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Abstract: In this paper, we present a fully automatic solution for denoting bone configuration on two-
dimensional images. A dataset of 300 X-ray images of children’s knee joints was collected. The strict
experimental protocol established in this study increased the difficulty of post-processing. Therefore,
we tackled the problem of obtaining reliable information from medical image data of insufficient
quality. We proposed a set of features that unambiguously denoted configuration of the bone on the
image, namely the femur. It was crucial to define the features that were independent of age, since age
variability of subjects was high. Subsequently, we defined image keypoints directly corresponding
to those features. Their positions were used to determine the coordinate system denoting femur
configuration. A complex keypoint detector was proposed, composed of two different estimator
architectures: gradient-based and based on the convolutional neural network. The positions of the
keypoints were used to determine the configuration of the femur on each image frame. The overall
performance of both estimators working in parallel was evaluated using X-ray images from the
publicly available LERA dataset.

Keywords: biomechanics; image processing; machine learning; neural network; medical image

1. Introduction

In recent years, robotics have largely influenced medical practices [1]. Artificial
intelligence, miniaturization, and computer power all contribute to the widespread usage
of robots in medicine. One of the branches benefiting from new structures and control
systems are human motion aids, i.e., prostheses, orthosis, and rehabilitation manipulators.

The mechanisms reflect the individual patient’s needs, which usually require acquisi-
tion of real medical data from the patient. Proper extraction of important features from the
data is necessary to maintain the benefits of the aforementioned systems.

One example of such application is a robotic rehabilitation aid that is able to track the
movement path of the real healthy joint. Source information can be obtained by acquisition
of medical images (e.g., MRI, CT, X-ray). To automatically extract important features
from medical image data, convolutional neural networks (CNNs) are commonly used [2].
The reason for choosing CNN to alleviate medically oriented problems is two-fold. First,
due to the complex nature of the input data, the hand-engineered features are difficult to
obtain. Second, CNN has found its application in plenty of medically oriented applications,
giving satisfactory results in a broad range of solutions [2].

This paper presents results that are within this mainstream convention. We propose
an automatic solution to detect key features, i.e., keypoints, on medical images. In this
study, we considered children’s X-ray images of knee joints in lateral view. The radiographs
presented joints of different maturity levels, as all subjects underwent bone ossification.
The ratio between bone structures and soft tissues is directly connected to the subject’s
age. Therefore the interpretation is more difficult in comparison to adult X-rays, where
ossification is complete.

The main contribution of this paper can be summarized as follows:

1. Selection of image features that unambiguously define the configuration of the bone
on the X-ray image, given the troublesome specification of the image data.
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2. Selection of keypoint sets connected to those features.
3. Design of the optimal detection algorithm, which enables the proper estimation of

keypoints on X-ray images; the proposed algorithm includes a specially tailored
estimator consisting of adaptive threshold and deep CNN.

4. Proposition of the bone coordinate system directly corresponding to its configuration.

The accuracy of the proposed method is defined as a root mean squared error (RMSE)
between the estimated configuration of the bone and the reference coordinate system. The
overall accuracy of the presented method is evaluated on the publicly available LERA
dataset [3]. The dataset consist of lower extremity radiographs of adults gathered by the
Stanford University School of Medicine.

The contribution of this paper is threefold. From a medical perspective, we provide a
complete solution to obtain femur configuration on two-dimensional X-ray images. From a
robotics point of view, the trajectory of femur configuration could be used to define the
kinematic model of the joint (to be incorporated in rehabilitation robotic aid). From an
artificial intelligence point of view, we provide the optimal estimator architecture to solve a
regression task for medical images.

1.1. Related Work

In recent years, CNN image processing has been successfully applied in many ap-
plications, e.g., road detection and face recognition. In the case of medical images, the
input data possess less salient features than typical CNN input images. The example image
frame, considered in this study, with speeded-up robust features (SURF) [4] denoted as
red circles are presented in Figure 1a. Note the difference in feature number in contrast to
example images from datasets used in different applications, presented in Figure 1b–d. As a
side note, the SURF features are presented in Figure 1 for comparison reasons. Any other
traditional gradient-based method of feature extraction would result in a similar result.

(a) (b) (c) (d)
Figure 1. Example images with SURF features. (a) X-ray image; (b) Dogs vs. Cats [5]; (c) KITTI
dataset [6]; (d) MNIST dataset [7].

Due to the complex (and unique) nature of the medical images, most CNN applications
in image processing involve classification [8,9]. Since classification output is discrete (i.e.,
classes) it is considered less difficult than regression, where output is usually a real number
(keypoint positions, segmentation, object detection, etc.). Although several CNN-based
keypoint detection methods have been proposed in medical image analyses [10–12], it is
still challenging to detect image keypoints.

Interestingly, several deep learning algorithms had been used on adult X-ray im-
ages [13–16]. Meanwhile, very little research was conducted for medical image data
collected for children [17]. Plenty of reasons for this imbalance can be named, e.g., con-
sent problems, complex nature of children’s medical images (age dependency of visible
structures, intra- and interpopulation variation).

Recently, individual studies have made attempts to apply CNN to solve regression
tasks for children’s medical images [18–20]. Nevertheless, there have been issues consider-
ing the lack of input data, as pediatric medical image datasets are rarely publicly available.
To avoid the problem of limited training data, some deep learning based keypoint detection
methods adopt local image patches as samples to perform regression for each of the patches
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individually [21]. Those solutions are time consuming and require large computational
costs, if each landmark is detected separately.

Alternative solutions use end-to-end learning strategies with entire images as in-
put and the keypoint coordinates as output [22]. The keypoints can be represented as
heatmaps [12], i.e., images where Gaussians are located at the position of the keypoints.
Then, the task can be understood as image segmentation, with heatmaps being the target.
This opens plenty of new possibilities, as many network architectures are designed for
image segmentation, e.g., U-Net [23].

The complexity of pediatrics medical images, in comparison to adult ones, is specifi-
cally evident in knee radiographs. The images of younger patients have open growth plates,
ossification center changes, and possess less characteristic radiographic landmarks [24].
For example, the contact points of knee joint surfaces [25] are not detectable in the X-ray im-
ages of young patients. Given this troublesome characteristic of input data, the task of key-
point detection is more demanding, which has to be encountered in the algorithm design.

1.2. Problem Statement

Bone configuration on each image frame can be understood as its orientation and
position, i.e.,

g =
[
θ x y

]>, (1)

where θ denote the orientation of the bone and x, y stand for its position. To define the
configuration of the bone on each image, we assume keypoints kj, j = 1, . . . , f . With each
image, we correlate the keypoint set:

K ,
[
k1 k2 . . . k f

]
=

[
x1 x2 . . . x f
y1 y2 . . . y f

]
, K ∈ IR2× f , (2)

where xj and yj are the coordinates of j-th keypoint kj. For each image frame, we assume
that it is possible to obtain valid femur configuration g from the selected keypoint set.
Therefore, we can state that

g = φg(K), φg : IR2× f → IR3, (3)

where φg is a transformation from keypoint matrix (2) to the bone configuration (1).
To avoid the ambiguity of bone configuration, we assume that the transformation φg
should be equal for all image frames.

Since ground truth is not available for a considered problem, the reference configura-
tion of the femur will be based on manually marked keypoints. Therefore, we distinguish
the configuration of the femur obtained by manually denoted keypoints (with subscript m)
and the configuration obtained by estimated positions of keypoints (with subscript e), i.e.,

gm =
[
θm xm ym

]>, ge =
[
θe xe ye

]>. (4)

The accuracy of the proposed method will be evaluated as a difference between
manual and estimated femur configuration. The proposed solution, depicted in Figure 2,
consists of the following steps. First, in the initialization phase, the set of image features
that correspond to the femur configuration is chosen. Second, femur features are manually
annotated on each image frame by a medical expert. The keypoints are treated as a
reference and the goal of the proposed estimation algorithm is to reflect those positions
as closely as possible. Two different estimation techniques are chosen in this specific
scenario, i.e., tailored adaptive threshold estimator and CNN-based estimator. The overall
performance of the estimator is evaluated in the test set, consisting of previously unused
medical image frames.

The configuration of the femur is used as a registration coordinate system, to remove
the influence of femur configuration changes on the overall kinematics of the joint. If suc-
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ceeding, the estimation algorithm could be used as an initialization phase of knee joint
kinematic model evaluation.

Validation

X-ray images Keypoints

Femur

configuration

CNN     
    

(model optimization)

PS keypoints

Adaptive 

threshold

LA keypoints

Evaluation
(configuration error)

Evaluation

(RMSE)

Femur 
configuration

In
it

ia
li

za
ti

o
n
 

Feature 

selection

LA

PS

Auxiliary points

(placed manually)

Expected CNN
output

LA orientationLA orientationT
ra

in
in

g
 

CNN PS keypoints

Adaptive 

threshold
LA keypoints

(optimized and trained)

Sec. 3.1

Sec. 3.2

Sec. 3.3

T
es

t

Figure 2. The three stages of the proposed algorithm with schematic representation of each step.

2. Materials and Methods

The method presented in this paper is divided into three stages, as depicted in Figure 2.
Each will be discussed briefly. The initialization step, described in Section 2.1, consist of
selection of the features that unambiguously determine the configuration of the femur on
the image data. Each feature is then annotated by manually marked keypoints. This stage
results in femur configuration gm corresponding to each image frame. This step is not
repeated for new, unseen image data.

In the training stage, the image-configuration pairs from the initialization stage are
used to select the optimal structure of the estimators. The manually denoted keypoints are
used as a reference during the evaluation. This part is described in Sections 2.2 and 2.3
while the results are gathered in Sections 3.1 and 3.2.

The test stage evaluates the performance of the trained estimators. New X-rays,
representing new subjects are examined. The performance is evaluated as a difference
between the estimated femur configuration ge and the reference gm. This step is described
in Section 3.3.

2.1. Initialization

In this study, 14 subjects were examined, 12 of which were orthopedic patients av-
eraging 10 years (5–18), 9 female, and 6 male. The legal guardians of all subjects gave
informed consent to participate in this study approved by the Bioethics Committee of
Poznan University of Medical Sciences (resolution 699/09). The remaining two subjects
were 25-year-old healthy adults (one female and one male).

Static image frames were recorded for a non-weight bearing passive movement in a
horizontal plane using a fluoroscopy system (Philips BV Libra C-Arm, 1008 px × 576 px
resolution). Lateral view frames were gathered for each subject for different angular
positions of tibia, whereas the femur was fixed manually. Several selected image frames are
presented in Figure 3. Note that, more than one image frame was taken for each subject.
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Figure 3. Example image frames of one subject. Images were adjusted for visualization purposes.

The proposed examination protocol possesses few limitations. Undoubtedly, the qual-
ity and the quantity of information present in the input image data are limited and below
modern medical data acquisition standards. However, poor quality constitutes a scientific
challenge to overcome. Thus, the proposed algorithm should alleviate the issue of prob-
lematic input data. In this particular scenario, the following aspects of the examination
protocol had to be taken into consideration:

1. Minimization of the subjects’ fatigue during examination (femur was fixed manually,
not firmly; thus, the configuration of femur gi was not static);

2. Minimization of the radiation level during examination (certain radiation-free tech-
niques, e.g., magnetic resonance imaging, were not allowed for a given study; subjects
with the Ilizarov apparatus, screws);

3. The difference of visible bone outlines on images of subjects of different ages (bone
formation and growth occurs gradually up to 23 years old);

4. Subjects with normal and abnormal knees had to be examined (the pathology largely
influences the bone structure).

Given the problems stated above, we propose that the configuration of the femur is
defined by two features, namely the patellar surface (PS) and the long axis (LA) of the femur,
as presented in Figure 4. Notably, the chosen features are redundant, but the redundancy
is intentional. The bone image is a two-dimensional projection of the three-dimensional
structure on the fluoroscopic screen; thus, the visible bone outline cannot be treated as a
rigid body. It is possible that the out of plane rotation of the bone could be interpreted as
bone deformation (The assumption was made that the rotation around the sagittal axis,
i.e., out of plane rotation, is limited.). It must be encountered in the proper selection of
keypoints corresponding to the chosen features.

LA can be defined as the middle line of the femoral shaft and, therefore, can be
obtained by clearly visible borders of the femur shaft (Figure 4). Detection of keypoints de-
noting LA may be completed by traditional gradient-based image processing. On the other
hand, keypoints on PS are ambiguous. The surroundings of PS are greatly age-dependent,
and the border between the bone and soft tissue is untraceable. Using traditional image
keypoint detectors may be invalid in this particular case. Therefore, we propose dividing
the task of keypoint detection into two, i.e.,

• Keypoints corresponding to the LA of the femur will be estimated using traditional
gradient-based methods, as described in Section 2.3;

• Keypoints corresponding to the PS of the femur will be estimated using CNN, as de-
scribed in Section 2.2.



Appl. Sci. 2021, 11, 9538 6 of 17

Patellar Surface 
(PS)

Long Axis (LA)

Lateral 
condyle

Medial condyle

Femoral shaft

Figure 4. X-ray image frame with assigned features of the femur. Original image was adjusted for
visualization purposes.

What is worth pointing out, the feature selection is a part of the initialization stage
of the algorithm, as presented in Figure 2. The features will remain equal for all subjects
evaluated by the proposed algorithm. Only the positions of keypoints on image data
will change.

The following procedure is proposed to obtain keypoints on each image. Each image
frame is presented on screen and a medical expert denotes auxiliary points manually on
the image. For LA, there are 10 auxiliary points, 5 for each bone shaft border, and PS is
determined by 5 auxiliary points (see Figure 2 for reference). The auxiliary points are used
to create the linear approximation of LA, and the circular sector approximating the PS (as
denoted in Figure 4). Five keypoints k1, . . . , k5 are automatically denoted on LA and PS,
as shown in Figure 2.

The set of keypoints, given by Equation (2), constitutes the geometric parameters of
important features of the femur, and is necessary to calculate the configuration of the bone
on each image. In this work, the assumption was made that the transformation (3) exists.
As stated before, a visible bone image cannot be considered a rigid body; therefore, the exact
mapping between keypoints from two image frames may not exist for a two-dimensional
model. Therefore, we propose to define femur configuration as presented in Figure 5.

Figure 5. Keypoints of the femur and corresponding femur coordinate system.

The orientation of the bone θg is defined merely by the LA angle. On the other hand,
the origin of the coordinate system of femur configuration ḡi is defined using both, LA and
PS. Assume m is a centroid of PS, then we can state that m =

[
mx my

]>
= 1

3 (k1 + k2 + k3).
Accordingly, ḡi is a point on LA, which is the closest to m. Assuming the previously stated
reasoning, it is possible to obtain the transformation φg from Equation (3) as
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φg =



atan2
(

y4−y5
x4−x5

)
(

y4−y5
x4−x5

)
my+mx−

(
y4−y5
x4−x5

)(
y5−x5

(
y4−y5
x4−x5

))
1+
(

y4−y5
x4−x5

)2(
y4−y5
x4−x5

)2
my+

(
y4−y5
x4−x5

)
mx+y5−x5

(
y4−y5
x4−x5

)
1+
(

y4−y5
x4−x5

)2


. (5)

2.2. Training Stage: CNN Estimator

The CNN estimator is designed to detect the positions of three keypoints k1, k2, and
k3. Those keypoints correspond to PS, which is located in the less salient region of the
X-ray image. The correctly designed estimator should assign keypoints in the positions of
the manually marked keypoints. For example, for every image frame, the expected output
of CNN is given by

ϕ = [k1 k2 k3]
> ∈ IR6. (6)

First, X-ray images with corresponding keypoints described in the previous section
were preprocessed to constitute valid CNN data. The work-flow of this part is presented in
Figure 6. Note that, all of the presented transformations are conducted simultaneously on
images and corresponding keypoint positions. Thus, keypoints reflect the configuration of
PS on the source image.

Augmentation

Local cache

(binary data)Cropping Shuffle NormalizationRepository

Figure 6. Generation of CNN learning sets.

As a first stage, due to the small dataset size, the original data were augmented with
typical image transformations (rotation, translation, scale, reflection, contrast change [26]).
Second, image frames were cropped to size 178 × 178 px. The smaller resolution was
selected as a trade off between hardware requirements (memory limitation) and minimizing
the loss of information. The example of cropping operation is presented in Figure 7a.
The position of the cropping window was chosen randomly with the assumption that it
contained all of the keypoints.

The third step consists of shuffling data to avoid local minima in the learning process.
Note that, after shuffling, the input and output pair remains the same. Finally, the images
are normalized to unify the significance of each input feature on the output.

The learning data are sequentially divided between the train and development sets,
as described in Table 1. Note that images of one subject constitute exclusively one of
the sets.

To evaluate the performance of CNN architecture, a separate test set is formed. In this
study, a slice of the publicly available LERA dataset [3] is used, consisting of knee joint
images in the lateral view. The whole dataset consists of 182 images of different joints
of the upper and lower limb, collected between 2003 and 2014. Note that the dataset
includes radiographs varying in size and quality; therefore, a proper preprocessing and
standardization of resolution is needed.
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(a) (b)

Figure 7. Visualization of certain preprocessing stages of the algorithm. (a) The whole X-ray image
with cropped window (dashed line) and keypoints (circle) of PS. (b) Adaptive thresholded X-ray
image with fluoroscopic lens (dotted line), points pp1 and pa1 (round marker), and set of points pp

and pa (red line). Images were preprocessed for visualization purposes.

Table 1. Gathered data sets for CNN training.

Learning Learning Examples Number
Set Original Augmented of Subjects

Train 318 12,000 12
Development 32 1200 2

Test 1 44 44 44

Overall 394 13,244 58
1 The test set comprises of the LERA dataset [3] images. Only images of the knee joint were selected from the
dataset.

This study focuses on classic feedforward networks, i.e., without feedback connections.
It is assumed that the values of the weights and biases are trained in the stochastic gradient
descent learning process. The chosen optimization criterion is given by mean squared error
value

L , ϕ̃>ϕ̃, ϕ̃ , ϕ̂−ϕ, (7)

where ϕ̂ is the estimated output of CNN and ϕ is the expected output of CNN given by
Equation (6). Note that, contrary to most medical image oriented CNN scenarios, here CNN
is designed to solve regression task, i.e., keypoint coordinates are given in real numbers.

Importantly, the loss function (7) gradient is calculated with a modified backpropaga-
tion process, i.e., ADAptive Moment estimation [27]. Due to the large complexity of the
considered problem, CNN architecture, as well as learning parameters, will be optimized.
The optimal network architecture, among different possible structures, will ensure the
lowest loss function value (7). The optimization procedure is described in Appendix A.

We acknowledge that collected datasets (Table 1) are limited in size. Nevertheless,
we are convinced that proper regularization will assure an appropriate learning process.
Following the work presented in [26], we have applied:

1. L2 Regularization: enforcing a sparsity constraint on CNN parameters;
2. Dropout [28]: randomly omitting units during the training process (denoted as DO(p),

where p ∈ (0, 1) stands for a probability of dropout);
3. Batch normalization [29] (denoted as BN): normalization of every layer’s output,

normalization parameters are trained together with other CNN parameters;
4. Early stopping: avoiding long-term training of models with high loss function value

and/or overfitting the training data. If after 50 epochs of learning, the minimum of loss
function value for training and validation set is higher than 11 px2 or after 150 epochs
is higher than 6 px2, the training process is stopped.
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2.3. Training Stage: Gradient-Based Estimator

As stated previously, border points of bone shafts can be used to calculate the LA
keypoints. Assume a set of points on each border of the bone shaft

pp ,
{

ppk

}λ
k=1, pa ,

{
pak

}λ
k=1, (8)

where λ is a predefined number of auxiliary keypoints to be assigned on each side of the
border, for the posterior and anterior side, respectively. The first point in each set represents
an intersection between the bone shaft and the fluoroscopic lens, as presented in Figure 7b.

The proposed algorithm of LA keypoints estimation is described as Algorithm 1.
The steps will be discussed briefly. First, the input image is converted to binary by the
adaptive threshold technique [30] with a randomly chosen window size s. Second, the
binary image is opened to cancel all small objects. The points of remaining objects that
intersect with the fluoroscopic lens are detected (round markers in Figure 3) and are used
as initial conditions to the Moore–Neighbor tracing algorithm [31]. An eight pixel neigh-
borhood is chosen and border points pp and pa are extracted. Each border is approximated
using simple linear regression [32]. Both linear approximations are verified in terms of the
coefficient of determination, denoted as R2. If both bone borders are estimated correctly,
i.e., the linear regression of points can be correctly approximated by a straight line, R2 is
high and the algorithm passes to the next step. If the condition is not satisfied, a different
adaptive threshold window size s is chosen, and all of the steps are repeated for a new
binary image.

Algorithm 1: LA keypoint estimation.
Result: k4, k5
Input: X-ray image;
Set s = 11 + 2 · j, j ∈ {0, . . . , 15};
Set λ = 50, f lag = 0;
while flag = 0 do

Randomly select window size s ∈ s;
Binarize image with s [30];
Cut small objects (binary image opening);
Find initial points pp1 and pa1 on binary image;
Trace pp and pa using [31];
Calculate linear regression of pp and pa with [32];
if R2 > 95% then

flag = 1;
end

end
Calculate pLA =

(
pa + pp

)
/2;

Set k4 and k5 on linear regression of pLA;

As soon as bone borders are estimated correctly, the mid-points between the borders
are obtained. Their linear regression comprises the LA line. Keypoints k4 and k5 are
assigned as random points on a linear approximation of LA.

3. Results

In this section, we present the estimation results of both LA and PS. First, the optimal
CNN architecture is discussed and the results of PS keypoint detection are presented,
according to scheme from Figure 2. Second, the results of the proposed gradient-based
method of the LA keypoint estimation are described. At the end of the section, the overall
performance of the two combined methods of estimation is presented. The results are
compared with the configuration of the femur obtained by manually marked keypoints.
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3.1. PS Estimation

As a result of training over 200 networks with different architectures, the one ensuring
the minimum loss function value (7) was chosen. The network architecture is presented
in Figure 8. The optimal CNN architecture [26] consists of 15 layers, 10 of which are
convolutional. The size of the last layer represents the number of network outputs, i.e., the
coordinates of keypoints k1, k2, k3.

Input image

Figure 8. The optimal CNN architecture. Each rectangle represents one layer of CNN. The following
colors are used to distinguish important elements of the network: blue (fully connected layer),
green (activation functions, where HS stands for hard sigmoid, and LR denotes leaky ReLU), pink
(convolution), purple (pooling), white (batch normalization), and yellow (dropout).

After 94 epochs of training, the early stopping rule was met and the learning process
was terminated. The loss function of development set was equal to 8.4507 px2. The results
for all learning sets are gathered in Table 2.

Table 2. CNN loss function (7) values for different learning sets.

Learning Set Proposed U-Net [23]
Solution (with Heatmaps)

Train 7.92 px2 9.04 px2

Development 8.45 px2 10.31 px2

Test 6.57 px2 6.43 px2

Loss function values for all learning sets are within acceptable range, given the overall
complexity of the assigned task. The performance was slightly better for the train set in
comparison to the development set. This feature usually correlates to overfitting of train
data. Fortunately, low test set loss function value clarified that the network performance is
accurate for previously unknown data.

Interestingly, test set data achieved the lowest loss function value, which is not com-
mon for CNNs. There may be several reasons for that. First, X-ray images used during
training were of slightly different distribution than those from the test set. The train set
consisted of images of children varying in age and, consequently, of a different knee joint
ossification level, whereas the test set included adult X-rays. Second, train and devel-
opment sets were augmented using typical image transformations, to constitute a valid
CNN learning set (as described in Table 1). The corresponding loss function values in
Table 2 are calculated for augmented sets. Some of the image transformations (randomly
selected) resulted in high contrast images, close to binary. Consequently, those images
were validated with high loss function value, influencing the overall performance of the set.
On the other hand, the test set was not augmented, i.e., X-ray images were not transformed
before the validation.

The optimization of the hyperparameters of CNN, as described in Appendix A, im-
proved the process of network architecture tuning, in terms of processing time as well
as low loss function value (7). The optimal network architecture (optimal in the sense of
minimizing the assumed criterion (7)) consists of convolution layers with different window
sizes, for convolution and for pooling layers. It is not consistent with the widely popular
heuristics of small window sizes [33]. In this particular scenario, small window sizes in
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CNN resulted in higher loss function or exceeded the maximum network size limited by
the hardware restrictions.

Several regularization techniques were implemented, enabling the long-term learning
process and avoiding overfitting of the goal function. For instance, the probability of
dropout was high, especially in the deep layers of the network. Additionally, the most
effective activation function was leaky ReLU [34]. The other well-known and widely
popular activation function ReLU was also considered, nevertheless, it was Leaky ReLU
that was chosen in all network layers.

Interestingly, the pooling layer type in this optimal network architecture alternates
between mean and max pooling. Therefore, after each convolution layer, the pooling layer
sharpens the features (max) or smoothing them (mean).

As an additional evaluation of the proposed algorithm, we compare its performance
with an alternative solution. Based on studies [12] we apply U-Net [23] to regress heatmaps
corresponding to keypoints k1, . . . , k3. Keypoints heatmaps were created centering normal
distribution at keypoint positions, normalized to maximum value of 1, with standard
deviation equal to 1.5.

Original U-Net architecture [23] was used in this comparison. Note that, the input
image is grayscale with resolution 572 px × 572 px; therefore, the whole X-ray image,
within the limits of the fluoroscopic lens, is fed to the network.

The results of applying U-Net on X-ray images considered in this study are gathered
in Table 2. It is evident that our proposed solution guaranteed lower loss function values
in comparison with U-Net. Admittedly, U-Net performance was superior for images in the
test set, but the difference is neglectable.

3.2. LA Estimation

The overall result of the LA estimation for all subjects from train and development
sets (as described in Table 1) are gathered in Figure 9. Test set results will be discussed in
the next section. Since no significant translational errors were noticed, only LA orientation
errors are presented. The LA orientation error is considered as a difference between the
angle θm, obtained from manually marked keypoints (using Equation (5)) and orientation
θe obtained from estimated keypoints (using Algorithm 1).
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Figure 9. RMSE between the estimated and reference femur orientation.

The accuracy is defined by a root mean square error (RMSE). The red line in Figure 9
represents the median of the data, whereas the blue rectangles represent the interquartile
range (between the first and third quartiles). The dashed line represents the data outside
of this range, with several outliers denoted as red plus sign. The error median fits within



Appl. Sci. 2021, 11, 9538 12 of 17

range (−1.59◦, 2.1◦). The interquartile range for all subjects is relatively low, and the error
rates are close to median values, therefore the diversity of error values is low.

The estimation of the LA orientation is of decent precision. The absolute value of
orientation angle is lower than 4◦ for all image frames. The highest error corresponds to
those image frames, which were slightly blurry and/or the bone shaft was just partially
visible. Given the overall quality of the images, the error is negligible.

What is worth pointing out, Algorithm 1 resulted in a valid outcome after only one
iteration, for most of the image frames. Therefore, the initial empirically chosen image
window size s = 25 was reasonable for plenty of image frames. Nevertheless, 8 out of
14 subject images were thresholded with different window sizes. According to the adaptive
thresholding technique, smaller window sizes were chosen for clear object borders, whereas
bigger window sizes for more blurry images. Different s values reflect the differences in
image quality and the bone age of each subject.

3.3. Femur Configuration Estimation (Test Stage)

In this section, we present the combined performance of both the LA and PS estimator,
to evaluate the femur configuration on each X-ray image frame. Both estimators were
designed and tuned using images from train and development sets, according to the
description in Table 1. We assume that no further changes will be made in the architecture
as well as parameter values of both estimators, once the training phase is finished.

In the test stage, we will evaluate the performance of the estimators on new data, not
used during training, i.e., included in the test set.

Remember that, the reference configuration of the femur gm is calculated from posi-
tions of manually marked keypoints. The same set of transformations (5) is applied to both
manually denoted and estimated keypoints, to calculate the configuration. The overall
performance of the algorithm is defined as a difference between gm and ge. The results for
each configuration element separately are presented in Figure 10.
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Figure 10. Femur configuration estimation results.

Position error is defined in pixels, whereas orientation is given in degrees. Note that
the orientation error (θm − θe) is purely dependent on the performance of the gradient-
based estimator and the results correspond to the values presented in Figure 9. Therefore,
the estimator detects LA keypoints on new image data with similar accuracy to the one
observed in the training stage.

Position error combines the inaccuracies of both estimators, nevertheless proposed
redundancy of keypoint selection causes slight robustness to those errors. Estimation errors
of both position components of femur configuration is limited. The overall performance is
satisfactory, given the size of the input image.

Interestingly, the femur coordinate center was swiped to the left (xe < xm) on most X-
ray image data, in comparison to manually denoted configuration. It could be interpreted as
a systematic error of the estimator and could be canceled out in the forthcoming validations.
However, the sources of error may be connected to the reference configuration, which is
calculated for manually placed keypoints. This assumption could lead to the remark that
CNN actually performed better than the human operator.
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The results achieved by the proposed algorithm of femur configuration detection
cannot be compared with any alternative solutions. The femur coordinate system proposed
in this study was not incorporated in any outgoing or previous studies. Other authors
proposed different representations [35,36], but those do not apply for this specific image
data. As far as the author’s knowledge is concerned, there are no alternative configuration
detectors of the pediatric femur bone in the lateral view.

4. Discussion

In this work, we specified the feature set that unambiguously determines femur
configuration, the defined corresponding image keypoints, and we constructed femur
coordinate system derived from those features. Subsequently, we proposed the fully
automatic keypoint detector. The performance of the algorithm was evaluated on new data
and achieved satisfactory results.

The proposed set of features reflected the strict examination protocol and is only
valid for two-dimensional image data. Admittedly, modern acquisition systems enable
more informative image data (e.g., MRI). Then, image processing is less demanding,
and higher accuracy can be obtained for the detection and/or classification task. The main
motivation of our work was to change the balance between data acquisition and image
processing. Therefore, we used lower quality image data (still present in plenty of medical
facilities) but simultaneously lowered the fatigue of specific and fragile group of subjects,
considered in this study. This forced us to design a more sophisticated and complex image
processing algorithm.

Our image processing algorithm consisted of two estimators. One of them was based
on CNN, and contrary to widely popular hand-engineering, we proposed to optimize
network architecture automatically. The optimization algorithm accelerated largely the
process of hyperparameter tuning. What is worth noticing, in the optimization process,
at least 10 network architectures resulted in similar loss function values. We can explicitly
state that the given estimation problem can be solved via CNN.

Both keypoint estimators work in parallel, and their result is used to evaluate the
configuration of the femur. Each image frame is processed separately; therefore, no
prior information is used to determine femur configuration. The important feature of this
solution is that the error does not accumulate for images of one sequence, i.e., corresponding
to one subject.

The main benefit of both estimators is the end-to-end learning pattern. In general,
this type of solution processes the input image data faster and with lower computa-
tional costs than, e.g., image patch based evaluation [21]. Admittedly, the accuracy of the
method is lower than for projects where three-dimensional data are available alongside
two-dimensional data [37,38]. However, it is the input data quality responsible for this
outcome, not the method itself.

Additionally, if three-dimensional data are not available, the segmented bone image
may not be directly connected to the actual bone configuration. For example, out of plane
rotation will influence the shape greatly. Therefore, simple segmentation methods [37]
cannot be applied in this study.

The proposed algorithm of keypoint detection results in a decent accuracy, similar
to [39,40]. Given the troublesome characteristics of images, we believe it is a success.

The whole algorithm of femur configuration detection resulted in a reliable outcome
even for images of different distributions than training data. The train and development
sets were mostly pediatric images. Two healthy adult subjects were introduced to increase
the generality of the proposed solution. On the other hand, the test set was composed of
merely adult subjects’ images. In the future, it would be beneficial to validate the algorithm
on a dataset composed of children’s X-rays.

An important aspect of this work is the lack of ground truth in medical image data.
The reference values used in this study were influenced by human error. Obtaining reliable
reference data for keypoint detection still remains an open problem.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN convolutional neural networks
CT computed tomography
LA long axis of femur
MRI magnetic resonance imaging
PS patellar surface
RMSE root mean squared error

Appendix A

In this work, contrary to frequently used hand engineering, we propose to optimize
the structure of the estimator through a heuristic random search in a discrete space of
hyperparameters. The hyperparameters will be defined as all CNN features selected in the op-
timization process. The following features are considered as hyperparameters [26]: number
of convolution layers, number of neurons in each layer, number of fully connected layers,
number of filters in convolution layer and their size, batch normalization [29], activation
function type, pooling type, pooling window size, and probability of dropout [28]. Addi-
tionally, the batch size X as well as the learning parameters: learning factor, cooldown, and
patience, are treated as hyperparameters, and their values were optimized simultaneously
with the others.

What is worth noticing—some of the hyperparameters are numerical (e.g., number of
layers), while the others are structural (e.g., type of activation function). This ambiguity
is solved by assigning individual dimension to each hyperparameter in the discrete search
space. In this study, 17 different hyperparameters were optimized [26]; therefore, a 17-th
dimensional search space was created. A single architecture of CNN, denoted asM, is
featured by a unique set of hyperparameters, and corresponds to one point in the search space.

The optimization of the CNN architecture, due to the vast space of possible solutions,
is achieved with the tree-structured Parzen estimator (TPE) proposed in [41]. The algorithm
is initialized with ns start-up iterations of random search. Secondly, in each k-th iteration
the hyperparameter setMk is chosen, using the information from previous iterations (from
0 to k − 1). The goal of the optimization process is to find the CNN model M, which
minimizes the assumed optimization criterion (7).

In the TPE search, the formerly evaluated models are divided into two groups: with
low loss function (20%) and with high loss function value (80%). Two probability density
functions are modeled: G for CNN models resulting with low loss function, and Z for
high loss function. The next candidateMk model is chosen to maximize the Expected
Improvement (EI) ratio, given by:

EI(Mk) =
P(Mk ∈ G)

P(Mk ∈ Z)
. (A1)

TPE search enables evaluation (training and validation) ofMk, which has the high-
est probability of low loss function, given the history of search. The algorithm stops
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after predefined n iterations. The whole optimization process can be characterized by
Algorithm A1.

Algorithm A1: CNN structure optimization
Result: M, L
Initialize empty sets: L = ∅, M = ∅;
Set n and ns < n;
for k = 1 to n_startup do

Random searchMk;
TrainMk and calculate Lk from (7);
M ∪Mk; L ∪ Lk;

end
for k = ns to n do

Sort M is increasing order of L;
Model density G(Mj), j = 1, ..., 0.2k with TPE;
Model density Z(Mj), j = 0.2k, ..., k with TPE;
ChooseMk with maximum EI (A1);
ifMk /∈M then

TrainMk and calculate Lk from (7);
M ∪Mk; L ∪ Lk;

end
end

The presented optimization returns the set of the evaluated model architectures:

M , {Mk}n
k=1, (A2)

together with corresponding loss function values

L , {Lk}n
k=1, (A3)

in the increasing order. The first set of hyperparameters, i.e.,M1 assures the minimum value
of loss function, at least among all of theMk that are stored in M. As a side note, the
TPE-based search algorithm enables covering the whole search space for a large number
of iterations n. In this particular scenario, for 17-th dimensional search space, the number
of all possible CNN architectures is approximately equal to 20,592× 1012. Covering the
whole search space would be a very time consuming task. With the TPE search algorithm,
we are able to accelerate the optimization process.
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