
applied  
sciences

Article

Patch-Wise Infrared and Visible Image Fusion Using Spatial
Adaptive Weights

Syeda Minahil †, Jun-Hyung Kim † and Youngbae Hwang *

����������
�������

Citation: Minahil, S.; Kim, J.-H.;

Hwang, Y. Patch-Wise Infrared and

Visible Image Fusion Using Spatial

Adaptive Weights. Appl. Sci. 2021, 11,

9255. https://doi.org/10.3390/

app11199255

Academic Editor: Pavel Lyakhov

Received: 14 September 2021

Accepted: 30 September 2021

Published: 5 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Intelligent Systems and Robotics, Chungbuk National University, Cheongju 28644, Korea;
SyedaMinahil@outlook.com (S.M.); mohl@naver.com (J.-H.K.)
* Correspondence: ybhwang@cbnu.ac.kr
† These authors contributed equally to this work.

Abstract: In infrared (IR) and visible image fusion, the significant information is extracted from
each source image and integrated into a single image with comprehensive data. We observe that
the salient regions in the infrared image contain targets of interests. Therefore, we enforce spatial
adaptive weights derived from the infrared images. In this paper, a Generative Adversarial Network
(GAN)-based fusion method is proposed for infrared and visible image fusion. Based on the end-to-
end network structure with dual discriminators, a patch-wise discrimination is applied to reduce
blurry artifact from the previous image-level approaches. A new loss function is also proposed to use
constructed weight maps which direct the adversarial training of GAN in a manner such that the
informative regions of the infrared images are preserved. Experiments are performed on the two
datasets and ablation studies are also conducted. The qualitative and quantitative analysis shows
that we achieve competitive results compared to the existing fusion methods.

Keywords: infrared and visible image fusion; Generative Adversarial Network; patchGAN; dual-
discriminator; spatial adaptive weights

1. Introduction

In practical applications, a fused image is essential to contain high-quality details for
attaining a comprehensive representation of the real scene [1]. Nowadays, various image
fusion methods have been proposed and are usually divided into several categories that
include sparse representation-based methods [2,3], gradient-based methods [4], wavelet
transformation-based methods [5,6], neural network-based methods [7] and deep learning
based methods [8,9]. Deep learning based infrared and visible image fusion methods
exploit the features of images of different modalities and integrate them into one single
image with the composite information. The infrared images reflect the thermal radiation of
objects [10] and visible images contain the textural information. Infrared and visible image
fusion methods [1,9,11–13] extract the characteristics of both the images and achieve images
that improve visual understanding and are beneficial in various fields like computer vision
in object detection, recognition and military surveillance [10].

The recent fusion algorithms achieve promising results. Guided filter [14] is widely
used for the purpose of image fusion which involves two-scale decomposition of the
image. Then, the base layer (containing large scale variations in intensity) and detail layer
(capturing small scale details) are fused together using a guided filtering based weighted
average method. In Deepfuse [15], there is a Siamese based encoder with two CNN layers
that extracts the features of the source images. These maps are fused by the addition
strategy. The decoding network with three CNN layers reconstructs the fused image.
Although it achieves better results, the network is too simple and cannot extract the salient
features properly. In Densefuse [9], Ma et al. proposed a method based on dense block and
an auto-encoder module. Denseblock has skip connections which help to preserve more
features. The drawback of this approach is that the fusion is not considered in the training
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process and only the auto-encoder is trained for the reconstruction of the images. The
CNN based methods usually rely on the ground truth and in case of fusion of infrared and
visible images there are no predefined standards [16]. Generative Adversarial Network
(GAN)-based fusion methods are also very popular recently. These methods use traditional
GAN or its variants for fusing the images, but the trained image is trained to be more
similar to only one of the source images which catalyze the loss of information existing in
the other image. In DDcGAN [12], GAN is applied with dual discriminators where each
discriminator is tasked to make the fused image more similar to the infrared and visible
image, respectively, without the ground truth.

In this paper, we apply a patch-wise discriminator inspired from the patchGAN [17] in
the base structure using dual discriminators [12]. Vanilla GAN validates the authenticity of
the entire generated image while the patchGAN verifies the authenticity in units of patches
of N × N size of an image. By doing so, an image is only considered as real if all the patches
attain a high probability of being real. This also reduces the computation speed, the number
of parameters and is unaffected by the size of the images. In our approach, we also assign
adaptive weights to IR image based on the observation that in the IR image only the high
activation regions contains the salient information while the remaining background region
contains very less or no information. We utilize these weight maps in the loss function.

To summarize, this paper makes the following contributions;

1. We propose a new framework for infrared and visible image fusion in which the
patchGAN is applied to the dual discriminator network structure.

2. We introduce a new loss function based on constructing adaptive weight maps based
on the IR image to preserve only the important information from both the infrared
and visible images.

3. Our method produces competitive results as compared with the existing fusion
methods quantitatively as well as qualitatively.

The rest of our paper is structured as follows: related works are briefly reviewed
in Section 2. In Section 3, we present our proposed method in detail. In Section 4, we
illustrate our experimental results and ablation studies. Finally, the conclusions are drawn
in Section 5.

2. Related Works

Generative adversarial networks (GANs) [18] are one of the generative models. GANs
have achieved impressive success in generating images from existing images or random
noise. In GANs, we have a generator which is purposed to generate real-like fake sampled
images with adversarial loss which steers the output image to be indistinguishable from
the real images and to be able to fool the discriminator. The discriminator behaves as a
classifier and provides the probability of the data being real or fake. The training process
of a generator and a discriminator forms an adversarial process and is continued until the
discriminator is unable to distinguish the generated samples. The training of GAN is a
critical task because of its unstable training. To alleviate this, GANs with a conditional
settings were proposed. In conditional GANs (cGAN) [19], the generator and discriminator
are conditioned on some auxiliary information. This additional information is generally
labeled data. This provides the guidelines to the generator in figuring out what kind of
data needs to be generated. Generally, GANs use a cross entropy loss function which may
lead to the vanishing gradient problem during training. To overcome this issue, Least
Squares Generative Adversarial Networks (LSGANs) [20], which use least square loss for
the discriminator, and WGANs [21], which use the Wasserstein loss were proposed.

The first endeavour of utilizing GAN for the task of infrared and visible image fusion
was proposed in FusionGAN [22] in which the fused image is compelled to contain more
texture details by introducing the discriminator to distinguish the fused image from the
visible image . In GAN-based image fusion methods, the discriminator makes the generated
image more similar to the visible image and this problem is alleviated in the DDcGAN [12]
by the introduction of two discriminators. The generator makes the fused image and
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one discriminator distinguishes the fused image from the visible image while the other
discriminator distinguishes the fused image from the infrared image. The generator
consists of two deconvolution layers and an auto-encoder network. The visible and a low
resolution infrared images are passed through the deconvolution layers to get the same
resolution. The output of the deconvolution layers are concatenated together and fed into
the encoder for the feature extraction and fusion process. The fused feature maps are
given to the decoder for the reconstruction of fused image which has the same resolution
as the visible image. The encoder has a DenseNet consisting of short connections which
improve the feature extraction. Both the discriminators have the same architecture and
play an adversarial role against the generator. In DDcGAN, the discriminators are not
only supposed to contemplate their adversarial role but also maintain the balance between
both the discriminators. The loss of generator is the summation of adversarial loss and the
weighted content loss. This adversarial loss comes from the discriminators.

In U2Fusion [23], an end-to-end semi-supervised fusion method is proposed which
can fuse multi-focus, multi-exposure and multi-modal images. This method automatically
approximates the significance of the source images and suggests and adaptive information
preservation degree. This adaptive information preservation degree is utilized to conserve
the similarity between the fusion result and source images. NestFuse [24] inspired by the
DenseFuse, preserves more multi-scale features from the visible image while enhancing
the salient features of infrared images. Their model is based on nest connections and
Spatial/Channel attention models. The spatial attention models signifies the importance of
each spatial position whereas the channel attention models uses deep features.

In PatchGAN [17], the conditional GANs are used for image-to-image translation.
The architecture of the generator and the discriminators differ from the previous works
utilizing GANs for the same task. The generator used has a U-Net based architecture
and the discriminator is a markovian discriminator [17,25]. PatchGAN does not signify
the whole image as fake or real instead of evaluating the local patches from the images.
The patch size can be adjusted by changing the size of the kernel in convolution layers
or the number of layers in the discriminator. In [17], an input image of 256 × 256 size is
concatenated with the generated 256 × 256 image and provided to the generator G. The
patch size used in this paper is 70× 70. The generator provides a feature map of 30× 30× 1
which means that each pixel of this map corresponds to the 70× 70 patch of the input image.
All the values of the 30 × 30 × 1 feature maps are averaged to estimate the probability of
the patch being real or fake. This makes patchGAN more attentive to the local features of
the images. PatchGAN is now being widely used in many applications. In PGGAN [26],
the patchGAN is combined with the globalGAN for the task of image inpainting. The
discriminator of PGGAN, first uses the shared layers between the patchGAN and the global
GAN to learn the basic low-level features which is later split to generate two separate
adversarial losses to preserve both the local and the global features in images. In [27],
the author proposes an image text deblurring method using two GAN networks which
are used to convert the blurred images to deblurred images and the deblurred images
to blurred images which helps in putting the constraints on the generated samples. The
discriminator used in this model is patchGAN discriminator. PatchGAN is also used in
multilevel feature fusion for underwater image color correction [28]. In this model, the
multi-scale features are extracted and then global features are fused together with low-level
features at each scale.

3. Proposed Method

In this section, we first elaborate our proposed end-to-end deep learning based fusion
network, then we discuss the formation of weight map. At last, we introduce the design of
our new loss function.

In our fusion network, we apply patchGAN [17] in the dual discriminator structure
framework [12], as shown in Figure 1. Our model has one generator G and two discrimina-
tors Di and Dv. Given the infrared image i and visible image v, the task of the generator
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is to generate a fused image which should be able to fool the discriminators. Dv aims to
distinguish the generated image from the visible image, while Di is trained to discriminate
between the original infrared image and the fused image. In general, the output of the
discriminators is a scalar value that approximates the probability of the input from the
source data rather than generated data G.

Inspired by the patchGAN [17], the generator as well as the discriminator is of the
form convolution-BatchNorm-ReLu [12,29,30]. The generator’s architecture is based on U-
Net [31] with the auto-encoder system with skip connections. The discriminators used for
our model are Markovian discriminators [17,25], “PatchGAN”, that only penalize structure
at the scale of patches. This discriminator tries to signify if each N × N patch in an image
is real or fake. In vanilla GAN, given an input image, the output is a single probability of
the image being real or fake, but here we get an N × N array of output X where each Xij
represents the probability of each patch of an image being real or fake.

Figure 1. The overall architecture of our proposed method.

We have observed that in infrared image, only the high activation region contains
significant information. The complexity in IR-visible image fusion research lies in correctly
extracting the information on thermal targets from the IR image, and trying to keep obvious
background information of the visible image in the fusion image [32]. We intend to give
more weight to the informative regions of IR. For this purpose, we generate an adaptive
weight map W based on the IR image and utilize this weight map in the adversarial loss
during training in a fashion which could preserve the informative region of the IR image.
For the construction of the weight map W, we take the IR image and apply average pooling.
We can choose average pooling as well as max-pooling strategy to create the weight maps
equal to the size of the output of the discriminator. The reason to choose average pooling
is that the output of the average pooling can be considered as a smooth version of the
input image. In this way, more weights can be given to high activation regions of the input
infrared image. In contrast, max pooling can cause an abrupt change in weights of adjacent
pixels. We have also compared these two strategies in ablation studies.The size of the
weight map should match the size of the output of the discriminator.

Loss Function

Loss function plays a principle role in the learning of any model. In usual GAN,
the discriminator is trained on the real and the generated images but the generator is
trained indirectly via discriminator. In infrared and visible image fusion methods, the dual
purposed generator is not only tasked to fool the discriminator but it should also keep the
correspondence between the generated image and the source images. This is supervised
by the loss function of G. Each discriminator is first trained with the input patches (i.e.,
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the visible image patches in Dv and the infrared image patches in Di) and then the fused
patches. The total loss of each discriminator is the sum of both the losses which aims to
discriminate between the fused image by G and the source images.

For the discriminators, the patches from the source images are real data while the
patches from the generated/fused images are fake data. The discriminator Di is first trained
on the loss between the patch from input infrared image and the real label vector with each
value 1. Then, this Di is trained on the loss between the patch from fused image and the
fake label vector with each value 0. Similarly, the discriminator Dv learns the loss between
the patch from input visible image and the real label vector. After this, this Dv is trained on
the loss between the patch from fused image and the fake label vector. We are using the
mean square error loss for the discriminators.

Our purpose is to train the network in such a way that it gives more weight to the high
activation region of infrared images which contains the significant information. For this, we
define a new loss function for each patch by infusing the weights in the loss. We propose
two methods of doing this; one is to use this new weighted loss only in the discriminator
Di as L∗

Di
, and the other method is to use it in the discriminator Di as L∗

Di
and generator as

Ladv∗
Di

simultaneously. Generally, the loss of the discriminator is defined as follows:

LD = min
D

V(D) =
1
2
E[(D(x)− a)2] +

1
2
E[(D(G(x))− b)2] (1)

where D(x) and D(G(x)) is the output of discriminator given the image x and the generated
image G(x), respectively . ’a’ is the target label vector which is 1 in the case of source
images and ’b’ is the target label vector which is 0 in the case of a fused image.

Using the new loss in Di, the losses of both the discriminators become

L∗
Di

= min
D

V(Di) =
1
2
E[W ∗ (Di(i)− a)2] +

1
2
E[W ∗ (Di( f )− b)2] (2)

LDv = min
D

V(Dv) =
1
2
E[(Dv(v)− a)2] +

1
2
E[(Dv( f )− b)2] (3)

The loss function of the generator consists of the content loss and the adversarial loss:

LG = Lcon + Ladv (4)

Lssim and Lmse are the structural similarity loss and the mean square error loss, respec-
tively, between the input images and the generated/fused image. They are used as the
content loss.

Lcon = Lssim + Lmse (5)

Ladv
Di

and Ladv
Dv

are the adversarial losses provided by the discriminators Di and Dv.
Here, mean square error loss is used as an adversarial loss. So the total loss of G becomes

LTotal = Lssim + Lmse + γLadv
Di

+ λLadv
Dv

(6)

In the case of using the new loss in the generator, we replace the mean square error
loss Ladv

Di
with the new loss Ladv∗

Di
. Here, the output of the discriminator is compared with

real label only.

Ladv∗
Di

= min
G

V(G) =
1
2
E[W ∗ (Di − a)2] (7)

Ladv
Dv

= min
G

V(G) =
1
2
E[(Dv − a)2] (8)

4. Experiments

In this section, we describe our experimental results. We have conducted extensive eval-
uation and comparison study against state-of-the-art algorithms including U2Fusion [23],
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NestFuse [24] and DDcGAN [12]. We first conduct our experiments on the images taken
from the RoadScene [23] and our private dataset. In the original patchGAN paper [17],
they used an input image of size 256 × 256 and a patch size of 70 × 70. However, for our
experiments, for the input image of 512 × 256, we have taken a patch size of 65 × 65 and a
learning rate of 0.0001. We also change the values of γ, but for the qualitative analysis both
λ and γ are fixed at 0.5. For the quantitative comparison, we select 20 images with different
conditions, including indoor and outdoor, and day and night. For the verification of our
results, we choose six quality metrics; Correlation coefficient (CC) that measures the degree
of linear correlation between the source images and the fused image, sum of correlation of
differences (SCD) [33], FMIdct [34] calculates the mutual information for discrete cosine
feature, modified Structural Similarity (SSIMa) and multi scale SSIM (MSSSIM) for no
reference image which models the loss and distortion between two images according
to their similarities in light, contrast and structure information and Peak signal-to-noise
ratio (PSNR).

4.1. Qualitative Analysis

The fused images attained by the three state-of-the-art algorithms and our proposed
method are shown in Figures 2 and 3. We analyze the relative performance on three images
from RoadScene and three from our private dataset using the new loss in discriminator
L∗

Di
as well as generator Ladv∗

Di
.

We can see that images created by our method preserve the thermal targets from the
infrared images as in the third example of Figure 2. It can also preserve more textural
information from visible images such as sky (red box) in the first example of Figure 3.
If we look at the overall images created by these methods, we would observe that the
DDcGAN creates blurry images. NestFuse gives better results in first example of Figure 3,
but some salient features are not clear such as in the red box in second image of Figure 3.
Generally our proposed method tries to preserve as much information from both the
infrared as well as the visible images and tries to maintain the overall good quality of
images, simultaneously visible in the third and the fourth images.

4.2. Quantitative Analysis

For the quantitative comparison, we take the average value of 20 fused images for
each metric. In this comparison, we analyze the new weighted loss in discriminator Dir
and generator G, and also in discriminator Dir only. In Tables 1 and 2, we have taken
fixed values of λ = 0.5 and γ = 0.1. Table 1 displays the values of different metrics for
RoadScene dataset while Table 2 displays the values for our private dataset. The best values
are indicated in red, the second best values are indicated in blue, and the third highest
values in cyan.

From Table 1, we can see that as compared to the state-of the-art methods, our method
achieves the top-2 results in CC and SSIMa. The second and third best results in MS-SSIM,
SCD and PSNR. The second best result has a narrow margin of only 0.018 from the best
result in PSNR, a difference of only 0.0252 from the best result in MS-SSIM and a difference
of 0.0386 from the best result in SCD.

In Table 2, as compared to the other state-of the-art methods, our method acquires the
top-2 ranks in MS-SSIM, FMIdct which calculates the mutual information for discrete cosine
features and SSIMa. The second best and the third best results in CC, SCD and PSNR. CC
achieves the second best result with a difference of 0.0017 from the best result. SCD has a
difference of only 0.0002 and PSNR has a margin of 0.16 from the best results. The highest
values in FMIdct and SSIMa indicate that our method attains more features and structural
information. Highest value in PSNR indicates that the fused image is more similar to the
source images and is of higher quality with less distortion. In general, our method gives
better performance than DDcGAN by simply replacing the GAN with PatchGAN and
adding weights. These results prove the effectiveness of our method.
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Figure 2. Qualitative comparison of the proposed method with other state-of-the-art methods on
image pairs taken from the private dataset. The first row contains visible images. Second row
contains infrared images. The last row contains the fused results of our proposed method.

We also compare the different values of γ in Tables 3 and 4. Here, the best values are
indicated in red and the second best values are indicated in blue. From Tables 3 and 4, we
can witness that most of the highest results are achieved with λ = 0.5 and γ = 0.1.



Appl. Sci. 2021, 11, 9255 8 of 12

Figure 3. Qualitative comparison of the proposed method with other state-of-the-art methods on
image pairs taken from the RoadScene dataset. The first row contains visible images. Second row
contains infrared images. The last row contains the fused results of our proposed method.

Table 1. The average values of quality metrics for 20 fused images of our RoadScene dataset with
λ = 0.5 and γ = 0.1 used in the loss function. The best values are indicated in red, the second best
values are indicated in blue and the third highest values in cyan.

Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

U2Fusion [23] 1.2199 0.8907 1.3236 0.3057 0.7204 16.0903
NestFuse [24] 1.1889 0.8376 1.6574 0.2969 0.6598 13.8161
DDcGAN [12] 1.1752 0.7067 1.5041 0.3589 0.5965 13.8019

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 0.1 1.2675 0.8655 1.6188 0.2691 0.7381 16.0222
ours (Ladv∗

Di
) λ = 0.5, γ = 0.1 1.2587 0.8625 1.5609 0.2736 0.7396 16.0723
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Table 2. The average values of quality metrics for 20 fused images of our private dataset with λ = 0.5
and γ = 0.1 used in the loss function. The best values are indicated in red, the second best values are
indicated in blue and the third highest values in cyan.

Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

U2Fusion [23] 1.3785 0.8954 0.9211 0.1953 0.7426 19.2835
NestFuse [24] 1.4732 0.899 1.4616 0.2369 0.7322 18.7873
DDcGAN [12] 1.2685 0.7785 1.1741 0.1879 0.5409 11.5284

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 0.1 1.4715 0.9068 1.4614 0.2684 0.7594 19.0826
ours (Ladv∗

Di
) λ = 0.5, γ = 0.1 1.4701 0.905 1.3959 0.2714 0.7541 19.1149

Table 3. The average values of quality metrics for 20 fused images of our RoadScene dataset. Different
values of λ and γ are used in the loss function. The best values are indicated in red and the second
best values are indicated in blue.

Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 0.1 1.2675 0.8655 1.6188 0.2691 0.7381 16.0222
ours (L∗

Di
, Ladv∗

Di
) λ = 0.5, γ = 0.5 1.2549 0.8785 1.6598 0.2501 0.7319 15.8065

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 5 1.2379 0.8601 1.6986 0.2346 0.7139 15.2591
ours (Ladv∗

Di
) λ = 0.5, γ = 0.1 1.2587 0.8625 1.5609 0.2736 0.7396 16.0723

ours (Ladv∗
Di

) λ = 0.5, γ = 0.5 1.2567 0.8764 1.6566 0.2569 0.7326 15.8283
ours (Ladv∗

Di
) λ = 0.5, γ = 5 1.2165 0.8547 1.6916 0.24 0.6998 14.7879

Table 4. The average values of quality metrics for 20 fused images of our private dataset. Different
values of λ and γ are used in the loss function. The best values are indicated in red and the second
best values are indicated in blue.

Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 0.1 1.4715 0.9068 1.4614 0.2684 0.7594 19.0826
ours (L∗

Di
, Ladv∗

Di
) λ = 0.5, γ = 0.5 1.4787 0.8933 1.3735 0.2702 0.7615 19.17

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 5 1.3997 0.8427 0.8844 0.2508 0.7515 19.2911
ours (Ladv∗

Di
) λ = 0.5, γ = 0.1 1.4701 0.905 1.3959 0.2714 0.7541 19.1149

ours (Ladv∗
Di

) λ = 0.5, γ = 0.5 1.4702 0.8841 1.3156 0.2527 0.7542 19.1338
ours (Ladv∗

Di
) λ = 0.5, γ = 5 1.4239 0.856 0.956 0.2198 0.7543 19.2189

4.3. Ablation Studies

In order to illustrate the effect of the gamma on each metric for both type of losses, we
perform extensive experiments and the results are summarized in the Figure 4. Gamma
indicates different weight for adversarial loss of Di, see Equation (6). We alter gamma as
we intend to see the effect of infrared images. For our experiments, we choose γ = 0.1,
0.2, 0.3, 0.5, 0.8, 2, 3 and 5. We can observe that out of the six metrics, four gives highest
results for gamma equal to 0.1 and 0.2. However, for each metric except SCD the values are
highest between 0 and 1. After 1, the values start to decrease.

We show the performance results with two techniques of using the new loss function.
We also perform experiments with different values of gamma. We witness that the γ
between 0 and 1 yields the best results for each quality metrics expect SCD in Figure 4. We
also observe the values for both techniques of using the new loss in Di only, and in both Di
and G and see that the loss used in both Di and G delivers good performance overall.
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Figure 4. Values of each metric for images from RoadScene Dataset with different γ. Lambda is fixed
to 0.5 for this analysis. Type of the loss used is shown in the legends.

There are two ways to construct the weight maps equal to the size of the output
of discriminator, average pooling and maximum pooling. In Table 5, we analyze the
effect of using both pooling strategies for the construction of the weights.The settings
for this analysis include the weighted loss used in both Di and G with λ = 0.5 and
γ = 0.1. Based on these results, it is quite evident that average pooling performs better
than maximum pooling.

Table 5. The average values of quality metrics for 20 fused images on two datasets with different
pooling methods. The best values are indicated in blue.

Dataset Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

RoadScene Avg-Pooling 1.2675 0.8655 1.6188 0.2691 0.7381 16.0222
RoadScene Max-Pooling 1.2637 0.8617 1.5528 0.2671 0.7375 16.0355

Private Avg-Pooling 1.4715 0.9068 1.4614 0.2684 0.7594 19.0826
Private Max-Pooling 1.4467 0.8988 1.3488 0.2594 0.7508 19.224

5. Conclusions

This paper presents a new end-to-end trainable framework where patchGAN is used
with dual discriminators. The advantage of using the patchGAN is that it tries to signify
if each N × N patch in an image is real or fake rather than determining the entire image,
allowing us to observe features that are otherwise hard to perceive. The fundamental
characteristic of the proposed method is the weights derived from the infrared images.
These weights are utilized in defining the new loss function which can be used in two
ways; (1) Use the new weighted loss in infrared discriminator and as an adversarial loss
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in generator, (2) Use the new loss as adversarial loss in generator only. These weight
maps can help achieve our objective of accurately extracting the information from the
highly informative regions of infrared as well as visible images. The experiments are
conducted on RoadScene and our private dataset to evaluate the performance of our
proposed method qualitatively as well as quantitatively. The experimental results indicate
that the images fused by the proposed method contain more details and are more vivid.
The proposed technique is simple yet effective and achieves better results than the state-of-
the-art methods.
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