Supplementary Materials: Real-World Vehicle Emission Rate of Particle Size distributions based on Measurement of Tunnel Flow Coefficient

Chaehyeong Park, Myoungki Song, Gyutae Park, Kyunghoon Kim, Taehyoung Lee, Sanguk Lee, Yunsung Lim, Min-Suk Bae

1.Supplementary Information

Table S1. Operating conditions of the two employed the Scanning Mobility Particle Sizers (SMPS).

Туре	Condition					
1) Electrostatic Classifier 3080						
Aerosol flow	1 L/min					
Sheath air	4 L/min					
Impactor nozzle size	0.071 cm (d50=670 nm)					
Sample size (nm)	11.5 - 604.3					
Scan time	300 sec					
Channels/Decade	110					
2) Long Differential Mobility Analy	zer 3081					
3) CPC						
Model	3772					
Flow source	External vacuum					
Sample flow	1 L/min					
Particle counting range	104 particles/cm ³					
4) Software						
Aerosol Instrument Manager (AIM)	ver. 9.0.0.0					

Operating conditions of the two employed SMPSs are presented in Table S1. The particles, flowing into the ESC via the nozzle of 0.071 cm, are analyzed into 110 channels of particle size distribution from 11.5 nm to 604.3 nm under the condition of flow rate of 1.0 L/min (4.0 L/min. of Sheath Flow). CPC takes particles, separated into each particle size of respective diameters, as condensation nuclei. Particles grow at temperature 22°C by exploiting the principle of conductive cooling at the state of supersaturation. The analysis of the maximum number concentration of 10,000 N/cm3 from the photometer was enabled by using the laser diode. The Aerosol Instrument Manager (AIM) (ver. 9.0.0.0, TSI Inc., USA) program was used for the calculation of final number concentration.

Start time	N/m ³	m³/veh·km	N/veh·km		
0	2.44×10^{10}	256	6.96×10^{12}		
1	1.9×10^{10}	338	6.65×10^{12}		
2	1.92×10^{10}	438	8.53×10^{12}		
3	1.95×10^{10}	550	1.25×10^{13}		
4	2.65×10^{10}	645	1.97×10^{13}		
5	4.00×10^{10}	529	1.64 × 10 ¹³		
6	6.01×10^{10}	290	9.05 × 10 ¹²		
7	6.07×10^{10}	205	4.81 × 10 ¹²		
8	6.02×10^{10}	187	5.29 × 10 ¹²		
9	6.72×10^{10}	163	4.85 × 1012		
10	6.24×10^{10}	158	2.93 × 10 ¹²		
11	5.46×10^{10}	143	2.26 × 1012		
12	4.72×10^{10}	142	2.97 × 10 ¹²		
13	4.04×10^{10}	146	2.68×10^{12}		
14	4.87×10^{10}	138	2.20×10^{12}		
15	5.20×10^{10}	136	2.38×10^{12}		
16	5.58×10^{10}	131	1.70×10^{12}		
17	6.83×10^{10}	135	2.34×10^{12}		
18	6.56×10^{10}	137	2.40×10^{12}		
19	6.05×10^{10}	146	3.17 × 10 ¹²		
20	5.17×10^{10}	161	3.52 × 10 ¹²		
21	4.06×10^{10}	165	3.06 × 1012		
22	4.35×10^{10}	165	3.88×10^{12}		
23	3.03×10^{10}	$3.03 \times 10^{10} \qquad 199 \qquad 4.91 \times 10^{12}$			
average	4.66×10^{10}	238	5.63 × 10 ¹²		

Table S2. Hourly number concentration discharged from vehicles (Σ N/veh·km) by using the TFC (δ) (m3/veh·km) and hourly number concentrations of particle size distribution inside and outside of the tunnel.

Start	Weekdays			Weekends			Asian New Year		
time	ΔC(N)/m ³	m³/veh.km	N /veh.km	ΔC(N)/m ³	m³/veh.km	N /veh.km	ΔC(N)/m ³	m³/veh.km	N /veh.km
0	2.46 × 10 ¹⁰	200	4.22 × 10 ¹²	2.67×10^{10}	243	3.41 × 10 ¹²	1.33×10^{10}	318	5.25 × 10 ¹²
1	1.96 × 1010	267	4.37 × 10 ¹²	2.17 × 10 ¹⁰	314	3.63 × 10 ¹²	5.60×10^{09}	415	4.23 × 10 ¹²
2	2.02×10^{10}	338	5.65 × 10 ¹²	2.25×10^{10}	423	5.07 × 10 ¹²	7.38×10^{09}	526	5.14 × 10 ¹²
3	2.11×10^{10}	424	7.42 × 10 ¹²	1.86 × 10 ¹⁰	511	5.45 × 10 ¹²	4.65×10^{09}	672	4.98 × 10 ¹²
4	2.89 × 1010	459	1.27 × 10 ¹³	2.61 × 10 ¹⁰	587	9.84 × 10 ¹²	1.08×10^{10}	723	1.18 × 10 ¹³
5	4.53×10^{10}	313	1.89 × 10 ¹³	3.91×10^{10}	550	1.37 × 10 ¹³	1.41×10^{10}	513	1.05 × 10 ¹³
6	7.03×10^{10}	157	1.31 × 10 ¹³	5.46×10^{10}	371	1.25 × 10 ¹³	1.52×10^{10}	357	8.86 × 10 ¹²
7	7.41×10^{10}	113	6.83 × 10 ¹²	4.63 × 10 ¹⁰	301	8.98 × 10 ¹²	2.06 × 10 ¹⁰	303	9.53 × 10 ¹²
8	6.87×10^{10}	110	6.75 × 10 ¹²	5.58×10^{10}	260	8.64 × 10 ¹²	2.37×10^{10}	258	9.56 × 10 ¹²
9	7.26 × 10 ¹⁰	103	6.60 × 10 ¹²	6.75×10^{10}	210	7.71 × 10 ¹²	2.27×10^{10}	206	8.57 × 10 ¹²
10	7.06×10^{10}	105	6.38 × 10 ¹²	6.32×10^{10}	186	7.17 × 10 ¹²	1.82×10^{10}	187	5.43 × 10 ¹²
11	6.03 × 10 ¹⁰	100	5.11 × 10 ¹²	5.59×10^{10}	174	6.08 × 10 ¹²	2.40×10^{10}	111	4.32 × 10 ¹²
12	5.80×10^{10}	100	5.02 × 10 ¹²	3.89×10^{10}	159	4.55 × 10 ¹²	1.26×10^{10}	118	1.04 × 10 ¹²
13	4.85×10^{10}	106	4.67 × 10 ¹²	3.86 × 10 ¹⁰	154	4.13 × 10 ¹²	6.56×10^{09}	118	9.35 × 10 ¹¹
14	5.54×10^{10}	103	5.03 × 10 ¹²	4.82×10^{10}	143	5.07 × 10 ¹²	5.96×10^{09}	93	8.93 × 10 ¹¹
15	6.17×10^{10}	105	5.53 × 10 ¹²	4.11×10^{10}	142	4.52 × 10 ¹²	1.60×10^{10}	90	1.23 × 10 ¹²
16	6.44×10^{10}	101	6.13 × 10 ¹²	5.44×10^{10}	138	4.88 × 10 ¹²	1.73×10^{10}	88	7.47 × 10 ¹¹
17	8.16 × 10 ¹⁰	106	7.40 ×	5.78×10^{10}	149	5.40 ×	1.82 × 10 ¹⁰	104	8.45 ×

Table S3. Number concentrations of particle size distribution distinguished into values of weekends, weekdays, and period of Asian New Year.

			1012			1012			1011
18	9 04 × 1010	102	7.59 ×	E 28 × 1010	157	4.63 ×	1.74×10^{10}	112	1.40 ×
	8.04 × 10 ¹⁰	102	1012	5.26 * 1010	157	1012	1.74 × 10 ¹⁰	113	1012
19	$7 E1 \times 1010$	100	6.53 ×	4.67×1010	174	4.68 ×	1.42×10^{10}	100	1.86 ×
	7.51 × 10 ¹⁰	109	1012	4.07 × 1010	1/4	1012	1.43 × 1010	122	1012
20	(50 1010 100	102	6.28 ×	3.94 × 10 ¹⁰	193	4.38 ×	9.07 × 10 ⁰⁹	124	2.01 ×
	6.30 × 10 ¹⁰	125	1012			1012			1012
21	4.77×10^{10}	121	5.05 ×	2 22 × 10 10	197	3.80 ×	1.41×1010	128	2.35 ×
	4.77 ~ 1010	131	1012	5.25 * 1010	102	1012	1.41 × 1010	120	1012
22	5 09 × 1010 130	5.38 ×	3.66 x 1010	184	3.86 ×	1.54×1010	128	2.49 ×	
	5.09 ~ 10	* 1010 130	1012	5.00 × 1010	104	1012	1.54 ^ 1010	130	1012
23	23 3.44 × 10 ¹⁰	158	4.36 ×	3.14×10^{10}	219	3.86 ×	8.29×10^{09}	174	2.36 ×
25			1012			1012			1012
average	5.41×10^{10}	169	6.96 ×	4 23 x 1010	255	6.08 ×	1.40×10^{10}	250	4.43 ×
average	5.41 ^ 10**	107	1012	4.25 ^ 10**	233	1012	1.40 ^ 10**	200	1012

Figure S1. Diurnal patterns of (**a**) temperature, (**b**) wind speed, and (**c**) number of vehicles in season inside of the tunnel to determine the seasonal value of tunnel flow coefficient.

Figure S2. Diurnal pattern of the mode of number concentration of particle size distribution inside and outside of the tunnel employed for the analysis of effects of temperature on the final condensation diameter.