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Abstract: The characteristics of groundwater pollution caused by illegal waste dumping and methods
for predicting and remediating it are still poorly understood. Serious 1,4-dioxane groundwater
pollution—which has multiple sources—has been occurring at an illegal waste dumping site in
the Tohoku region of Japan. So far, anti-pollution countermeasures have been taken including the
installation of an impermeable wall and the excavation of soils and waste as well as the monitoring
of contamination concentrations. The objective of this numerical study was to clarify the possibility
of predicting pollutant transport in such dynamic and complex hydrologic environments, and to
investigate the characteristics of pollutant transport under both naturally occurring and artificially
induced groundwater flow (i.e., pumping for remediation). We first tried to reproduce the changes
in 1,4-dioxane concentrations in groundwater observed in monitoring wells using a quasi-3D flow
and transport simulation considering the multiple sources and spatiotemporal changes in hydrologic
conditions. Consequently, we were able to reproduce the long-term trends of concentration changes
in each monitoring well. With the predicted pollutant distribution, we conducted simulations for
remediation such as pollutant removal using pumping wells. The results of the prediction and
remediation simulations revealed the highly complex nature of 1,4-dioxane transport in the dumping
site under both naturally occurring and artificially induced groundwater flows. The present study
suggests possibilities for the prediction and remediation of pollution at illegal waste dumping sites,
but further extensive studies are encouraged for better prediction and remediation.

Keywords: 1,4-dioxane; dynamic; pollution; dumping site; transport phenomena

1. Introduction

Many areas around the world still rely heavily on groundwater for daily water con-
sumption. Thus, the maintenance of a suitable groundwater quality is crucial [1–5]. During
the 2000s, however, various human activities significantly impacted groundwater quality
and availability through various forms of pollution [4], with landfills, mines, and industrial
plants being some of the main sources of groundwater pollutants [6,7]. The most common
pollutants include heavy metals, non-aqueous phase liquids (NAPLs), and volatile organic
compounds (VOCs) [8,9]. These pollutants are hazardous chemicals that can potentially
negatively impact human health. Unfortunately, pollution from illegal waste dumping
sites also occurs, causing serious health and environmental problems [10,11]. Previous
studies have demonstrated that the respiratory exposure of VOCs via the inhalation route
is associated with the risk of specific diseases [12]. However, the characteristics of pollution
caused by illegal waste dumping as well as ways of predicting and addressing the problem
are still poorly understood. This limited understanding is due to the dynamic and highly
complex nature of pollution caused by illegal waste dumping, and the complexity orig-

Appl. Sci. 2021, 11, 9229. https://doi.org/10.3390/app11199229 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2304-1548
https://orcid.org/0000-0002-3876-2794
https://doi.org/10.3390/app11199229
https://doi.org/10.3390/app11199229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11199229
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11199229?type=check_update&version=2


Appl. Sci. 2021, 11, 9229 2 of 12

inates from multiple pollution sources and the artificially induced pollution-prevention
changes (e.g., excavation and pumping) in hydrologic environments.

At illegal waste dumping sites, pollutants leak from the waste to the groundwater
over a long period of time. At the time of discovery, the distribution of contamination
may be widespread, requiring countermeasures such as monitoring and remediation,
which generally require considerable time and expense [13–15]. Consequently, it would
be desirable to understand the characteristics of pollutant transport and to predict it in
dynamic and complex hydrologic environments in illegal waste dumping sites [16]. For this
purpose, simulations of pollutant transport in the presence of groundwater flow require
consideration of the characteristic history of the illegal waste dumping site in addition to
the conventionally considered subsurface flow and transport properties [17,18]. However,
such simulations have not been conducted yet.

In the prefecture of the Tohoku region, Japan, an illegal dumping site was discovered
in 1990, with various countermeasures having been implemented to date (2021) due to
the existence of 1,4-dioxane groundwater pollution—a regulated substance (groundwater
standard: ≤0.05 mg/L) [19–23]. At this site, multiple pollutant sources have been expected
based on data from monitoring wells, and multiple countermeasures (e.g., the installation
of impermeable walls) that potentially impact the hydrologic environment have been
implemented. 1,4-Dioxane is highly miscible with water, and its biodegradation and
adsorption to soil may be neglected [24–26], making this site suitable for fundamental
studies on pollutant transport in the dynamic and complex hydrologic environments of
illegal waste dumping sites. In this context, the objective of this study was to clarify
the possibility of numerically predicting pollutant transport in the dynamic and complex
hydrologic environments at this site in Japan, and to investigate the characteristics of
pollutant transport under both naturally occurring and artificially induced groundwater
flow using various countermeasures including remediation with pumping.

2. Materials and Methods
2.1. Site Information

History of Site Modification and Monitoring 1,4-dioxane

The illegal waste dumping site is located in the Tohoku region of Japan, Figure 1 shows
a map of the site. The site covers an area of approximately 0.16 square kilometers and has
illegally collected and buried industrial waste for decades. Approximately 270,000 m3 of
waste has been dumped at this site including incinerator ash, sludge, and refuse-derived
fuel materials, which has caused the spread of serious contaminants in both the soil
and groundwater.

Table 1 shows the history of the illegal waste dumping. A company started illegally
dumping waste in the 1990s, and when the local government in one of Japan’s prefectures
discovered this, they immediately conducted a site survey. The prefectural government
conducted an initial field survey in 2000, and for 10 years (from 2004 to 2014), it conducted
additional surveys, observed groundwater contamination, and cleaned up the buried waste.
To prevent groundwater from the waste burial site in one prefecture from contaminating
the neighboring prefecture, a barrier wall (i.e., impermeable wall) was installed along
the prefectural border (between 2005 and 2007). In 2009, the municipality implemented
a groundwater treatment plant, installing pumping wells along the barrier wall in 2010.
Moreover, the municipality monitored and documented 1,4-dioxane contamination from
2013 to 2020, as 1,4-dioxane had been detected in monitoring wells installed on the site.

This study focused on an area of 500 × 500 m for this site, as shown in Figure 1. For this
area, the elevation and groundwater levels were obtained from a Geological Information
System (GIS) and site investigation data [27]. There is a groundwater divide in this area,
which divides groundwater flow into two major directions. The groundwater level was
used to determine the flow potential in the governing equations for subsurface flows as
described below.
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Table 1. History of site modifications (well installation and monitoring period).

Year Events

1990 Started illegally dumping industrial waste
2000 Started removing waste

2005–2007 Installed impermeable wall
2009 Implemented a groundwater treatment plant
2010 Installed pumping well

2013 Started monitoring of 1,4-dioxine
(Under survey (2021))

2014 Finished removing waste
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2.2. Flow and Transport Simulation
2.2.1. Governing Equation

In this study, the aquifer was assumed to be a single layer with a thickness of 5 m
because it was difficult to obtain a detailed geological cross section of the aquifer. The
flow in the aquifer was modeled as a 2D two-phase flow of water and non-aqueous phase
liquid (NAPL) in the x-y coordinates, where NAPL is 1,4-dioxane [27]. However, the flow
potential of the model takes into account the groundwater level (i.e., difference between
land surface elevation and depth to water). As a result, the model is a quasi 3D model. The
governing equations for the flows for NAPL and groundwater with/without dissolved
NAPL and the advection-diffusion equation for NAPL in water are respectively represented
by Equations (1)–(3), as follows.
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where K is the absolute permeability (m2); kro is the relative permeability for NAPL (frac-
tion) [28–30]; krw is the relative permeability for water (fraction) [28–30]; µo is the NAPL
viscosity (Pa·s); µw is the water viscosity (Pa·s); ρo is the molar density of NAPL (mol/m3);
ρw is the molar density of water (mol/m3); Φo is the flow potential of NAPL (Pa); Φw is the
flow potential of water (Pa); So is the NAPL saturation (fraction); Sw is the water saturation
(fraction); ϕ is the porosity (fraction); Docw,k is the diffusion coefficient (m2/s); xocw,k is
the concertation of NAPL dissolved in water (fraction); and t is time (s). The parameter
values used in this study are listed in Table 2. The parameter values for the groundwater
layer were set by assuming a clay soil, and the parameter values for 1,4-dioxane were
acquired from a database [31–33]. Note that the biodegradation and adsorption to soil for
1,4-dioxane were neglected based on the chemical properties of 1,4-dioxane [34].

Table 2. Basic 1,4-dioxane information and geotechnical information from the site.

Symbol Parameter Unit Input Values Reference

K Permeability m2 1.4 × 10−12
[35]

ϕ Porosity - 0.3
µ0 Viscosity of 1,4-dioxane Pa·s 1.31
µw Viscosity of water Pa·s 1.138

ρ0
Molar density of

1,4-dioxane kmol/m3 18.36

ρw Molar density of water kmol/m3 17.83

Docw,k
Molecular diffusion

coefficient m/s 1.0 × 10−9

These governing equations were solved using the finite difference method by applying
the implicit pressure explicit saturation solution method [36] for implicit solutions for
pressure and explicit solutions for saturation and concentration. To solve the governing
equations, the 500 × 500 m area shown in Figure 1 was divided into a 5 × 5 m grid, and a
hydrologically opened boundary condition was applied for each 500 m side and a constant
flow-rate boundary for each pumping well. The water level was kept constant at the
hydrologically opened boundaries. No detailed geological data were available for the
sites targeted in this study. Therefore, the layer was assumed to be a single layer with the
parameters used in Table 2.

2.2.2. Prediction and Remediation Simulations

The prediction simulation computed the evolution of the groundwater flow and the
concentration of 1,4-dioxane from their initial conditions based on the history of the illegal
waste dumping site (Table 1). The initial groundwater flow was determined based on the
distribution of the groundwater level (GL) (Figure 1). The initial concentrations of 1,4-
dioxane for the assumed contamination source areas 1–5, shown in Figure 1, were obtained
by applying a constant annual input rate of 1,4-dioxane from the waste/contaminated
soils for each grid within each source area, whereas the initial concentration was set to
zero for the other locations. The input rate was set to zero to simulate the removal of
waste/contaminated soils after excavation. The total input volume of 1,4-dioxane for
each area is listed in Table 3, which indicates that Source 1 is where the largest amount of
1,4-dioxane was discarded. To simulate the permeability changes due to the installation
of the impermeable wall, the absolute permeability at the corresponding location after
the wall installation was changed to 1.00 × 10−15 m2. Additionally, when monitoring
wells were added, the corresponding grids were changed to a constant flow-rate bound-
ary at a prescribed discharge rate (pumping rate). More specifically, the pumping rates
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were 10 m3/day for pumping well 1, 31 m3/day for pumping well 2, and 23 m3/day for
pumping well 3, respectively [37].

Table 3. Assumed sources of contamination at the site.

Name Pollution Area [m2] Amount of Source [kg]

Source 1 2500 600
Source 2 1500 20
Source 3 2500 30
Source 4 4500 15
Source 5 400 30

These values were assumed based on fitting by the model.

In the remediation simulation, the 40-year evolution of groundwater flow and the
concentrations of 1,4-dioxane from the final conditions in the prediction simulation were
computed. We conducted two types of remediation simulations considering passive and
active treatments with pumping [37,38]. The concentration of 1,4-dioxane in the studied
area was expected to decrease during the passive and active treatments due to dilution and
removal, respectively, by naturally occurring and pumping-induced groundwater. In the
remediation simulation with active treatment, in addition to preexisting pumping wells
1–3, the monitoring wells were used as new pumping wells at a constant pumping rate of
250 m3/day. Table 4 summarizes the pumping rates of each well.

Table 4. Pump specifications by active treatment.

Name Symbol in Figure 1 Pumping Rate
[m3/day] Reference

Monitoring well 1 1 250

[19]

Monitoring well 2 2 250
Monitoring well 3 3 250
Monitoring well 4 4 250
Monitoring well 5 5 250
Monitoring well 6 6 250
Monitoring well 7 7 250
Monitoring well 8 8 250
Monitoring well 9 9 250
Monitoring well a a 250
Monitoring well b b 250
Monitoring well c c 250

Pumping well 1 P1 10
[35]Pumping well 2 P2 31

Pumping well 3 P3 23

3. Results and Discussion
3.1. Reproduction of Concentration of 1,4-Dioxane Groundwater Pollution in Monitoring Well and
Distribution Prediction

A comparison between the reproduced 1,4-dioxane concentrations in each monitoring
well using a model that considered groundwater flow (Figure 1) and the field monitoring
data is shown in Figure 2. Between 2013 and 2017 (4 years), the reproduced data and moni-
toring data for all monitoring wells generally exhibited good fitting results. In 2013, both
reproduced data and observed data showed relatively higher 1,4-dioxane concentrations
in monitoring wells 1, 2, and 3 for Source 1, and monitoring well 6 for Source 2 than in
the other wells. Significant decreases in 1,4-dioxane concentration were observed from
2014, when the excavation was completed. The good fitting results suggest that predicting
the 1,4-dioxane concentrations by considering groundwater flow is possible due to its
water-soluble characteristics.
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Figure 2. Comparison between the simulation results and observed data of 1,4-dioxane [26]. Red line
means the excavation removal completed at the site (2014).

It should be noted that in terms of short periods of time such as each year, the
reproduced 1,4-dioxane concentration did not fit well with the monitoring data. All
monitoring wells, especially monitoring wells 1, 2, and 3, demonstrated highly fluctuating
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1,4-dioxane concentrations each year. These fluctuations may be related to the complex
geological structure of the site and dynamic environment such as seasonal rainfall or
artificial activities, for example, pumping wells, impermeable walls, and excavation work,
which may have increased the complexity of the groundwater environments. However,
the difference between the monitoring data and reproduced data over short periods does
not influence their consistency in long-term trends; therefore, this model can be used to
predict 1,4-dioxane concentrations and distribution.

Using the reproduced 1,4-dioxane concentrations shown in Figure 2, the distribution
of 1,4-dioxane in the groundwater of the study area over 25 years (1995–2020) is shown in
Figure 3. The GL changes over time are also illustrated in the figure (light blue). In 1995
and 2000, the flow of groundwater containing pollutants was generally divided into two
directions depending on the groundwater divide (northwest to southeast) of this dumping
site area.
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From 2005, an impermeable wall was constructed along the border between the two
prefectures to stop the movement of groundwater as well as the pollutants within it. As a
result, the groundwater contours shown in Figure 4 overlapped along the impermeable
wall, and the flow direction near this area changed from north to south. As expected,
1,4-dioxane was trapped on the east side of the impermeable wall to some extent.
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In 2010, three pumping wells were installed near the impermeable wall at the waste
dumping site for groundwater treatment. This action again increased the complexity of
groundwater flow and groundwater levels. The groundwater near the pumping wells
started to flow toward the wells, and the groundwater levels near the pumping wells
declined. These changes imply accelerated groundwater flow and the transportation of
pollutants in the groundwater. Interestingly, an obvious accumulation of 1,4-dioxane, along
with the impermeable wall, was observed as a result of these artificial activities, that is, the
impermeable wall and pumping well installments.

3.2. Evaluation of Different Methods for Groundwater Treatment

Based on the simulated current distribution of 1,4-dioxane in groundwater at the
study site, two possible treatment methods, that is, passive and active treatments, were
proposed and evaluated.

Passive treatment refers to the natural attenuation of 1,4-dioxane in groundwater.
The simulation results of the distribution of 1,4-dioxane in the study site under natural
attenuation over the next 40 years (2020–2060) are shown in Figure 4. The hydraulic envi-
ronment of this site is relatively stable because no artificial activities have been conducted.
Figure 4 suggests that as time passes, 1,4-dioxane moves with the groundwater flows, its
concentration gradually decreasing. After 10 years of natural attenuation, most areas of
the dumping site have 1,4-dioxane concentrations ≤10−3 mg/L, with very few areas in
the range of 10−3–10−1 mg/L. The concentration of 1,4-dioxane is relatively high near the
impermeable wall, even after 40 years of natural attenuation, which may be attributed to
the stagnation of groundwater flow near this area.

With the active treatment method, groundwater pumping, followed by treatment
technologies, is applied. It is recommended to pump water through the monitoring wells,
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which are more widely installed than the current pumping wells—monitoring wells 7, 8,
and 9 are close to the impermeable wall, which has an accumulation od 1,4-dioxane. A
constant pumping rate of 250 m3/day is suggested.

The distribution of 1,4-dioxane under active treatment is shown in Figure 5. The
groundwater levels and groundwater directions near the monitoring wells and the im-
permeable wall were significantly influenced by groundwater pumping actions. These
changes make the groundwater more dynamic and the groundwater environment becomes
more complex, which also influences the movement of 1,4-dioxane. The northern areas
with relatively high 1,4-dioxane concentrations (10−2–10−1 mg/L) were quickly remediated
within five years, with the 1,4-dioxane concentration decreasing to <10−3 mg/L. After
30 years of active treatment, the 1,4-dioxane concentration in the groundwater in most
areas of the site was ≤10−3 mg/L, and did not accumulate near the impermeable wall.
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Comparing the simulation results of 1,4-dioxane distribution in the groundwater
shown in Figures 4 and 5, a wider 1,4-dioxane distribution may occur in the case of the
active treatment (e.g., after 30 years of treatment). It has been proposed that the pumping
actions during active treatment may result in a more dynamic groundwater flow than
during passive treatment, which promotes 1,4-dioxane transport to areas where it would
otherwise be difficult to reach. This phenomenon was unanticipated and would influence
the groundwater treatment efficiency; therefore, when designing pumping well locations,
both the natural hydraulic environment and artificially induced groundwater flows should
be taken into consideration. Finally, we suggest further research to study better prediction
models and remediation strategies for groundwater pollution based on the findings of the
present study.
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4. Conclusions

The objective of this study was to clarify the possibility of numerically predicting
pollutant transport in a dynamic and complex hydrologic environment and to investi-
gate the characteristics of pollutant transport under both naturally and artificially in-
duced groundwater flows. We attempted to reproduce the changes in 1,4-dioxane con-
centrations in groundwater observed in the monitoring wells using a quasi-3D flow and
transport simulation that considered the multiple sources and spatiotemporal changes in
hydraulic conditions.

The reproduced data and monitoring data (over a period of five years) for all monitor-
ing wells generally exhibited good fitting results, suggesting that it is possible to predict
the 1,4-dioxane concentration by considering groundwater flow. From the distribution of
1,4-dioxane, an obvious accumulation of 1,4-dioxane along with the impermeable wall was
observed in these artificial activities, impermeable walls, and pumping well installments.

Passive treatment suggested that 1,4-dioxane moves with groundwater flows, and its
concentration gradually decreases over time. The concentration of 1,4-dioxane was rela-
tively high near the impermeable wall. With active treatment, the 1,4-dioxane concentration
in the groundwater in most areas was ≤10−3 mg/L, and no longer accumulated near the
impermeable wall. It is understood that the pumping actions during active treatment may
result in a more dynamic groundwater flow than during passive treatment, promoting
1,4-dioxane transport to areas where it would otherwise be difficult to reach.

The study suggests the potential for the prediction and remediation of pollution at
illegal waste dumping sites. However, further extensive studies on the complex geological
structure of illegal waste dumping sites, dynamic seasonal rainfall, and groundwater
changes are encouraged. In order to evaluate such complex environments, it is essential to
improve prediction accuracy using more advanced models [39] and to analyze detailed
field data.
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