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Abstract: In this study, we propose a multi-class classification method by learning lung disease
images with Convolutional Neural Network (CNN). As the image data for learning, the U.S. National
Institutes of Health (NIH) dataset divided into Normal, Pneumonia, and Pneumothorax and the
Cheonan Soonchunhyang University Hospital dataset including Tuberculosis were used. To improve
performance, preprocessing was performed with Center Crop while maintaining the aspect ratio of
1:1. As a Noisy Student of EfficientNet B7, fine-tuning learning was performed using the weights
learned from ImageNet, and the features of each layer were maximally utilized using the Multi
GAP structure. As a result of the experiment, Benchmarks measured with the NIH dataset showed
the highest performance among the tested models with an accuracy of 85.32%, and the four-class
predictions measured with data from Soonchunhyang University Hospital in Cheonan had an average
accuracy of 96.1%, an average sensitivity of 92.2%, an average specificity of 97.4%, and an average
inference time of 0.2 s.

Keywords: deep learning; lung diseases; efficientnet; multi-class classification

1. Introduction

In the field of image processing in deep learning [1,2], Convolutional Neural Network
(CNN) [3], which is a key technology used primarily, has received tremendous attention.
Following the great success of AlexNet [4], performance improvement models such as
VGG [5], ResNet [6], and InceptionNet [7] have continued to evolve, and new studies are
still being made to occupy State-of-the-Art (SOTA) [8].

Unlike previous machine learning methods, which required a lot of user intervention,
Hyundai Deep Learning is seeking convergence in many areas due to its end-to-end input
and output capabilities and ease of access. The medical field is also paying attention
to deep learning as a role to assist medical staff in diagnosing in line with this trend.
In Korea, various AI startup companies such as Beuno, Rooney, and JLK Inspection are
established, and working with medical institutions on projects for various diseases, as
shown in Figure 1. With the rise of COVID-19, studies on lung diseases are also underway,
especially on Pneumonia. However, research on other lung diseases is relatively lacking in
Korea, especially Tuberculosis [9–11].

Therefore, in this paper, we propose a multi-class classification model that can cover a
wider range of lung diseases by learning a total of four classes, from three lung diseases such
as Pneumonia, Pneumothorax, and Tuberculosis, to Normal which is the negative state.
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Figure 1. Forecast of the size of the healthcare market in Korea (KISTI Market Report).

The tasks of deep learning currently utilized in health care are divided into classifica-
tion, detection, and segmentation, as shown in Figure 2. Models used in all tasks utilize
heavy and accurate SOTA models due to the nature of the medical field requiring refinement.

Figure 2. Classification, detection, and segmentation task.

Classification is a task that divides negatives and positives by learning images and
labels of diseases and is a method that focuses on learning for inferring disease names.
For detection, a Bounding Box is marked around the location of a disease, and the disease
name and Bounding Box coordinates are learned to infer the location information of the
disease. Segmentation is a method of inferring the disease pixel by pixel by learning the
location pixel of the disease.

On the other hand, medical images include continuous images such as Computerized
Tomography (CT) and various postures such as posteroanterior chest view (PA), erect
anteroposterior chest view (AP), Lateral, and Decubitus, so it is necessary to clarify the
shape for learning. Therefore, the following assumptions are made. First, the captured
image is a cross-sectional CR X-ray image. Second, the image is taken only in the PA and
AP positions. Third, information on the location of the disease is not provided. As such,
this study assumes that the medical staff infers the disease name by using the PA and AP
images as input images in the model.

2. Lung Diseases
2.1. Pneumonia

Pneumonia disease is an infection that provokes lungs’ air sacs [12]. The air sacs load
with fluid or pus causing symptoms such as cough, fever, chills, and trouble breathing.
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Symptoms of Pneumonia can vary from mild to severe and may include cough, fever,
shortness of breath, shallow breathing, stabbing chest pain, loss of appetite, low energy,
fatigue, nausea, vomiting, and confusion especially in older people.

2.2. Pneumothorax

Pneumothorax disease can be a complete lung collapse or only a part of the lung [13].
While doing heavy activities such as flying, mountain climbing, or scuba diving may cause
accidents, lung disease or illness, and changes in air pressure have all been known to
potentially cause lung collapse. A minor pneumothorax may increase on its own, but
for more serious cases a needle aspiration or chest tube can be inserted to allow the lung
to expand. Symptoms of Pneumothorax commonly begin with chest pain, then other
problems include stabbing chest pain, shortness of breath, bluish skin, fatigue, rapid
breathing, a dry and hacking cough.

2.3. Tuberculosis

Tuberculosis disease is an airborne bacterial infection in lung caused by the organism
Mycobacterium tuberculosis that primarily affects the lungs, although other organs and
tissues may be involved [14]. Symptoms of Tuberculosis includes a cough that lasts more
than 3 weeks, loss of appetite and unintentional weight loss, fever, chills, and night sweats.

3. Related Work

Gabruseva et al. [15] proposed an automatic pneumonia detection using deep learning.
The model was based on RetinaNet to output one of the classes “No Lung Opacity/Not Nor-
mal”, “Normal”, and “Lung Opacity”. The best validation mean average precision (mAP) is
0.250230. Ibrahim et al. [16] proposed a deep learning method to classify pneumonia from
chest X-ray images. The model was based on AlexNet to output multiclass pneumonia. The
test accuracy, sensitivity, and specificity of non-COVID-19 viral pneumonia and healthy
are 94.05%, 98.19%, and 95.78%, respectively. The test accuracy, sensitivity, and specificity
of Bacterial pneumonia and healthy are 91.96%, 91.94%, and 100.00%, respectively. The
test accuracy, sensitivity, and specificity of COVID-19 and healthy are 99.16%, 97.44%,
and 100.00%, respectively. The test accuracy, sensitivity, and specificity of COVID-19 and
non-COVID-19 viral pneumonia are 99.62%, 90.63%, and 99.89%, respectively. The test
accuracy, sensitivity, and specificity of COVID-19, bacterial pneumonia, and healthy are
95.00%, 91.30%, and 84.78%, respectively. The test accuracy, sensitivity, and specificity of
COVID-19, non-COVID-19 viral pneumonia, bacterial pneumonia, and healthy are 93.42%,
89.18%, and 98.92%, respectively. Loddo et al. [17] proposed COVID-19 diagnosis from CT
images using deep learning. Ten models were compared and VGG19 achieved the best
accuracy of 98.87%.

4. Data
4.1. Preprocessing

Medical images often have different heights and widths. Most deep learning research
ignores this and resizes it, but in this case, the original aspect ratio of the image may be
different. Therefore, in this study, to improve the learning performance, the height and
width are compared, and the difference in length is cut out from the height or width. After
creating a 1:1 ratio, the center pixel is cut out to a size of 87.5%, as shown in Figure 3. This
preprocessed image reduces the search range of the CNN to make it easier to learn.
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Figure 3. Center cropped image after processing in a 1:1 ratio.

4.2. NIH Dataset

The U.S. National Institutes of Health (NIH) Open Dataset comprises 10,000 PNG
images of Normal, Pneumonia, and Pneumothorax [18]. The training data and validation
data are divided by 8:2, as shown in Table 1.

Table 1. NIH dataset.

Training Data Validation Data

Normal 2676 669
Pneumonia 1114 278

Pneumothorax 4210 1053
Total 8000 2000

4.3. SCH Dataset

The study was approved by the Institutional Review Board of Soonchunhyang Uni-
versity Hospital (2020-12-036-002). We use 51,866 TIF image files provided after de-
identification by Soonchunhyang University Hospital. The image is composed of a total of
four classes, from Normal, Pneumonia, Pneumothorax to Tuberculosis, and the label infor-
mation is classified by folder name. Validation data used to know the learning progress is
used by collecting and using 500 sheets at the end of each type of training data, as shown
in Table 2. The test data is composed of 4000 unidentified image files given separately for
the test, as shown in Table 3.

Table 2. SCH training dataset.

Training Data Validation Data

Normal 15,017 500
Pneumonia 14,340 500

Pneumothorax 6730 500
Tuberculosis 9779 500

Total 45,866 2000

Table 3. SCH test dataset.

Test Data

Normal 1000
Pneumonia 1000

Pneumothorax 1000
Tuberculosis 1000

Total 4000
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5. Modeling
5.1. Backbone

The encoder model uses EfficientNet [19] B7, which occupies a lot of image classifi-
cation SOTA. EfficientNet is a model that achieves SOTA by a method called Compound
Scaling, and is based on DW (Depthwise Convolution), which divides features by channel
and calculates them.

Compound Scaling refers to finding the optimal efficiency by adjusting the model
width, model depth, and input image resolution in the basic model as shown in Figure 4.
As shown in Table 4, the optimized value shows the best performance in terms of computa-
tional amount and accuracy.

Figure 4. (a) Baseline. (b) Width Scaling. (c) Depth Scaling. (d) Resolution Scaling.

Table 4. Performance according to scale change in the same amount of computation.

Model FLOPS Top-1 Acc

Baseline model (EfficientNet-B0) 0.4B 77.3%

Scale model by depth (d = 4) 1.8B 79.0%
Scale model by width (w = 2) 1.8B 78.9%

Scale model by resolution (r = 2) 1.9B 79.1%
Compound Scale (d = 1.4,w = 1.2,r = 1.3) 1.8B 81.1%

Backbones of EfficientNet supported by the deep learning framework are models
that find and apply the optimal value of Compound Scaling, and are divided into B0,
B1, B2, B3, B4, B5, B6, B7, B8, and L2. As the model number increases, the amount of
computation doubles.

5.2. Multi GAP

FPN (Feature Pyramid Network) [20] is a structure that extracts multi-scale features,
and as shown in Figure 5, more features can be used than the Single Feature Map structure.
In this paper, Multi GAP (Global Average Pooling) structure imitating FPN is used.
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Figure 5. Single Feature Map and Feature Pyramid Network.

Multi GAP structure refers to a multi structure that extracts features for each layer,
compresses them with GAP, and then concatenates them as shown in Figure 6. This
structure has the advantage of using many features of FPN, and it is possible to reduce the
risk of overload and reduce the amount of computation by compressing each feature with
GAP instead of directly converting each feature into FC structure.

Figure 6. Encoder with Concat structure.

5.3. Decoder

Features acquired with Multi GAP and merged with Concatenate Layer are subjected
to 512 FC (Fully Connected Layer) twice, and then multi-class classified using Softmax
function. Each class is divided by disease name (including Normal). The overall model
structure that combines Encoder and Decoder is shown in Figure 7.
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Figure 7. Full model structure.

5.4. Regularizations

Since the size of the backbone, EfficienetNet B7, is quite large, the risk of overfitting is
also high. To solve this problem, we apply L2 regularization to vectors passing through FC.

||ω|| =
√(

ω2
0 + ω2

1 + . . . + ω2
n
)
, (1)

L2 normalization is a method of adding to the loss by multiplying the L2 Norm, which
has computed the root of the sum of squares of weights by a certain number, as shown in
Equation (1). Also, as shown in Figure 8, Drop Connect, which omits the weight in front of
the neuron at a certain rate, and Drop Out, which omits the neuron itself at a certain rate,
are used.

Figure 8. Drop Connect and Drop Out.

6. Benchmarks

Before learning the Cheonan Soonchunhyang Hospital data image, benchmarks are
measured with the NIH dataset to compare the preprocessing and model performance.
There are a total of 6 compared models including the proposed model, and the encoder
structure maintains the basic model in the paper and connects the BottleNeck with GAP.
In order to know the influence of the 1:1 ratio Center Crop preprocessing and Multi GAP
method of the proposed model, the decoder structure after the FC Layer is set the same.

7. Experiment
7.1. Test Bed

The environment used for the experiment is as follows. The operating system is Linux
Ubuntu 18.04 LTS, and we used a desktop PC with Intel CPU i9-9940X 3.30 GHz, 64 G RAM,
NVidia Geforce RTX 3090 (1755 MHz, 10,496 cores, 24 GB). All the code was implemented
with the deep learning framework Tensorflow 2.5 on CUDA 11 and cuDNN 8, Python 3.9.4.
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7.2. Estimate Class Weights

In deep learning, the problem of data imbalance can cause learning that is overly
biased to a specific class. As a way to solve this problem, there are the undersampling
method that reduces and samples the samples of the class with a large proportion as shown
in Figure 9, and the oversampling method that duplicates the samples of the class with a
small proportion.

Figure 9. Undersampling and Oversampling methods.

In this study, in order to solve the problem of imbalance between learning data by
disease type, a method of varying the update weight for each class was used instead of the
sampling method. By assigning a low weight to a disease type with a lot of data and a high
weight to a disease type with a small number of diseases, the bias of updates to a specific
type of disease was alleviated, as shown in Tables 5 and 6.

Table 5. NIH data set weights by disease type.

Training Data Class Weight

Normal 2676 0.9965
Pneumonia 1114 2.3937

Pneumothorax 4210 0.6334

Table 6. SCH data set weights by disease type.

Training Data Class Weight

Normal 15,017 0.7636
Pneumonia 14,340 0.7996

Pneumothorax 6730 1.7038
Tuberculosis 9779 1.1726

7.3. Data Augmentations

To prevent overfitting and improve performance, Rand Augment [21] was used for
data augmentation. Rand Augment is an augmentation that applies up to N random
augments with a maximum random intensity of M.

In this study, Augments such as FlipLR, Identity, AutoContrast, Equalize, Rotate,
Solarize, Color, Posterize, Contrast, Brightness, Sharpness, ShearX, ShearY, TranslateX,
TranslateY were applied. The maximum number N is 2, and the maximum intensity M is
set to 28, as shown in Figure 10.
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Figure 10. X-ray image with Rand Augment applied.

Since deep learning approach is a data-driven approach, the more training data we
have, the higher performance we would achieve. Therefore, we did the augmentation in
order to increase the number of training sets. By applying Rand augmentation, number of
augmented data was randomly created up to maximum 2.

7.4. Fine Tuning

In current deep learning, research [22] has proven that the results of transfer learning
or fine tuning with pre-learned weights are superior in performance and stability, and the
learning speed is also faster than scratch learning that is learned from scratch. Following
this study result, this study also used the weights of “ImageNet” [23] trained as “Noisy
Student” [24]. Since the pretrained weights are based on color images in RGB format, the
channels of the 1-channel grayscale image were tripled to have 3 channels. Since there
was not a lot of data, we did not use the method to freeze the layer. Since the pretrained
weights are based on the image size (600, 600), the training data were also image-processed
with the same size.

7.5. Scaling

The data scaling method used the standardization method following the method of
pretrained weights.

||zi|| =
xi − x

s
(0 ≤ xi ≤ 1) , (2)

The standardization formula is as Equation (2). First, the pixel value is divided by 255
(8 bits) or 65,535 (16 bits) to make a decimal number between 0 and 1, and then the overall
mean, variance, and standard deviation of the training data set are calculated based on the
value. Then subtract the pixel mean from all pixel values made into decimals, and finally
divide by the pixel standard deviation.

7.6. Optimizer

The optimizer used Lookahead [25] as the wrapper and Nadam [26] as the inner
optimizer (LA-Nadam). Lookahead is an optimizer that attempts to escape from Local
Minima by updating k times (fast weight) and then updating it in the opposite direction
(slow weight) once as shown in Figure 11, and Nadam is an optimizer that attempts to
escape from Adam [27]’s Momentum as shown in Figure 11 by Nesterov Momentum [28],
which is the optimizer. The learning rate is 0.0001, which is 1/10 of Adam’s standard
learning rate of 0.001, is used to account for fine-tuning.

i f ||Gradient|| ≥ threshold then

Gradient = threshold
||Gradient|| × Gradient

end i f ,

(3)
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Figure 11. Update method of Lookahaed, Adam, and Nadam.

For the stability of early learning, the Clip Norm value was set to 1. The equation of
Clip Norm is the same as (3), and when the L2 Norm value of the Gradient exceeds the
Threshold, the Threshold ÷ L2 Norm value is multiplied by the Gradient.

7.7. Learning Rate Scheduling

Learning was conducted for a total of 60 epochs. As shown in Figure 12, Warm
Up [29] was performed in which the learning rate was linearly increased from 0 to the
initial learning rate until 6 epochs, which is 10% of the total epoch, and then proceeded to
the initial learning rate until 4 epochs (Flat). For the remaining epochs, the learning rate
was gradually decreased using the cosine annealing learning rate [30].

ηt =
1
2

(
1 + cos

(
tπ
T

))
η , (4)

Figure 12. Learning Rate Curve.

Equation of cosine annealing is the same as (4), where η is the learning rate, t is the
learning epoch, and T is the total epoch. The learning rate curve applied to warm up, flat,
and cosine is shown in Figure 12.

7.8. Label Smoothing

Sigmoid or Softmax, which are used as classifiers in deep learning, approaches 0 and
1, but does not reach them. In general, the GT (Ground Truth) value is set to 0 and 1 and
the update proceeds. This setting value makes the model endlessly pursue a value that
cannot be reached, so the update of a well-predicted class is also performed constantly.
In order to solve this phenomenon, label smoothing [31] is called label smoothing, which
relaxes the value of GT so that the model concentrates on the class with poor prediction
rather than on the class with good prediction.

ykLS = yk (1 + α) + α/K , (5)



Appl. Sci. 2021, 11, 9289 11 of 17

The label smoothing formula is as in Equation (4), where yk means GT value, α means
the label smoothing ratio, and K means the number of classes. In this study, learning was
carried out by setting the label smoothing ratio to 0.1, as shown in Tables 7 and 8.

Table 7. Value of GT before and after applying Label Smoothing (NIH).

Non LS LS

Negative 0 0.033
Positive 1 0.933

Table 8. Value of GT before and after applying Label Smoothing (SCH).

Non LS LS

Negative 0 0.025
Positive 1 0.925

7.9. Mixed Precision

Common deep learning frameworks proceed with Float32 operation during training.
Although Float16 occupies less memory, there was a drawback of somewhat lower accuracy.
Mixed Precision [32] solves this problem and mixes the lightness of Float16 operation with
the sophistication of Float 32 operation. Mixed Precision uses Float16 for the overall
operation and Float32 for the head part that determines the value. And it is a method of
calculating all updates with Float32.

In the process of mixing Float16 and Float32, there may be a loss of numbers that
exceed the range of Float16 as shown in Figure 10, and this is solved through scaling. When
a loss due to a range difference is detected, the corresponding value is scaled to prevent
the loss.

By using Mixed Precision, the batch size can be nearly doubled, so the learning speed
is very fast, and the performance is similar to or higher than when using Float32. According
to Mixed Precision’s paper, as shown in Table 9, the results of Mixed Precision were similar
or better than Float32. In this study, using Mixed Precision, the existing batch size of 4 was
expanded to double that of 8.

Table 9. ILSVRC12 Classification Top-1 Accuracy.

Model Float32 Mixed Precision

AlexNet 56.77% 56.93%
VGG-D 65.40% 65.43%

GoogLeNet(Inception V1) 68.33% 65.43%
Inception V2 70.03% 70.02%
Inception V3 73.85% 74.13%

Resnet 50 75.92% 76.04%

7.10. Loss and the Others

Loss used categorical cross-entropy, and Step was set as ‘data set size ÷ batch size’.
Table 10 shows the overall Hyper Parameters.
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Table 10. Hyper Parameters.

Hyper Parameters Value

Image Resolution (600, 600)
Number of channels 3

Scaling Standardization
Optimizer LA-Nadam

Learning Rate 0.0001
Scheduler Flat Cosine Anneling with Warm Up

Loss Categorical Cross-entropy
Label Smoothing 0.1
Augmentations Rand Augment(2, 28)
Regularizations Drop Connect 0.4, Drop Out 0.5, L2 Norm 0.01

Max Epoch 60
Batch 8

Classifier Softmax
Global Policy Mixed Precision

7.11. Metrics

There are three metrics used for learning evaluation: Accuracy, Sensitivity, and Speci-
ficity. In the NIH dataset, the performance of each model is compared with Accuracy,
and in the Cheonan Soonchunhyang University data set, all three metrics are measured to
measure the precise performance of the proposed model.

To calculate metrics, first obtain a confusion matrix. Confusion Matrix compares the
correct answer with the predicted value as shown in Figure 13, and divides the correct
result into TP (True Positive) and TN (True Negative) and the wrong result into FP (False
Positive) and FN (False Negative).

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

Sensitivity =
TP

TP + TN
, (7)

Speci f icity =
TN

TN + FP
, (8)

Figure 13. Confusion Matrix.

The formulas for each metric calculated based on the Confusion Matrix are as
Equations (6)–(8). Accuracy is a metric that evaluates overall performance, Sensitivity
is a metric for whether the model correctly predicted the positive among actual positive
samples, and Specificity is a metric to evaluate whether the model correctly predicted the
negative among actual negative samples.
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8. Results
8.1. NIH Dataset

Figure 14 shows the training graphs of models that predicted Normal, Pneumonia,
and Pneumothorax by learning 10,000 NIH images. Since validation was used as a test
set, the performance was measured based on the learning graph without a separate test
process, and the accuracy of a total of 6 models was compared.

Figure 14. NIH dataset training graph.

Table 11 shows the validation performance of the models created based on the training
epoch that recorded the highest number within a total of 60 epochs. Because of the use
of Pre-trained weight, it can be converged within 60 epochs. Since the NIH data was not
divided like the test dataset, we evaluated the NIH dataset on validation performance only.
It can be seen that the proposed model outperforms the comparative models. In particular,
the improvement of Accuracy in comparison with Vanilla EfficientNet B7 shows that the
proposed preprocessing method and Multi GAP have an effect on performance.

Table 11. Validation performance.

Model Accuracy Sensitivity Specificity

VGG 19 84.25% 76.36% 88.18%
DenseNet 201 84.37% 76.56% 88.28%

Vanilla EfficientNet B7 84.76% 77.14% 88.57%
Ours (EfficientNet B7 + Preprocessing) 84.86% 77.29% 88.64%

Ours (EfficientNet B7 + Multi GAP) 85.15% 77.73% 88.86%
Ours (EfficientNet B7 + Preprocessing + Multi GAP) 85.32% 77.97% 88.98%
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8.2. SCH Dataset

Figure 15 shows the training graph of the model that predicted Normal, Pneumonia,
Pneumothorax, and Tuberculosis by learning 51,866 de-identified images provided by
Soonchunhyang University Hospital, Cheonan. The performance was measured with a
single model to which both the proposed preprocessing and multi GAP were applied, and
the performance of the test set was measured in the epoch that had the highest validation
accuracy performance. Figure 16 shows examples of correct predictions and incorrect
predictions by classes.

Figure 15. SCH dataset training graph.

As a result of learning all 60 epochs, the 35 epochs showed the highest performance,
and the validation performance of the 35 epochs was shown in Table 12. As a result of
measuring the performance of the test set, the test performance and inference time are
shown in Tables 13 and 14.

Table 12. Validation Performance.

Accuracy Sensitivity Specificity

Total 96.22% 92.45% 97.48%

Table 13. Test Performance.

Accuracy Sensitivity Specificity

Normal 98.80% 97.30% 99.30%
Pneumonia 93.50% 87.10% 95.63%

Pneumothorax 98.45% 96.70% 99.03%
Tuberculosis 93.65% 87.70% 95.63%

Total 96.10% 92.20% 97.40%

Table 14. Test Inference Time.

Inference Time

Total 13 m
Average 0.2 s
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Figure 16. Correct predictions and incorrect predictions by classes.

9. Conclusions

In this study, we proposed a multi-class classification method of lung disease using
CNN model. After making the image in a 1:1 ratio and center cropping it by 87.5%, a
classification model of the Multi GAP format was created based on the Noisy Student Ima-
geNet Pretrained weight of the EfficientNet B7 model. In the NIH dataset for benchmarks
measurement when lung disease was predicted with the model, the models to which the
proposed method was applied showed high performance at 84.86%, 85.15%, and 85.32%
of the accuracy criteria, and the model to which all the suggestions were applied showed
the most satisfactory performance. Shown in the dataset of Soonchunhyang University
Hospital in Cheonan, which includes tuberculosis, an average of 96% accuracy, an average
sensitivity of 92.20, and an average specificity of 97.40% were obtained. The average test
inference time was 0.2 s, and as a result of not much difference between the validation
performance and the test performance, it was confirmed that the generalization of the
model was not bad.

Chest X-ray is the basis of all chest radiographic tests, and it is easy to check the
overall outline of the chest at a glance, and it is suitable for follow-up examination because
it is easy to observe the chest disease changes. However, there is also a disadvantage that
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accurate reading of chest X-ray is difficult due to the complex anatomical structure of the
chest. Clinical decision supporting system (CDSS) is a system that helps clinicians make
clinical decisions, and is a set of programs that help with more precise diagnosis or prevent
misdiagnosis. Therefore, our multi-class classification method of lung disease using CNN
model showed high performance (Accuracy, 96.22: Sensitivity, 92.45: Specificity, 97.48) and
could be considered applicable to CDSS system for lung diseases.

Future research intends to proceed with learning methods for more diverse disease
types and methods for improving learning performance.
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