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Abstract: Cohesive subgraph identification is a fundamental problem in bipartite graph analysis. In
real applications, to better represent the co-relationship between entities, edges are usually associated
with weights or frequencies, which are neglected by most existing research. To fill the gap, we
propose a new cohesive subgraph model, (k, ω)-core, by considering both subgraph cohesiveness
and frequency for weighted bipartite graphs. Specifically, (k, ω)-core requires each node on the left
layer to have at least k neighbors (cohesiveness) and each node on the right layer to have a weight of
at least ω (frequency). In real scenarios, different users may have different parameter requirements.
To handle massive graphs and queries, index-based strategies are developed. In addition, effective
optimization techniques are proposed to improve the index construction phase. Compared with the
baseline, extensive experiments on six datasets validate the superiority of our proposed methods.
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1. Introduction

Bipartite graphs are widely used in many real-world applications to model the com-
plex relationships across different types of entities, such as customer–product network and
author–paper collaboration network [1–4]. A bipartite graph G = (L, R, E) consists of two
sets of disjoint nodes, i.e., L and R. Only nodes from different sets can be connected. For
example, Figure 1 shows an example of customer–product bipartite network, where edges
represent the purchase relationships. The left layer L is a set of customers and the right
layer R consists of a set of products purchased. There is no edge between the customers L
(resp. products R).

As a fundamental problem in graph analysis, cohesive subgraph identification is
widely studied in the literature (e.g., [5–8]). For bipartite graphs, a variety of cohesive
subgraph models have been proposed to identify important structures, such as (α, β)-
core [3], bitruss [9] and biclique [10]. Biclique is the most cohesive model, which requires
the nodes inside to be fully connected. However, the computation complexity, i.e., NP-
hard, makes it hard to apply in many time-efficient applications. Bitruss [11] adopts the
butterfly motif (i.e., a (2, 2)-biclique) to investigate the cohesiveness of bipartite graphs.
The (α, β)-core of bipartite graphs, which can be computed in linear time, has attracted
great attention recently [3,12,13]. However, the model still has a drawback.

Motivations: Given a bipartite graph G = (L, R, E), (α, β)-core is the maximal sub-
graph, where each node in L has at least α neighbors in R while each node in R has at
least β neighbors in L. It can be computed in linear time by iteratively deleting the node
with a degree less than α or β. For instance, in Figure 1, the subgraph consisting of nodes
{u2, u3, v2, v3, v4} is a (2,1)-core. However, in the (α, β)-core, it only emphasizes the engage-
ment of each node, i.e., each node has a sufficient number of neighbors in the subgraph
and treats each edge equally. However, in real applications, edges usually tend to have
quite different weights. For example, in the customer–product network (e.g., Figure 1),
each edge is assigned a weight, which reflects the frequency between a customer and a
product. The frequency denotes the number of times the customer has bought the product.
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To make sense of the weight information, we propose a novel model, (k, ω)-core, to
detect the densely frequent communities, which ensures that the nodes in the left layer
have a sufficient number of neighbors and the nodes in the right layer have enough weights.
Given a bipartite graph, the (k, ω)-core is the maximal subgraph where each node in L
(resp. R) has at least k neighbors (resp. ω weight). The weight of a node is the sum of
the weights of each adjacent edge. For instance, reconsidering the graph in Figure 1, the
weights of products {v1, v2, v3, v4, v5} are {1, 5, 5, 3, 1}, and the subgraph consisting of
{u1, u2, u3, v2, v3, v4} is a (2,2)-core. The nodes {u4, v1, v5} are excluded from the (2,2)-core,
since customer {u4} has not bought a sufficient number of distinct products while products
{v1, v5} have not been purchased enough times.

1 3 2 1 3 1 2 1 1

v1v1 v2v2 v3v3 v4v4 v5v5

u1u1 u2u2 u3u3 u4u4

Figure 1. A weighted bipartite graph of the customer–product network (the weight on the edge
denotes the number of times that the customer has bought the product).

Applications: The proposed (k, ω)-core model can be used in many real-world appli-
cations, such as product recommendation and fraud detection.

• Product recommendation: In a product–customer network (e.g., Figure 1), a (k, ω)-
core means a group of users with sufficient common tastes. Then, we can use
the group information for product recommendation. For example, in Figure 1,
{u1, u2, u3, v2, v3, v4} is the (2,2)-core. Then, we can recommend product v2 to user u3,
since u3 shares many common interests with u1 and u2.

• Fraud detection: For an online shopping website, fraudsters use a larger number of
accounts to frequently purchase some selected products in order to boost the ranking
of these products. This behavior can be modeled with a (k, ω)-core. By carefully
selecting the parameters, we can use the detected (k, ω)-core to narrow down the
searching space of fraudster accounts.

In real-life applications, the value of k (resp. ω) is determined by users based on
their own requirements. The two parameters provide more flexibility when adjusting the
resulting communities. As observed, the (α, β)-core is a special case of the (k, ω)-core when
all the weights in the graph equal 1. Naively, we can extend the solution of computing
(α, β)-core by iteratively deleting the nodes violating the constraints. The time complexity
is linear to the input graph. However, in real applications, the graph size is usually large,
which means algorithms that are linear to the input graph size are also not affordable [14].
In addition, different users may have different requirements of the input parameters k and
ω, which can lead to a large amount of queries. Therefore, more efficient methods are
expected to handle the massive graphs and queries.

In this paper, we resort to index-based approaches. A straightforward solution is to
compute all possible (k, ω)-cores and maintain all the results. However, it will cause a
huge computational cost by visiting the same subgraph multiple times. Thus, the time cost
of computing all (k, ω)-cores becomes unaffordable on large graphs. To reduce the cost,
we propose different index construction strategies to ensure a balance between building
space-efficient indexes and supporting efficient-scalable query processing. Our major
contributions are summarized as follows:

• We propose a new cohesive subgraph model (k, ω)-core on weighted bipartite graphs
by considering both density and frequency of the subgraph.
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• To efficiently handle massive graphs and queries, we develop three advanced index
construction strategies, i.e., RowIndex, OptionIndex and UnionIndex, to reduce index
construction cost. In addition, the corresponding querying algorithms by using the
three index structures are provided.

• We validate the advantages of the proposed algorithms through extensive experiments
on real-world datasets. The results show that the index-based algorithms outperform
the baselines significantly. Moreover, users can make a trade-off between the time and
space cost when selecting from the three strategies.

Roadmap: The rest of the paper is organized as follows. In Section 2, we introduce
the (k, ω)-core model and formulate our problem. Section 3 introduces the naive online
algorithm. Section 4 presents the index-based algorithms and advanced index structures.
We report our experimental results in Section 5 and review the related work in Section 6.
Finally, we present the conclusion and future work in Section 7.

2. Preliminaries

We use G = (L, R, E, W) to denote a weighted bipartite graph, where nodes in G are
partitioned into two disjoint sets L and R, such that each edge from E ⊆ L× R connects
two nodes from L and R, respectively. We use n = |L|+ |R| and m = |E| to denote the
number of nodes and edges, respectively. N(u) is the set of adjacent nodes of u in G,
which is also called the neighbor set of u in G. The degree of a node u ∈ L, denoted by
d(u), is the number of neighbors of u in G. For each edge e(u, v), we assign it a positive
weight w(u, v) ∈W, defined as the frequency of edge e(u, v). The weight of a node v ∈ R,
denoted by wt(v) = ∑u∈N(v) w(u, v), is the sum of weights of each adjacent edge. We
use kmax = max{d(u)|u ∈ L} and ωmax = max{ω(v)|v ∈ R} to denote the maximum
degree and weight for nodes in G, respectively. For a bipartite graph G and two node sets
L′ ⊆ L and R′ ⊆ R, the bipartite subgraph induced by L′ and R′ is the subgraph G′ of G
such that E′ = E ∩ (L′ × R′). To evaluate the cohesiveness and frequency of communities
in weighted bipartite subgraphs, we resort to the minimum degree for node set L and
minimum weight for node set R. In detail, for an induced subgraph, we request that nodes
in L′ have a degree of at least k and nodes in R′ have a weight no less than ω.

Definition 1 ((k, ω)-core). Given a weighted bipartite graph G = (L, R, E, W) and two query
parameters k and ω, the induced subgraph S = (L′, R′, E′, W ′) is the (k, ω)-core of G, denoted by
Ck,ω, if S satisfies:

• Degree constraint. For each node u ∈ L′, it has degree at least k, i.e., d(u, S) ≥ k;
• Weight constraint. For each node v ∈ R′, it has weight no less than ω, i.e., ωt(v, S) ≥ ω;
• Maximal. Any supergraph S′ ⊃ S is not a (k, ω)-core.

Example 1. Figure 1 is a toy weighted bipartite graph for modeling the customer–product affilia-
tions. It consists of two layers of nodes, i.e., the four nodes in the left layer denote the customers and
five nodes in the right layer denote the products. The edges between nodes represent the purchase
relationships and the weight of edges reflects the purchase frequency. Given the query parameters
k = 2 and ω = 4, we can obtain C2,4 consisting of nodes {u1, u2, v2, v3}.

For simplicity, we refer to a weighted bipartite graph as a graph, and omit G, S in the
notations if the context is self-evident. In the following lemma, we show that (k, ω)-core
has the nested property. It is easy to verify the correctness of the lemma based on the
definition. Thus, we omit the proof here.

Lemma 1. Given a weighted bipartite graph G, the (k′, ω′)-core is nested to the (k, ω)-core, i.e.,
Ck′ ,ω′ ⊆ Ck,ω, if k′ ≥ k and ω′ ≥ ω.

Example 2. As shown in Example 1, C2,4 consists of nodes {u1, u2, v2, v3}. Suppose k = 2 and
ω = 2. We can find that C2,2 contains C2,4, i.e., C2,2 = {u1, u2, u3, v2, v3, v4} ⊇ C2,4.
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Problem 1. Given a weighted. bipartite graph G and two query parameters k and ω, we aim to
design algorithms to compute the (k, ω)-core correctly and efficiently.

3. Online Solution

Before introducing the detailed algorithms, Figure 2 shows the general framework
of the proposed techniques in this paper. To identify the (k, ω)-core, an online solution
is first developed in Section 3. To efficiently handle large networks and different input
parameters, an index-based solution is further proposed in Section 4. The index-based
solution consists of two phases: an index construction phase and query phase. In addition,
different optimization techniques are proposed to ensure a balance between the index
construction time and index space.

For the online solution, we introduce a baseline algorithm, named GCORE, by ex-
tending the solution for (α, β)-core computation. The main idea of GCORE is to iteratively
remove nodes with a degree less than k in L and a weight less than ω in R. GCORE termi-
nates until the size of G stays unchanged, i.e., there is no node that violates the constraints.
Then, we output the remaining graph as (k, ω)-core. The details are shown in Algorithm 1.
In Lines 2–5, we check the degree constraint for nodes in L. For each node u ∈ L with
d(u) < k, we remove it with its adjacent edges. Then, we update the weight of node v in
N(u), i.e, subtract the weight of corresponding removed edge e(u, v) from the total weight
wt(v). In Lines 6–9, we examine the weight constraint for nodes in R. For each node v with
wt(v) < ω, we remove it with its incident edges. Accordingly, we decrease the degree of u
by 1 for each u in N(v), which may cause the node to violate the degree constraint. The
algorithm terminates until both constraints are satisfied and finally returns the (k, ω)-core
of G.

Algorithm 1: GENERATE (k, ω)-CORE

Input : Bipartite graph: G = (L, R, E, W), degree constraint: k, weight constraint:
ω

Output : The (k, ω)-core of G
while ∃u ∈ L with d(u) < k ∨ ∃v ∈ R with wt(v) < ω do1

for each u ∈ L ∧ d(u) < k do2

for each v ∈ N(u) do3

wt(v)← wt(v)− w(u, v);4

L.remove(u);5

for each v ∈ R ∧ wt(v) < ω do6

for each u ∈ N(v) do7

d(u)← d(u)− 1;8

R.remove(v);9

return G10

Discussion: The time complexity of Algorithm 1 is linear to the size of the graph.
However, as discussed in the introduction, the method is still not affordable, especially for
massive graphs and queries.
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Figure 2. General framework of the online and index-based solutions.

4. Index-Based Solution

For each input parameter, Algorithm 1 has to compute the (k, ω)-core from scratch,
which is time-consuming and cannot support a large number of queries. To tackle the
challenges, in this section, index-based algorithms are developed. The main idea is that
we effectively organize all the (k, ω)-cores in the index, so that a query could be efficiently
answered. Firstly, a baseline solution is presented. To speed up the processing of the
baseline, we devise a time-improved solution. Then, several novel index structures are
developed to shrink the storage space.

4.1. Baseline Solution

Intuitively, the naive index-based algorithm is to compute all the (k, ω)-cores by
repeatedly using the GCORE algorithm and then storing all of them in the index. As a
result, we can quickly return the (k, ω)-core for any given query parameters. In details,
we organize all the (k, ω)-cores in a two-dimensional index. That is, the nodes in (k, ω)-
core are all stored in (k, ω)-cell, where (k, ω)-cell is in the k-th row and ω-th column
(0 ≤ k ≤ kmax, 0 ≤ ω ≤ ωmax) of the index. The procedure terminates until all the possible
(k, ω)-cores are found. As a result, we can immediately obtain (k, ω)-core for any given pair
of parameters k and ω, according to the two-dimensional locations of cells. Table 1 shows
the index for the graph in Figure 1. For example, the set of nodes in the (1, 1)-core, i.e.,
{u1, u2, u3, u4, v1, v2, v3, v4, v5}, are all stored in the (1, 1)-cell. If querying the (1, 1)-core,
we only need to visit the (1, 1)-cell. Hence, Q1,1 can be easily solved in optimal time, with
O(1) time complexity.

Table 1. Index construction example.

k/ω 1 2 3 4 5

1 u1, u2, u3, u4
v1, v2, v3, v4, v5

u1, u2, u3, u4
v2, v3, v4

u1, u2, u3, u4
v2, v3, v4

u1, u2, u3
v2, v3

u1, u2, u3
v2, v3

2 u1, u2, u3
v1, v2, v3, v4, v5

u1, u2, u3
v2, v3, v4

u1, u2
v2, v3

u1, u2
v2, v3

3 u1, u3
v1, v2, v3, v4, v5

4.2. Time-Improved Method

The baseline index method is time-consuming, since we need to compute all the
possible (k, ω)-cores one by one. Due to the nested property of (k, ω)-core, many subgraphs
will be computed multiple times. To reduce the time consumption, we resort to the
time-improved solution by escaping the unnecessary (k, ω)-core computations. Before
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going to the detailed method, we first introduce the concept of ωmax,k(u) to help present
the algorithm.

Definition 2 (ωmax,k(u)). Given a weighted bipartite graph G = (U, E, W), where U = R ∪ L,
and a specific value k, for each node u ∈ U, ωmax,k(u) is the maximum value of ω for which there
exists a (k, ω)-core that contains u.

For a node u ∈ U and a specific value k, we know that the (k, ωmax,k(u))-core contains
u by Definition 2. According to the nested property of (k, ω)-core by Lemma 1, we can infer
that the (k, ωmax,k(u))-core is also contained in (k, ωi)-cores of G, where ωi is no larger than
ωmax,k(u). Thus, there are many redundant computations in the process of constructing
index structure. To address the above concerns, we devise an improved index-based
algorithm. Given a graph G and an integer k, we first compute ωmax,k(u) for each node
u ∈ U and then store u in the (k, ω)-cells where 0 ≤ ω ≤ ωmax,k(u). Note that we store all
nodes in row for a specific input k. The details are shown in Algorithm 2.

Algorithm 2: COMPUTEROW(k, G)
Input : Bipartite graph: G = (L, R, E, W)
Output : Constructed index
Initialize row[ ]← ∅, ω ← 1;1

G′ = (L′, R′, E′, W ′)← GENERATE (k, 0)-core;2

while G′ is not empty do3

while ∃u ∈ L′ : d(u) < k ∨ ∃v ∈ R′ : wt(v) < ω do4

for each u ∈ L′ ∧ d(u) < k do5

for each v ∈ N(u) do6

wt(v)← wt(v)− w(u, v);7

L′.remove(u);8

for i = 0 to ω− 1 do9

Put u into row[i];10

for each v ∈ R′ ∧ wt(v) < ω do11

for each u ∈ N(v) do12

d(u)← d(u)− 1;13

R′.remove(v);14

for i = 0 to ω− 1 do15

Put v into row[i];16

ω ← ω + 1;17

return row18

In Algorithm 2, we first initialize row as empty and ω as 1 (Line 1). Then, we generate
the (k, 0)-core as the candidate subgraph by using the GCORE algorithm. In Lines 5–10,
if node u ∈ L′ violates the degree constraint, we remove it with its adjacent edges and
update the weight of the node v ∈ R′ which is also included in the neighbor set of u. After
obtaining ωmax,k(u), we put node u into row[i] where 0 ≤ i ≤ ωmax,k(u)− 1. Similarly,
we check the weight constraint. In Lines 11–16, if node v ∈ R′ dissatisfies the weight
constraint, we decrease the degree of the node u inside the neighbor set of v by 1. Then, we
obtain ωmax,k(v) and put node v into row[i], where 0 ≤ i ≤ ωmax,k(v)− 1. We continue the
iteration until all the nodes are removed from G′. Finally, we return row as the resulting
index for a given specific k. Note that we can obtain the index structure for the whole graph
by repeatedly invoking Algorithm 2 with different input values of k.

Discussion: Although the time-improved method can speedup the processing, it is
prohibitive for large graphs due to the large index storage cost. This is because a node can
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be stored in multiple cells due to the nested property. For instance, given a fixed k = 1, the
nodes in the (1, 3)-cell will also be stored in (1, 1)-cell, (1, 2)-cell and (1, 3)-cell. Similarly,
for a specific ω, the same problem still exists when computing the column index.

4.3. Advanced Index Structures

As discussed, the baseline index method suffers from storage issues. To shrink the
index space without sacrificing much efficiency, we introduce three novel index structures,
i.e., (1) RowIndex: by utilizing the nested property of (k, ω)-core, we compress each row
of the index; (2) OptionIndex: by comparing the shrink size of compression in row and
column, we select the better compression direction; (3) UnionIndex: by considering both
row and column compression, we conduct the union operations on cells of the index. In
addition, the corresponding query algorithms are presented.

4.3.1. Rowindex

According to the nested property in Lemma 1, we know that Ck,ω is always a subset
of Ck,ω−1. Thus, we resort to the RowIndex by compressing row of the index, since it can
avoid storing a single node many times. Given a specific k, we say that all the (k, ∗)-cells
are in the k-th row, where the symbol “∗” represents any possible value of ω. The main
difference between RowIndex and the index structure proposed above is that we only store
each node u ∈ U in the (k, ωmax,k(u))-cell, instead of putting it into (k, ωi)-cells where
0 ≤ ωi ≤ ωmax,k(u). Thus, we only need to deposit each node at most once in each row
of the index, which can save space from the redundant copies of nodes. Meanwhile, we
also record the shrink direction (i.e., “→”) in the shrink, which is a direction table. As the
procedure of RowIndex is easy to understand, we omit its pseudo-codes in the context.

RowIndex Query Algorithm: Given query parameters k and ω, we first locate the
(k, ω)-cell. Then, we collect all the nodes contained in the (k, ωi)-cell where ω ≤ ωi ≤ ωmax,
and output them together as the resulting (k, ω)-core.

Example 3. As shown in Table 1, for k = 1, the (1, 1)-cell containing nodes {u1, u2, u3, u4, v1, v2,
v3, v4, v5} can be compressed to the (1, 3)-cell and the (1, 5)-cell. That is, nodes u4, v4 only need
to be saved in the (1, 3)-cell and nodes u1, u2, u3, v2, v3 only need to be stored in the (1, 5)-cell.
Thus, only the remaining nodes v1 and v5 are stored in the (1, 1)-cell. Obviously, RowIndex saves a
lot of space. When querying the (2, 3)-core, we first locate the (2, 3)-cell and output nodes in the
(2, 3)-cell and (2, 4)-cell together. Thus, we have C2,3 = {u1, u2, v2, v3}.

4.3.2. OptionIndex

As discussed above, RowIndex utilizes the nested property to reduce the redundant
storage for each node in each row of the index. Similarly, we can construct ColumnIndex
to compress each column of the index in the same manner, which also enjoys the same
space cost. Naturally, it is possible that certain cells may compress more storage by
ColumnIndex than RowIndex. That is, column compression may contribute more to space
saving for some cells. Motivated by this, we devised the OptionIndex structure, which is
constructed by traversing all cells one by one. Specifically, when visiting a specific cell, we
first compared the compression size of different compression directions, i.e., RowIndex
or ColumnIndex, and then selected the better one to reduce more space. For example,
in Table 1, the compression size is 7 if we use RowIndex to shrink the (1, 1)-cell to the
(1, 2)-cell with shrink direction “→”. Additionally, the compression size is 8 if we use
ColumnIndex to shrink the (1, 1)-cell to the (2, 1)-cell with shrink direction “↓”. Since
ColumnIndex shrinks more than the RowIndex for the (1, 1)-cell, we chose ColumnIndex
and shrank (1, 1)-cell to the (2, 1)-cell. Similarly, we chose RowIndex for the (1, 4)-cell, as
RowIndex saves a space of five nodes while ColumnIndex saves four. The details of the
construction procedure for OptionIndex are shown in Algorithm 3.
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Algorithm 3: OPTIONINDEX CONSTRUCTION ALGORITHM

Input : Bipartite graph: G = (L, R, E, W)
Output : Constructed index
Initialize index[ ][ ]← ∅, shrink[ ][ ]← ∅;1

cRow[ ]← COMPUTEROW(0, G); /* Algorithm 2 */2

for k = 0 to kmax-1 do3

nRow[ ]← COMPUTEROW(k + 1, G);4

for ω = 0 to ωmax do5

rs← +∞, cs← +∞;6

if ω + 1 ≤ ωmax then7

rs← cRow[ω].size− cRow[ω + 1].size;8

if k + 1 ≤ kmax then9

cs← cRow[ω].size− nRow[ω].size10

if rs ≤ cs then11

index[k][ω]← cRow[ω]−cRow[ω + 1];12

Put→ into shrink[k][ω];13

else14

index[k][ω]← cRow[ω]−nRow[ω];15

Put ↓ into shrink[k][ω];16

cRow← nRow;17

Shrink the last row of the index;18

return index and shrink19

In Algorithm 3, we first initialize the index and shrink as empty (Line 1). In Line 2, the
algorithm computes (0, ω)-core as the initialization of the current processing row cRow
and deals with each row in the main loop (Lines 4–17). We set the row next to the cRow
as nRow at Line 4. Then, we compressed the storage space for all possible (k, ω)-cores
in cRow (Lines 5–16). In each inner iteration, we first initialized both of the resulting
sizes of the (k, ω)-cell after row shrink (rs) and column shrink (cs) as positive infinity. In
Lines 7–8, we use RowIndex to shrink the (k, ω)-cell to the (k, ω + 1)-cell and the resulting
size of the (k, ω)-cell is reserved in rs. Meanwhile, in Lines 9–10, we utilize ColumnIndex
to shrink the (k, ω)-cell to the (k + 1, ω)-cell and the resulting size of the (k, ω)-cell is
reserved in cs. It is obvious that smaller the resulting size of the (k, ω)-cell is, the better
the result of compression. Hence, in Lines 11–16, for a specific (k, ω)-cell, if the value of
rs is no larger than cs, we choose RowIndex to compress and put the nodes contained
in the (k, ω)-core but not in the (k, ω + 1)-core into (k, ω)-cell, with the corresponding
direction “→” recorded in shrink. Otherwise, we select ColumnIndex to compress, and put
the nodes contained in the (k, ω)-core but not in the (k + 1, ω)-core into (k, ω)-cell, with
the corresponding direction “↓” reserved in shrink. We deal with each cell the same way
one by one. Finally, we shrink the last row of the index in Line 18 by using Algorithm 2
and then return the resulting OptionIndex with its corresponding direction table shrink in
Line 19.

OptionIndex Query Algorithm: Based on the pre-computed OptionIndex, we devised
an efficient option query algorithm, and the details are shown in Algorithm 4. In Line 1,
we first initialize the (k, ω)-core Q as empty. In Lines 2–3, for given k and ω, we locate
index[k][ω] and then add the nodes contained in the (k, ω)-cell to Q. At the same time,
we obtain the shrink direction d from shrink[k][ω] (Line 4). In Lines 6–9, if the direction is
“→”, it implies the current (k, ω)-cell adopts the row compression. Then, we add the nodes
contained in the (k, ω + 1)-cell to Q and then turn to the (k, ω + 1)-cell. In Lines 10–13, if
the direction is “↓”, it suggests that the shrink direction is down the column. Accordingly,
the nodes stored in the (k, ω)-cell are added into Q, and then we turn to (k + 1, ω)-cell for
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the next iteration. The procedure terminates until the shrink direction is null and finally
we return Q as the resulting (k, ω)-core.

Algorithm 4: OPTIONINDEX BASED QUERY ALGORITHM

Input : Bipartite graph: G = (L, R, E, W), degree constraint: k, weight constraint:
ω

Output : The (k, ω)-core of G
Q← ∅;1

Locate index[k][ω];2

Q← Q ∪ index[k][ω];3

d← shrink[k][ω];4

while d is not null do5

if d = “→” then6

ω ← ω + 1;7

Q← Q ∪ index[k][ω];8

d← shrink[k][ω];9

else if d = “↓” then10

k← k + 1;11

Q← Q ∪ index[k][ω];12

d← shrink[k][ω];13

return Q14

4.3.3. Unionindex

To further reduce index cost, we propose the UnionIndex. The main difference between
UnionIndex and OptionIndex is that we compress certain cells both in row and column
directions at the same time to narrow more space. For example, recall that in Table 1,
the (1, 1)-cell can be shrunk to the (1, 2)-cell with compression size 7, or to the (2, 1)-cell
with compression size 8. However, the compression size can be up to 9 (i.e., all nodes in
the graph) if we shrink the (1, 1)-cell to both the (1, 2)-cell and (2, 1)-cell simultaneously
with shrink directions “→” and “↓”. Thus, we chose both of the two directions to shrink
space storage. In detail, we deposited the nodes contained in the (1, 1)-core but not in the
union set of (1, 2)-core and (2, 1)-core into the (1, 1)-cell with shrink directions “→” and
“↓” recorded simultaneously in the direction table.

The pseudo-codes to construct UnionIndex are presented in Algorithm 5. Since the
UnionIndex structure is similar to the OptionIndex structure, we only demonstrate the
difference from Algorithm 3 for simplicity. In Lines 6–8, for a specific k, if the (k+ 1, ω)-core
is nested to the (k, ω + 1)-core, it indicates that the compression size of RowIndex is larger
than that of ColunmIndex. Thus, we put the nodes contained in the (k, ω)-core but not
in the (k, ω + 1)-core into the (k, ω)-cell with shrink direction “→”. On the contrary, if
the (k + 1, ω)-core contained the (k, ω + 1)-core, we deposited the nodes included in the
(k, ω)-core but not in the (k + 1, ω)-core into the (k, ω)-cell with shrink direction “↓” in
Lines 9–11. Otherwise, in Lines 12–14, we compress the (k, ω)-cell to the (k + 1, ω)-cell
and the (k, ω + 1)-cell at the same time with shrink directions “→” and “↓” recorded in
the direction table, by avoiding the redundant storage of nodes in the union set of the
(k + 1, ω)-core and the (k, ω + 1)-core. Finally, the algorithm returns UnionIndex with its
corresponding direction table shrink in Line 17.
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Algorithm 5: UNIONINDEX CONSTRUCTION ALGORITHM

Input : Bipartite graph: G = (L, R, E, W)
Output : Constructed index
Initialize index[ ][ ]← ∅, shrink[ ][ ]← ∅;1

cRow[ ]← COMPUTEROW(0, G);2

for k = 0 to kmax-1 do3

nRow[ ]← COMPUTEROW(k + 1, G);4

for ω = 0 to ωmax do5

if nRow[ω] ⊂ cRow[ω + 1] then6

index[k][ω]← cRow[ω]−cRow[ω + 1];7

Put “→” into shrink[k][ω];8

else if cRow[ω + 1] ⊂ nRow[ω] then9

index[k][ω]← cRow[ω]−nRow[ω] ;10

Put “↓” into shrink[k][ω];11

else12

index[k][ω]← cRow[ω]−(cRow[ω + 1]∪nRow[ω]) ;13

Put “→” and “↓” into shrink[k][ω];14

cRow← nRow;15

Compress the last row of the index;16

return index and shrink17

UnionIndex Query Algorithm: The procedure for querying UnionIndex is simple and
the details are shown as follows. When given two query parameters k and ω, we first locate
the (k, ω)-cell and collect the nodes stored inside it. Then, we obtain the corresponding
shrink direction in the direction table shrink, which is obtained with Algorithm 5. If the
direction is only “→” (resp. “↓”), then we locate the (k, ω + 1)-cell (resp. (k + 1, ω)-cell)
and collect the nodes contained inside it. Particularly, if there are two shrink directions
“→” and “↓” recorded in the shrink, we visit the (k + 1, ω)-cell and the (k, ω + 1)-cell at
the same time, collecting their nodes together without duplications. We did the same for
all visited cells until the current shrink direction was null and finally we outputted all the
collected nodes as the resulting (k, ω)-core.

5. Experiments

In this section, we detail experiments over six real-life networks to verify the perfor-
mance of the proposed methods.

5.1. Experiment Setup

Algorithms: In the experiments, we implemented and evaluated the algorithms
as follows.

• GCore. The baseline algorithm i.e., Algorithm 1.
• BL. The baseline index-based solution.
• TI. The time-improved index algorithm.
• TI+Row. The time-improved algorithm that is integrated with the RowIndex structure.
• TI+Option. The time-improved algorithm that is integrated with the OptionIndex

structure.
• TI+Union. The time-improved algorithm that is integrated with the UnionIndex

structure.

Datasets: We employed six real-life networks, i.e., Pedia, Movielens, News, Quote,
Books and Citeulike, which have been widely used in previous studies (e.g., [2,3,15]) and
are publicly available at http://konect.cc/networks/ (accessed on 20 May 2021). Table 2
provides the statistical details of the datasets. For a query with a given pair of parameters k

http://konect.cc/networks/
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and ω, we ran the algorithms over each dataset 200 times and reported the average value.
All the programs were implemented in C++ and the experiments were performed on a PC
with an Intel Xeon 3.2 GHz CPU and 32 GB RAM.

Table 2. Statistics of datasets.

Dataset L Layer R Layer Edges

Pedia 6325 24,952 25,039
Movielens 7588 16,528 63,135
News 1408 25,138 105,039
Quote 21,607 94,756 232,924
Books 32,583 134,942 432,092
Citeulike 22,715 791,763 1,531,769

5.2. Performance Evaluation

To evaluate the efficiency, we compare the response time and space storage of the
algorithms on the datasets as follows.

Efficiency of the time-improved algorithm: We firstly compared the baseline solution
(BL) with the time-improved algorithm (TI) over all the datasets for index construction.
The results are shown in Figure 3. It is obvious that TI runs much faster than BL, since BL
needs to compute each subgraph from scratch. In particular, TI significantly outperforms
BL in large graphs. For instance, in the Books dataset, TI can achieve a speed that is up to
42X faster.

Pedia Movielens News Quote Books Citeulike
101

102

103

104

105

106

tim
e(
m
s)

BL
TI

Figure 3. Efficiency evaluation of the time-improved algorithm.

Evaluation of index-construction time: To evaluate the performance of different strate-
gies, in Figure 4, we report the index construction time of TI, TI+Row, TI+Option and
TI+Union. We vary the percentage of nodes selected as the input graph. As expected,
more nodes will lead to a higher index construction time. TI+Union is slower than the
other methods, since it is the most complex method for index construction. The rank
of the time costs for the three index construction methods is: RowIndex < OptionIndex
< UnionIndex. Note that the highest time cost gap is in the order of seconds, which is
tolerable for many applications.
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Figure 4. Evaluation of index-construction time.

Evaluation of the index space: In this experiment, the space costs are compared among
the four index-construction algorithms, i.e., TI, TI+Row, TI+Option and TI+Union. Note
that the space storage is measured by the number of nodes stored inside the index. Similarly,
we vary the percentage of nodes in each dataset. The results are shown in Figure 5. As
observed, with the increase in nodes involved, more index space is required for all the
algorithms. Obviously, the space cost of TI+Union is much less than that of TI, which
can save up to 7X space in the News dataset. As expected, TI+Union greatly outperforms
TI+Row and TI+Option, for it can omit the largest number of unpromising copies of nodes.
The rank of the space cost for these methods is: UnionIndex < OptionIndex < RowIndex.

Figure 5. Evaluation of the index space.

Effect of k in (k, ω)-core queries: To evaluate the querying performance of proposed
techniques, we report the response time of GCore, TI+Row, TI+Option and TI+Union
algorithms on the three largest datasets by varying k. The results are shown in Figure 6.
As shown, with the increase in k, the response time of each algorithm decreases. This is
because the returned densely frequent community size become smaller when the degree
constraint k becomes tighter. Moreover, there is no doubt that all the index-based query
algorithms run much faster than GCore for all k values. The main reason is that the index-
based algorithms pre-compute the (k, ω)-core information, so that we can quickly obtain
the related nodes when querying any (k, ω)-core.
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Figure 6. Effect of k in (k, ω)-core queries.

Effect of ω in (k, ω)-core queries: In Figure 7, we report the response time of GCore,
TI+Row, TI+Option and TI+Union by varying ω. With the increase in ω, the response
time decreases for all the algorithms, since the size of the detected cohesive subgraph
decreases accordingly. The index-based solutions are much faster than the online solution,
i.e., GCore. As shown, more complex index structures, such as TI+Union, will lead to a
higher computation cost. Therefore, users can make a trade-off between the querying time
and space cost when selecting the index strategies.

Figure 7. Effect of ω in (k, ω)-core queries.

Discussion: According to the results of the experiment, we can find that the index
construction time grows with the increase in dataset size. However, the increase rates of
OptionIndex and UnionIndex grow much faster than RowIndex. This is because, for larger
datasets, it usually means larger kmax and ωmax. Therefore, with the increase in kmax and
ωmax, OptionIndex and UnionIndex need to take more time to decide the best direction
for index construction in order to shrink the index space. When selecting the appropriate
solution, in addition to the index space issue, users should pay more attention to kmax and
ωmax of the used networks.

6. Related Work

Graphs are widely used to model the complex relationships between entities [16]. As a
special graph, many real-life systems are modeled in bipartite graphs, such as author–paper
networks [17], customer–product networks [18] and gene co-expression networks [19].
Bipartite graph analysis is of great importance and has attracted great attention in the
literature. Guillaume et al. show that all complex networks can be viewed as bipartite
structures sharing some important statistics, such as degree distributions [20]. In [21],
Kannan et al. utilize simple Markov chains for the problem of generating labeled bipartite
graphs with a given degree sequence. Borgatti et al. present and discuss ways of applying
and interpreting traditional network analysis techniques to two-mode data [22].

Cohesive subgraph identification is a fundamental problem in graph analysis, and
different models are proposed, such as k-core [23], k-truss [24] and clique [25]. Due to
the unique properties of bipartite graphs, many studies are conducted to design and
investigate the cohesive subgraph models for bipartite graphs, such as (α, β)-core, bitruss
and biclique. Ahmed et al. [26] are the first to formally propose and investigate the
(α, β)-core model. The authors of [3] further extend the linear k-core mining algorithm to
compute the (α, β)-core. In [4], the authors combine the influence property with (α, β)-core
for community detection. Considering the structure properties, Zou et al. [9] propose the
bitruss model, where each edge in the community is contained in at least k butterflies. To
further study the clustering ability in bipartite graphs, Flajolet et al. [27] use the ratio of the
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number of butterflies to the number of three paths for modeling the cohesiveness of the
graph. In [28], Robins et al. resort to the (2, 2)-biclique to model the cohesion. In [10], a
progressive method is proposed to speed up the computation of biclique. As we can see,
the previous studies do not consider the weight factor for cohesive subgraph identification.
Thus, in this paper, we propose (k, ω)-core to capture the weight property for bipartite
network analysis. Even though we can extend the computation procedure of (α, β)-core for
(k, ω)-core identification (i.e., online solution), it cannot handle large graphs and different
parameters efficiently. Therefore, in this paper, we propose index-based solutions with
different optimization strategies to deal with this issue.

7. Conclusions and Future Work

In this paper, we introduce a novel cohesive subgraph model (k, ω)-core for weighted
bipartite graph analysis. A baseline online solution is first presented by extending the
method for (α, β)-core computation. To handle massive graphs and queries, index-based
strategies are developed by using the nested property. To balance the query performance
and space cost, three advanced index structures are further introduced. Finally, we conduct
extensive experiments on real-world datasets to evaluate the performance of the proposed
techniques. In future work, we will consider the external algorithms or distributed solutions
for (α, β)-core identification in order to support larger networks.
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