion for the prosody prediction is the negative log-likelihood of the
prosody embeddings e, so we obtain the loss function for training the prosody predictor

LPP =
K

∑
k=1
− log p(ek; e<k, h) (4)

Consequently, the overall architecture is optimized with the loss function

L = β · LPP + LFastSpeech2 (5)

where LFastSpeech2 is the loss function of FastSpeech2, which is the sum of variance
prediction loss and mel-spectrogram reconstruction loss as described in [5], and β is the
relative weight between the two terms.

4. Acoustic Word Embeddings

Most of the recent popular TTS systems use phonemes as acoustic input tokens and
ignore the information about which word the phonemes come from. However, word
identities are important for the TTS system to generate highly natural speech. In human
communication, we know the words we speak, which is crucial to pronouncing the sen-
tences properly. Several prior works simply use linguistic word embeddings from NLP
tasks, but the improvement is often limited. In this paper, we propose using acoustic word
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embeddings for natural speech synthesis. Specifically, the word sequence is provided to
the TTS system as well as the phoneme sequence after text normalization. We elaborate on
the details in the following subsections.

4.1. Text Normalization

The raw text contains complicated situations such as variations in word forms, rare
words, and rare punctuation marks. Therefore, it is necessary to carry out text normalization
before utilizing the words in TTS.

First, we used an NLP tool, Stanza [14], to convert each word to its prototype. Accord-
ingly, the generated words contain no plural form, the third person singular, past tense, etc.
This is a crucial step to dramatically reduce the vocabulary size and alleviate the sparsity in
acoustic word embeddings training. Then, we removed rare punctuation marks, preserving
only commas, periods, colons, semicolons, question marks, and exclamatory marks.

In order to make sure that each acoustic word embedding is well trained, we only
considered high-frequency words in the training set. In this work, we set a word frequency
threshold. Only the words with frequencies higher than the threshold were included in the
vocabulary, while the other words were treated as out-of-vocabulary (OOV) words.

We also computed the alignment between word sequence and phoneme sequence. At
the position where a silence appears in the phoneme sequence, if there is a corresponding
punctuation mark, we aligned the punctuation mark with the silence. Otherwise, we added
a blank token in the word sequence for proper alignment.

Figure 2 illustrates an example of text normalization. Here, we transformed the “did”
and “asked” to their prototype “do” and “ask”. Quotation marks were removed, and the
“farmer” was treated as an OOV. We added a blank token to the word sequence to align it
with the silence at the beginning of the phoneme sequence.

Figure 2. An example of text normalization.

4.2. Model Architecture

In this work, we utilized both words and phonemes as the inputs. Thus, we introduced
a word encoder and a word-phoneme aligner in our TTS system, whose architecture is
shown in Figure 3. The word encoder takes the normalized word sequence w as input
and generates a hidden state sequence hw. Then, each hidden state in hw is duplicated
according to the number of phonemes aligned with the corresponding word. Accordingly,
the output hdup

w has the same sequence length as the phoneme encoder output hp. Then,

we concatenated hdup
w and hp together to obtain h, which was then used for phone-level

prosody prediction. Generally, the final hidden states h were obtained by encoding the
word and phoneme sequence, that is

h = Encode(p, w) (6)

The word encoder contains a 1D convolutional layer with a kernel size of 3 followed
by six layers of Transformer blocks [15]. The convolutional layer is designed to directly
consider the adjacent word contexts, and the Transformer layers are used for sequence
modeling. It should be noted that all the word embeddings and the word encoder are
jointly trained with the entire TTS system. The training criteria are the same as the basic
TTS model, which is defined in Equation (5).
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Figure 3. Model architecture with acoustic word embeddings.

5. Experiment and Result
5.1. Experimental Setup

LJSpeech [16] is a single speaker English dataset containing about 24 h worth of
speech and 13,100 utterances. We randomly left out 50 utterances for validation and testing.
The speech was resampled to 16KHz for simplicity. Before training TTS, we computed
the phoneme alignment of the training data with an HMM-GMM ASR model trained on
Librispeech [17] and then extracted the duration of each phoneme from the alignment
for training.

The TTS models in this work are based on FastSpeech2 [5] with GMM-based prosody
modeling [13]. The number of the Gaussian components in the GMMs was set to 20, and
the β in Equation (5) was set to 0.02. An Adam optimizer [18] was used for TTS training
in conjunction with a Noam learning rate scheduler [15]. We used a 320-dimensional
mel-spectrogram as the acoustic feature with a 12.5 ms frame shift and 50ms frame length.
MelGAN [19] was used as the vocoder for waveform reconstruction.

5.2. Word Encoder Architectures

In this section, we compare the performance of three common architectures for the
word encoder. (1) None: the baseline that not uses the word encoder, as is described in
Section 3. (2) BLSTM: a layer of 512 dimensional bi-directional LSTM. (3) Transformer:
six layers of 512 dimensional Transformer blocks. (4) Conv+Transformer: a layer of 1D
CNN with kernel size 3 followed by six layers of 512 dimensional Transformer blocks.

We first investigated the model size and the inference speed of the TTS systems.
We synthesized the test set on an Intel Xeon E5-2680 CPU. As is shown in Table 1,
when the model size grows, the inference speed becomes slow. The largest model with
Conv+Transformer has an inference speed 39% slower than the baseline that not uses word
encoder. If we use BLSTM as the word encoder, both the model size and the inference
speed are very close to the baseline.
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Table 1. Number of parameters and inference speed (second/frame) with various encoder architectures.

Architecture Num Params Inference Speed

None 96.075 M 1.7138× 10−3

BLSTM 98.341 M 1.9806× 10−3

Transformer 132.872 M 2.2783× 10−3

Conv+Transformer 133.003 M 2.3787× 10−3

Figure 4 illustrates the log-likelihood curves of phone-level prosodies with various
word encoder architectures. In both the training and validation sets, we can observe that
all the systems with acoustic word encoders outperform the baseline system that does not
use word information. Moreover, the Conv+Transformer achieves the best performance
out of the three common architectures. This is reasonable because it is already known that
the Transformer has better capabilities than a simple LSTM [15] in sequence modeling, and
the convolutional layer directly considers the adjacent word contexts. Therefore, we used
Conv+Transformer in all the following experiments for the best performance.

Figure 4. The log-likelihood curves of phone-level prosodies with various word encoder architectures.

5.3. Word Frequency Threshold

In this work, we only considered high-frequency words in the training set and treated
the other words as OOV. The word frequency threshold determines the vocabulary size,
which also affects the system’s performance. Here, we apply three different thresholds,
i.e., 10, 50, and 100, and then count the vocabulary size and the ratio of OOV words in
the training set. The results are shown in Table 2. For example, when the word frequency
threshold is set to 50, the vocabulary contains 529 words and covers 77.3% of words in the
training set. Generally, when the word frequency threshold grows, the vocabulary size
decreases, and the OOV ratio increases.

We also plotted the log-likelihood curves of phone-level prosodies with various word
frequency thresholds. As is depicted in Figure 5, we saw the best performance at the
threshold of 50. When the threshold is too large, fewer words are considered, and the
system performance is harmed. However, when the threshold is too small, many low-
frequency words are included in the vocabulary. These acoustic word embeddings are only
trained with very limited data, which also leads to a decline in system performance.
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Table 2. The vocabulary sizes and OOV ratios with various word frequency threshold.

Word Freq Thres Vocabulary Size OOV Ratio

10 2118 0.087
50 529 0.227

100 266 0.300

Figure 5. The log-likelihood curves of phone-level prosodies with various word frequency thresholds.

5.4. Naturalness

For simplicity, we abbreviate the system with acoustic word embeddings to AWE.
With the analysis above, we use Conv+Tranformer architecture as the word encoder and
set the word frequency threshold to 50 in AWE. In this section, we compare AWE with
three other systems in terms of naturalness. (1) None: As is described in Section 3, we first
built a basic FastSpeech2-based TTS system without using word information. (2) GloVe:
We followed the prior work [8] that extracted linguistic word embeddings from pretrained
NLP tasks. Similarly, the word embeddings were encoded and then added to the phoneme
encoder output. In our experiments, we obtained the linguistic word embeddings from
GloVe [20]. (3) BERT: We followed prior work [11] that extracted word representations
from pretrained BERT and then applied the word representations to the TTS system. It
should be noted that BERT takes subword units as input, and each word often corresponds
to multiple BERT hidden states. Thus, we applied an average pooling to the multiple states
in order to obtain the word representations [21].

An AB preference subjective listening test was carried out in terms of naturalness
(The audio examples are available at https://cpdu.github.io/acoustic_word_embedding
(accessed on 11 August 2021)). Ten listeners with no prior experience in TTS participated
in this test. Ten pairs of synthetic speeches were provided to the participant in one trial
to select the better one of each pair. Each pair consists of one speech randomly selected
from 50 AWE synthetics and the other randomly chosen from 50 BERT/GloVe/None
synthetics. Each participant went through three trials (BERT, GloVe, and None) and made
30 judgments in total. Figure 6 demonstrates the subjective results. As expected, the
proposed system with acoustic word embeddings not only outperformed the baseline that
does not use any word information directly, but also outperforms the systems that use
linguistic word embeddings.

https://cpdu.github.io/acoustic_word_embedding


Appl. Sci. 2021, 11, 9010 8 of 9

Figure 6. AB preference test in terms of naturalness. The p-values are 0.0105, 0.0284 and 0.0018, respec-
tively.

6. Conclusions

In this paper, we propose a novel and effective approach that directly trains acoustic
word embeddings in the TTS system. Both the phoneme and word sequences were utilized
as input to the TTS system and passed through two encoders separately. The two output
hidden states were then concatenated for phone-level prosody prediction. Our experiments
on the LJSpeech dataset showed that using convolution followed by Transformer layers
as the word encoder achieves the best performance. We also find that the word frequency
threshold should be carefully selected. A too large or too small threshold can lead to
a decline in performance. Finally, we compared the proposed system with the baseline
that does not directly use word information and several prior works that use pretrained
linguistic word representations. The subjective listening test showed that our system
outperforms all the other systems in terms of naturalness.
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