
applied
sciences

Article

AEMB: An Automated Exploit Mitigation Bypassing Solution

Ruipeng Wang , Zulie Pan , Fan Shi and Min Zhang *

����������
�������

Citation: Wang, R.; Pan, Z.; Shi, F.;

Zhang, M. AEMB: An Automated

Exploit Mitigation Bypassing

Solution. Appl. Sci. 2021, 11, 9727.

https://doi.org/10.3390/app11209727

Academic Editor: Amerigo Capria

Received: 14 September 2021

Accepted: 13 October 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China;
wangruipeng@nudt.edu.cn (R.W.); panzulie17@nudt.edu.cn (Z.P.); shifan17@nudt.edu.cn (F.S.)
* Correspondence: zhangmindy@nudt.edu.cn

Abstract: Modern operating systems set exploit mitigations to thwart the exploit, which has also
become a barrier to automated exploit generation (AEG). Many current AEG solutions do not fully
account for exploit mitigations, and as a result, they are unable to accurately assess the exploitability
of vulnerabilities in such settings. This paper proposes AEMB, an automated solution for bypass-
ing exploit mitigations and generating useable exploits (EXPs). Initially, AEMB identifies exploit
mitigations in the system based on characteristics of the program execution environment. Then,
AEMB implements exploit mitigations bypassing the payload generation by modeling expert experi-
ence and constructs the corresponding constraints. Next, during the program’s execution, AEMB uses
symbol execution to collect symbol information and create exploit constraints. Finally, AEMB utilizes
a solver to solve the constraints, including payload constraints and exploit constraints, to generate
the EXP. In this paper, we evaluated a prototype of AEMB on six test programs and seven real-world
applications. Furthermore, we conducted 54 sets of experiments on six different combinations of
exploit mitigations. Experiment results indicate that AEMB can automatically overcome exploit
mitigations and produce successful exploits for 11 out of 13 applications.

Keywords: software security; automated exploit generation; exploit mitigation; symbolic execution

1. Introduction

With the advancement of cyber security, there is an increase in the study of software
security, particularly software vulnerabilities [1–3]. Automated exploit generation (AEG) is
one of the best ways to assess the exploitability of vulnerabilities and is drawing more and
more attention. Software developers can utilize it to evaluate vulnerabilities and prioritize
high-risk vulnerabilities to patch first, while defenders can generate security rules to block
zero-day attacks through analyzing the yielded exploits.

Given a proof-of-concept (PoC) sample that triggers a vulnerability, existing AEG
solutions [4–9] in general start exploring from the program state triggered by the PoC to
generate exploits (EXPs). However, the above solutions have not separately discussed the
exploit mitigations, which have become a standard security feature in modern systems
due to the development of safe compilers and software security. Thus, it is demanded for
AEG solutions to support automated bypassing of exploit mitigations. In general, there are
several challenges in generating available EXPs that can bypass the exploit mitigatons.

Challenge 1: Modeling and automation of techniques for bypassing of exploit mitiga-
tion.In order to overcome the exploit mitigations, the EXP must deliver an attack payload
in the program’s operating memory. Generating a compliant payload necessitates mod-
eling and automating the technique for bypassing the exploit mitigation. Therefore, a
solution that can automate the implementation of techniques for bypassing existing exploit
mitigation is required.

Challenge 2: Modeling and automation of exploit techniques. The goal of AEG is
to generate working EXPs, which should be able to satisfy the exploit constraints and
payload constraints at the same time. The construction of exploit constraints need to refine

Appl. Sci. 2021, 11, 9727. https://doi.org/10.3390/app11209727 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2370-592X
https://orcid.org/0000-0001-5775-5824
https://doi.org/10.3390/app11209727
https://doi.org/10.3390/app11209727
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11209727
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209727?type=check_update&version=2

Appl. Sci. 2021, 11, 9727 2 of 19

and model the expert experience. Therefore, the automated exploit-mitigation bypassing
solution needs to address the issue of modeling and automation of exploit techniques.

Our solution: In this paper, we present an automated solution AEMB to address
the aforementioned challenges. It first generates payload constraints through exploit-
mitigation bypassing model. Then, it constructs the exploit constraint based on the exploit
experience and utilizes the solver to generate EXPs.

The bypass of the exploit mitigation mechanism is divided into three stages: exploit
mitigation identification, bypassing payload generation, and payload constraint construc-
tion. We analyze and research the features of the exploit mitigations and the bypassing
method. Based on the above, AEMB first automatically identifies the exploit mitigations.
Then, the AEMB conducts unified scheduling and generates the essential parameters
of bypassing of exploit mitigations since there may be a combination of several exploit
mitigations in the environment. Finally, AEMB constructs exploit-mitigation-bypassing
payload constraints and implements payload generation according to the key parameters
ofbypassing exploit mitigations.

After the payload constraint is constructed, generating proper EXPs is still difficult. It
requires patience, sophisticated experience, and high precision. Even for an experienced
human expert, it takes a long time to craft a working EXP sample. Regarding automated
EXP generation, researchers manage to generate EXP samples that require high precision
by sketching complex exploitation-related constraints via symbolic expressions and solving
constraints to yield working EXPs. Previous work shows symbolic execution is one of
the most effective approaches to do this work [4–7,9–11]. AEMB also employs symbolic
execution to generate EXPs. Through the analysis of existing exploit methods, AEMB can
automatically complete the generation of exploit constraints. Finally, through the solver,
AEMB can solve the exploit constraints and payload constraints to get the working EXP.

Evaluation result: We have built a prototype of AEMB based on the binary analysis
engine S2E [12] and evaluated it on six test programs and seven real-world applications
that run in the operating systems Windows and Linux. It could generate working EXPs
for 11 out of 13 programs. More importantly, we evaluated six different combinations of
exploit mitigations for each application (54 groups in total) and successfully generated
working EXPs for 37 groups of them (as expected, the failure is all in the acceptable range),
while existing open-source AEG solutions could not solve all of them. This demonstrated
that AEMB is effective on automated exploit-mitigation bypassing and could generate
working EXPs for most of them. Last but not least, we have evaluated the efficiency of
AEMB, and the results show that AEMB can automatically bypass the exploit mitigations
and generate EXPs in an average of 7.1 s.

In summary, we make the following contributions in this paper.

• We propose an automated solution AEMB, which can transform PoCs into EXPs that
can bypass the exploit mitigations.

• We propose a new automated exploit mitigations bypassing solution to modeling and
automating the method of the exploit mitigation bypassing.

• We have implemented a prototype of AEMB and demonstrated its effectiveness in test
and real-world programs.

2. Motivation

In this section, we present the overview of our solution AEMB with a running example,
as shown in Figure 1a.

Appl. Sci. 2021, 11, 9727 3 of 19

int fun()
{

FILE *v1;
char Vul[20];
printf ("what's your name:\n");
v1 = fopen (argv[1], Mode);
fgets (Vul, 500, v1);
printf ("your name:%s", Vul);
return 1;

}

1
2
3
4
5
6
7
8
9

10

Vul

Return address

EBP

DEP

Vul

Return address

EBP

None

Security Cookie

Return address

EBP

GS

Vul

RWX RW

(a) (b) (c) (d)

Figure 1. An example of stack overflow. (a) shows the source code of example. The vulnerability
at line 7 could overwrite the return pointer of the fun function. (b) shows the stack memory state
without exploit mitigation. (c) shows the stack memory state with DEP exploit mitigation. (d) shows
the stack memory state with GS exploit mitigation. “RWX” means the memory has the permission of
reading, writing, and execution. “RW” means the memory only has the permission of reading and
writing.

2.1. Vulnerability and Exploit

There is an overflow vulnerability at line 7, as shown in Figure 1a. The data from
file pointer v1 at line 7 will be received by buffer Vul, which is placed on stack memory.
The maximum size of the received data is 500 bytes, whereas the buffer Vul has a size of
20 bytes.

To exploit the above-mentioned vulnerabilities, we must first comprehend the stack’s
structure. As shown in Figure 1b, the function’s return address is kept on the stack memory
and is located beneath the buffer Vul. The function’s return address is kept on the stack
memory and is located beneath the buffer Vul, as shown in Figure 1b. If the overflow data
corrupt the return address, the program’s control flow will be hijacked, and the function
will return to an unexpected location. The vulnerability can be exploited by crafting the
overflow data and hijacking control flow to the shellcode in the stack.

2.2. Impediment

Even though the aforementioned vulnerability exploit approach might lead to getshell,
it may fail, owing to a variety of impediments, particularly exploit mitigations. Some of
them are listed below.

2.2.1. DEP

Data Execution Prevention (DEP) [13] is a security mechanism that monitors and
protects certain memory pages or regions, preventing them from executing code. In
Windows, it’s known as DEP, while in Linux, it is known as NX [14]. We can see that DEP
designates the stack memory as non-executable by comparing Figure 1b and Figure 1c.

The code in the data segment cannot be executed due to this mechanism’s protection.
A crash will occur after the program’s control flow is hijacked to the shellcode, which is
built from overflow data. As a result, the approaches for exploit listed above will be invalid.

2.2.2. GS

GS [15], a compilation option, is a security mechanism to protect the stack frame. In
Windows, it is known as GS, while in Linux, it is known as Canary. The allotted space
is loaded using a security cookie that is calculated once at module load on the function
entrance. A helper function is run when the function returns to ensure that the cookie value
remains the same. By comparing Figure 1b and Figure 1d, we can find that the security
cookie protects the EBP pointer and return address once its value tampers with indicators
that an overwrite of the stack may have occurred.

The overflow data must be restored to the value of the security cookie, which cannot
be obtained directly, under the protection of this technique. Once the overflow data are

Appl. Sci. 2021, 11, 9727 4 of 19

overwritten to the security cookie and modified to different data from the previous, a crash
will occur when the function returns. As a result, the approaches for the exploit listed
above will be invalid.

2.3. Concept

For ease of understanding, we introduce several concepts:

• Bypassing Payload: The bypassing payload [16] is a custom code that the attacker
wants the system to execute and bypass the exploit mitigations.

• Symbolic constraint: During the symbolic execution, the information related to the
external input of the program in the system is represented by symbols. These sym-
bols can represent the constraint relationship between external input and program
operation, and they are called symbol constraints.

• Payload constraint: The payload constraint is a symbolic constraint for arranging
the payload in the memory, and the arrangement of the payload can be realized by
solving it.

• Exploit constraint: The exploit constraint is a symbolic constraint for vulnerability
exploit, and the PoC can be converted to EXP by solving it.

2.4. Our Solution: AEMB

We proposed a novel solution AEMB, to break the above impediments. At the high
level, AEMB bypasses the exploit mitigations, AEMB automatically builds exploit mitiga-
tions bypassing payload constraint based on expert experience, and then it utilizes symbolic
execution to generate EXPs. As shown in Figure 2, it contains two major components.

Prog

PoC

Exploit
G

eneration

EXP

Automated Exploit Mitigations Bypassing

Exploit Mitigations Bypassing

Exploit
Mitigations
Identification

Bypassing
Payload
Generation

Payload
Constraints
Construction

Figure 2. Overview of AEMB. The input is the vulnerable program and the PoC that triggered the
vulnerability, and the output is the EXP.

2.4.1. Exploit Mitigations Bypassing

Exploit mitigations bypassing is the step to build the payload constraints that can
bypass the exploit mitigations.

This stage mainly includes three steps: exploit mitigations identification, bypassing
payload generation, and payload constraint construction. The descriptions of them are
provided below.

• Exploit Mitigations Identification. The Exploit Mitigations Identification judges which
exploit mitigations exist in the current running environment of the program. This
part mainly analyzes the characteristics of exploit mitigations and constructs the
corresponding identification model.

• Bypassing Payload Generation. The bypassing payload generation is mainly to realize
the generation of necessary parameters for the mitigations bypassing according to the
expert experience. This part focuses on automating existing bypassing technology for
exploit mitigations .

• Payload Constraints Construction. The payload constraints construction mainly builds
the relationship between memory and load through constraints. This part mainly

Appl. Sci. 2021, 11, 9727 5 of 19

constructs the constraint between symbolic memory and bypassing payload through
symbolic execution, thus providing the constraint for subsequent EXP generation.

2.4.2. Exploit Generation

Exploit generation is the step that can generate the exploits meeting the exploit con-
straints and payload constraints. As with most AEG solutions, exploit generation builds
exploit constraints from expert experience and solves all constraints by SMT [17] to gener-
ate EXPs.

3. Exploit Mitigations Bypassing

Given a target application and a PoC, AEMB first identifies the exploit mitigations in
the running environment, then generates the corresponding key bypassing parameters of
the security-mechanism, and finally constructs the payload constraints for EXP generation.

3.1. Exploit-Mitigation Identification

The first stage of bypassing exploit mitigations is to identify exploit mitigations, which
is mainly to determine which exploit mitigations exist in the current environment. The
following takes some specific exploit mitigations, which are the most basic mechanisms
DEP, GS, and SAFESEH, on Windows and Linux, as examples to illustrate. They are
introduced as follows.

• DEP. The DEP exploit mitigation requires the support of the scompiler and operat-
ing system under Linux and Windows, and its essence is to disable the execution
permissions of the data memory page. The AEMB dynamically executes the target
application and then detects the permissions of memory pages that store the data,
thereby judging the the DEP mechanism to be enabled, as shown in Figure 3a.

• GS and SAFESEH. The GS exploit mitigation is to include stack frame protection
codes, which involve saving the security cookie at the calling of the function and
verifying the cookie at the return of function at compile time. The AEMB statically
analyzes the assembly code to judge the enablement of the GS mechanism through
the existence of stack frame protection codes. As shown in Figure 3b.
The Safe Exception Handlers (SAFESEH) [18] is a Windows mechanism that can
prevent the bypassing of the GS mitigation. It can produce a table of the process’s
safe exception handlers. This table specifies for the operating system which exception
handlers are valid for the process. The AEMB determines if the SAFESEH security
mechanism is enabled by determining whether the current operating system supports
the SAFESEH security mechanism and whether the SAFESEH flag bit is enabled in
the binary’s file format, which is the PE file.

3.2. Bypassing Payload Generation

The second stage of exploit mitigations bypassing is to overcome the exploit mitigation
based on professional expertise and produce the essential parameters, which are the
bypassing payloads, for the subsequent process.

The following section describes and explains the particular exploit mitigation in
Section 3.1 as an example.

3.2.1. Program Analysis

To begin, the AEMB must examine the target application and its memory layout in
the operating environment. It can produce some basic information that is critical for either
an automated or manual exploit. The following information is specifically required for
bypassing payload generation.

• The memory with known address. This part is mainly aimed at the Address Space
Layout Randomization (ASLR) exploit mitigation, which is inextricably linked to the
whole exploit process, and therefore the system sees it as a feature of the operating
system. The AEMB will determine whether the address of each memory page is

Appl. Sci. 2021, 11, 9727 6 of 19

known. The known address is obtained through two methods: 1. The address of the
target memory page is fixed. 2. The address of target memory pages was leaked via
the PoC provided.

• The memory affected by the PoC. This part mainly judges which memories may be
affected by the PoC. It is required for the exploit since the PoC is converted into the
EXP by creating the memory affected by the PoC.
Taint analysis is used to acquire this kind of memory. The PoC is marked as the source
of taint, and the location where the PoC triggers the vulnerability is marked as the
sink of taint, as shown in Figure 4.

Stack

Heap

BSS

··· ···

RWX

RW

No
DE
P(N
X)

DE
P(N
X)

(a)

Instruction2

RET

··· ···

Instruction1
Cookie

Compare
GS

Others

No GS

(b)
Figure 3. Identification of exploit mitigations. Mainly includes the identification of DEP and GS
mitigations. (a) Identification of DEP exploit mitigation, mainly based on the permissions of the
data segment. (b) Identification of GS exploit mitigation, mainly based on the storing and checking
instructions of the security cookie.

Source

PoC

Source

Tainted
memory Vulnerability

Program

Figure 4. The process of obtaining memory affected by external input.

3.2.2. DEP Bypassing Payload Generation

The DEP security mechanism primarily limits execution permission in the data seg-
ment, preventing the program’s control flow from being hijacked to the data segment.

As a result, for exploit, Return-oriented Programming (ROP) technology is required,
which does not directly execute code on the data segment but instead deploys function
pointers on the data region and calls the lawful code in the code segment through the
function call and return mechanism.

The DEP bypassing payload generation aims to create a sequence of ROP gadgets that
can be combined to fulfill the exploit’s goal.

The feature of ROP gadgets is a series of register operations, system calls, etc. with an
end of ret instructions. The ret instructions allow gadgets to be linked and then combined
to perform the required function, as shown in Figure 5a. These gadgets are not limited
to the assembly code that exists in the program, but the machine code that exists in the
process memory. In the binary’s assembly code, for example, there are call QWORD PTR
[rax+0x4855c35d] instructions that cannot be utilized as ROP gadgets. The intercept
portion of the machine code, on the other hand, may turn it into a gadget, as shown in
Figure 5b.

According to the aforementioned ROP gadget features, AEMB can rapidly scan the
effective memory space of the application and get the anticipated ROP gadget address.
Following that, AEMB decides which ROP must be built based on the target program
running environment.

Appl. Sci. 2021, 11, 9727 7 of 19

Gadget1 address

Gadget2 address

… …

… …

RET

RET

Gadget3 address

Gadget1

Gadget2

(a)

0x400a61：
call QWORD PTR [rax+0x4855c35d]

0x400a62: nop
0x400a63: pop rbp
0x400a64: ret

0x400a61: 0xff
0x400a62: 0x90
0x400a63: 0x5d
0x400a64: 0xc3
0x400a65: 0x55
0x400a66: 0x48ROP gadget Normal Assembly Code

Machine Code

(b)
Figure 5. The concept of ROP gadget. (a) The process of ROP gadget linking ROP. (b) Demonstration
of machine code as a ROP gadget. The ROP gadget is not necessarily from assembly code, but it can
be constructed by intercepting assembly machine code.

The main factors affecting the ROP structure are as follows:

• Expected functionality. This mainly refers to the expected function, which mainly
refers to getshell, to be completed via ROP. Under Linux, the most straightforward
way is to call the system function and pass in the /bin/sh parameter. Some functions
and their corresponding ROPs are present in the AEMB. However, often due to other
exploit mitigations, especially ASLR, the construction of ROP will not be as ssmooth.

• Available ROP gadgets. This mainly refers to gadgets, which are stored in the mem-
ory with a known address and can be used in ROP. If it does not exist, its needs to be
replaced with one or some similar gadgets. The gadget with an unknown address
should be replaced by one or more alternative gadgets that perform the same pur-
pose. For example, add rsp,8;ret can be replaced by push reg;ret, and leave;ret
can be replaced by mov rsp,rbp;ret and textttpop rsp;ret. AEMB sets many basic
replacement rules such as as the above-mentioned rules.
Furthermore, the AEMB employs the “shadow process”, which is a simulated pro-
cess that focuses on the memory of the source application in order to determine if
the alternative gadget can replace the source gadget. The AEMB will simulate the
execution of the source gadget and alternate gadget via the “shadow process”, and
record the content of the registers and stack memory. These data are used to ensure the
immutability of the normal function of the gadgets (for example, if the RAX register
is expected to be executed minus one by source instruction, the alternate instruction
should also complete this operation), as well as the immutability of the memory
layout, particularly the stack memory layout, as shown in Figure 6.

• Size of the buffer. Its primary purpose is to define the maximum length of the built
ROP, which cannot be longer than the data buffer.

Source Gadgets

Alternate Gadgets

RAX=>RAX-1
Gadget1
address

&Gadget2
address

Changeable
Immutable

Gadget1 address
data

Gadget2 address

RAX

Shadow Process

Figure 6. Demonstration of ROP replacement. The source gadgets decrement the RAX register by
one, and alternate gadgets need to be consistent with the source gadgets, on the shadow process.

Taking into account the aforementioned contributing variables, the AEMB will first
utilize the predefined gadgets to build the ROP in accordance with the anticipated purpose.

Appl. Sci. 2021, 11, 9727 8 of 19

If the anticipated ROP gadget does not exist in the memory, it will be replaced with an
alternate gadget.

In the process of ROP construction, it is necessary to determine the length of the
ROP in real time. If the length of the ROP is larger than the size of the current buffer, it
indicates that the preset ROP’s construction failed and that other preset ROPs are utilized
for construction. The process is shown in the Algorithm 1. After the ROP is constructed,
the AEMB outputs the constructed ROP as the key parameters.

Algorithm 1: ROP construction algorithm
Data: ROP gadget Rg1 . . . Rgn, Buffer Size S, Default ROP Re
Result: Final ROP Rf

1 SizeR f ← 0;
2 for i = 1 to LengthO f (Re) do
3 if SizeR f > S then
4 Failed;
5 end
6 if Exist(Re i) == 0 then
7 < Rgj, . . . , Rgk >← Replace(Re i);
8 < Rf i, . . . , Rf i+k−j >←< Rgj, . . . , Rgk >;
9 SizeR f ← SizeR f + LengthO f (< Rgi, . . . , Rgj >);

10 else
11 Rf i ← Re i;
12 SizeR f ← SizeR f + 1;
13 end
14 end

3.2.3. GS and SAFESEH Bypassing Key Parameter Generation

The GS safety mechanism mainly protects the stack frame data during the function
call, and the bypassing for GS is mainly based on two types of techniques. One is to leak
the Security Cookie so that the process can pass the GS, and it applies to any operating
system. The other is hijacking the safe exception handler, which takes over the control flow
of the program after the GS check fails, and it is mainly suitable for Windows hosts with a
Structured Exception Handler (SEH) mechanism.

Leaking the Security Cookie requires stringent requirements to environmental and
vulnerability, and it is hard to realize; therefore, we focus on the technique of hijacking SEH.

AEMB firstly checks whether the operating system supports the SAFESEH mechanism,
which may cause the failure of bypassing due to protection for SEH. Then it examines the
SAFESEH flags in the PE files, which contain all applications and dynamic link libraries
loaded during runtime. Some programs and dynamic link libraries choose to compile
in a low-version environment for program compatibility, thereby making them disable
SAFESEH. Finally, it looks for appropriate instructions in the program or dynamic link
libraries, which have not opened SAFESEH, to implement the GS security mechanism
bypass.

AEMB mainly finds hijacked SEH instructions and corresponding memory addresses
as key data for output. At first, AEMB searches in the target dynamic link library for
instructions, which are pop; pop; ret style, since sp +8 frequently points to the next SEH,
which generally can be written in by external inputs. Therefore, the pop; pop; ret style
instruction and the memory address of the next SEH will be output as key data first.

Furthermore, the aforementioned technique may not work in all circumstances; there-
fore, the operation of the SP register is also needed to complete the exploit. AEMB uses the
above-mentioned taint analysis result to obtain the target memory, which can be written by
external input. It also needs to find the corresponding instruction to adjust the SP register,

Appl. Sci. 2021, 11, 9727 9 of 19

such as add esp, offset, and adjust the offset size of ESP upwards to the target memory,
as shown in Figure 7.

Finally, the instruction and the corresponding memory are output as key parameters
when the next SEH and pop; pop; ret style instructions cannot be used as parameters.

ESP

… …

… …

Tainted

Tainted

−offset

offset

0

sub esp, offset

add esp, offset

Figure 7. Demonstration of the adjustment of the ESP pointer by add esp,offset and sub
esp,offset. The adjusted pointer needs to point to the tainted memory.

3.3. Payload Constraints Construction

The payload constraints construction mainly uses the bypassing payload parameters to
construct symbolic payload constraints.

The payload constraints construction completes the above-mentioned tasks through the
following steps: 1. Symbolize the program input—that is, symbolize the PoC—and execute
the program through symbolic execution; 2. Construct the exploit-mitigation bypassing
constraints according to the key parameters generated by the AEMB. Through symbolic
execution technology and related memory constraints, the corresponding system safety-
mechanism-bypassing payload is deployed in the memory through constraint solving.

The PoC is symbolized, and the symbolic execution status input by the user and the
symbolic expression are collected during the symbolic execution of the program. The
construction of the exploit-mitigation bypassing constraints is mainly for the expressions
between symbolic memory and concrete values. For example, the one-byte memory symbol
expression at Targetmemory is shown in Equation (1).

(Read w8 0 Targetmemory) (1)

The system expects that the expression for writing Targetvalue to the Targetmemory
memory can be constructed as shown in Equation (2).

(Eq Targetvalue (Read w8 0 Targetmemory)) (2)

Through the above symbolic expressions, a one-to-one correspondence between sym-
bolic memory and expected values can be constructed. In the bypassing of exploit mit-
igations, similar expressions often appear for example, in the DEP exploit-mitigation
bypassing, to fill the specified memory with ROP, as shown in Equation (3).

(Eq ROP0 (Read w8 0 Targetmemory))⋂
(Eq ROP1 (Read w8 1 Targetmemory))⋂
(Eq ROP2 (Read w8 2 Targetmemory))

...

(3)

Finally, the payload constraints construction outputs the constraints constructed by the
above method to the EXP generation component.

4. Exploit Generation

The exploit generation technique is used to build a model of different exploit methods.
Then, the model is used to construct the exploit constraints and payload constraints. Lastly,

Appl. Sci. 2021, 11, 9727 10 of 19

the solver is used to solve the constraints and produce input that can comply to the exploit
conditions.

Specifically, AEMB first symbolizes the program’s input. Then, using predefined
vulnerability characteristics, it identifies the type of vulnerability based on the symbolic
memory layout. Finally, it uses the preset exploit techniques to construct exploit constraints.
The preset vulnerability features and exploit method are shown in Table 1.

Table 1. List of currently applicable vulnerability types, vulnerability features, and exploit methods.

Module Vulnerability Features Exploit Method

Control-flow Hijack Vulnerability Symbolic PC Hijack PC
Format String Symbolic Arguments Modify Return Pointer

4.1. Control-Flow Hijacking Vulnerability Exploit Constraint Construction

The characteristic of control-flow hijacking vulnerability is that data related to program
control flow are controlled by user input, thereby changing the control flow of the program.
After the program input is symbolized, due to control-flow hijacking vulnerability directly
hijacks the program control flow, and the EIP register will be symbolic at a certain moment.
Therefore, AEMB monitors the EIP register during program execution and judges whether
the vulnerability is control-flow hijacking vulnerability by determining whether the EIP
register is symbolized.

After detecting this type of vulnerability, AEMB will construct the exploit constraints.
The main method of an exploit is to hijack the PC to the attack payload. If there are
exploit mitigations, the attack payload will be generated by exploit mitigations bypassing
(which is introduced in Section 3); otherwise, the shellcode, which can be constructed using
Equation (4), will be used as the attack payload.

(Eq Shellcode0 (Read w8 ShellcodeLocal TargetMemory))⋂
(Eq Shellcode1 (Read w8 ShellcodeLocal + 1 TargetMemory))⋂
(Eq Shellcode2 (Read w8 ShellcodeLocal + TargetMemory))

...

(4)

4.2. Format Vulnerability Exploit Constraint Construction

Format string vulnerability is caused by the tainted format string parameters by
external input. After the program input is symbolized, due to format string vulnerability
tainting the format string parameters, the format string parameters will be symbolic at a
certain moment. Therefore, AEMB hooks the target format string function in the program
and judges whether the vulnerability is the format string vulnerability by determining
whether format string parameters are symbolized.

After detecting this type of vulnerability, AEMB will construct the exploit constraints.
The main method of an exploit is to modify the return pointer to the attack payload. Simi-
larly Section 4.1, it will indirectly hijack the PC to the attack payload (same as Section 4.1).

However, unlike the control-flow hijacking vulnerability, the format string vulner-
ability needs to use a format string payload, which is in the form of address + padding +
%offset$n, to achieve arbitrary address writing, thereby modifying the return pointer.
Among them, address represents the target write address, and offset represents the relative
offset of address from the first parameter. The offset can be calculated using Equation (5)
(where the symbol “*” represents the value in the memory with the operand as the address),
and the overall format string payload can be constructed using Algorithm 2.

offset = (∗(ESP + 4)− (ESP− 4))/4 (5)

Appl. Sci. 2021, 11, 9727 11 of 19

Algorithm 2: Format string payload construction algorithm
Data: Target address Ta, Target value Tv, relative offset of parameter Offset
Result: Target format string Fs

1 Tv_high← Tv � 16;
2 Tv_low← Tv%65,536;
3 if Tv_high < Tv_low then
4 Fs = (Ta + 2) + (Ta) + ”%” + (Tv_high – 8) + ”s”;
5 Fs = Fs + ”%” + (Offset) + ”$n%” + (Tv_low – Tv_high) + ”s%” +

(Offset + 1) + ”$n”;
6 else
7 Fs = (Ta) + (Ta + 2) + ”%” + (Tv_low – 8);
8 Fs = Fs + ”%” + (Offset) + ”$n%” + (Tv_high – Tv_low) + ”s%” +

(Offset + 1) + ”$n”;
9 end

4.3. Constraint Solving and Exploit Generation

As with most AEG solutions, AEMB combines the above-mentioned exploit constraints
and payload constraints and solves all constraints by SMT [17] to generate exploits. (When
there are exploit mitigations, it is generated by the exploit-mitigation bypassing component;
otherwise, it is generated by exploit generation component.)

5. Evaluation

In order to evaluate the vulnerability automatic verification method in this paper, we
implemented AEMB and designed an experiment.

5.1. Implementation

We implemented a prototype of AEMB based on S2E [12]. It consists of 612 lines of
code to bypass exploit mitigations and 1022 lines of code to generate EXPs.

AEMB performs a full system simulation to monitor the running states of the target
program by QEMU [19]. It implements the symbolic execution analysis of the system by
KLEE [20] and realizes the constraint solution by Z3 [17]. The experiments are conducted
in a 64-bit Ubuntu 18.04.4 LTS system on a server with 32 G RAM and Intel(R) i9-9880H
CPU @ 2.30 GHz. In addition, the experiments use different versions of Windows operating
system hosts and Linux hosts to test the effect of the EXP generated by the system.

5.2. Benchmarks

We applied AEMB to six test programs and seven real-world applications from CVE (Com-
mon Vulnerabilities and Exposures) [21] and CNVD (China National Vulnerability Database) [22].
The details of benchmarks are shown in Table 2.

The benchmark was constructed for the evaluation, mainly based on the following
rules:

• The test programs should be able to cover different types of vulnerabilities, differ-
ent operating systems, and different security mechanisms. Among them, the bof,
Fmt-3, and BabyCookie vulnerabilities are mainly stack-related vulnerabilities, and
Heap-func, Heap-uaf, and Heap-fmt are mainly heap-related vulnerabilities. Further-
more, they can cover Windows and Linux operating systems and different security
mechanisms.

• The real-world applications are mainly from user-mode applications with public
vulnerabilities and PoC. Current exploit mitigations automated bypassing method
is for the user-mode, not the kernel-mode. The focus of this paper is the exploit
mitigations automated bypassing, and vulnerabilities mining is not our main job.
Therefore, this paper selects the software with open vulnerabilities.

Appl. Sci. 2021, 11, 9727 12 of 19

Table 2. List of benchmarks evaluated with AEMB.

Type Program Num. OS Vuln.

Demo
Program

bof

N/A

Windows/Linux
Stack-related
Vulnerability

Fmt-3 Linux

BabyCookie Windows
Heap-func Heap-related

VulnerabilityHeap-uaf LinuxHeap-fmt

Real-world
Program

Free MP3 CD Ripper 2.6 CVE-2019-9766

Windows Stack-related
Vulnerability

Free WMA MP3 Converter 1.8 CNVD-2014-077615
Adrenalin Player 2.2.5.3 CNVD-2014-01185
AudioCoder 0.8.18 CNVD-2017-26587
Nidesoft MP3 Converter 2.6.18 CNVD-2016-12839
Mini-stream Ripper 2.7.7.100 CNVD-2011-3422

DNSTracer 1.9 CVE-2017-9430 Linux

We use both test programs and real-world applications in the evaluation. The real-
world applications and the details of their vulnerabilities can be searched through the name
of the application, corresponding version, and vulnerability number. The test programs
are introduced below.

bof The bof is an ELF file, which is mainly run on a Linux operating system. The
interaction of the program is through the command line, and it mainly receives data from
STDIO. The program contains a stack overflow vulnerability. When the length of the string
received is greater than a buffer length, the stack frame metadata will be overwritten, which
can hijack the control flow of the program.

BabyCookie The BabyCookie is a PE file, which is mainly run on the Windows oper-
ating system. The interaction of the program is through the command line, and mainly
receives data from external files. Unlike the bof program, the program uses a test dynamic
link library, which has been compiled. To simulate the behavior of much existing soft-
ware considering compatibility, the dynamic link library is compiled with a low-version
compiler, without SAFESEH or other compiling-related system safety mechanisms.

Fmt-3 The Fmt-3 is an ELF file, which is mainly run on the Linux operating system.
The interaction of the program is through the command line, and it mainly receives data
from STDIO. The program contains a format string vulnerability, and external input can
directly affect the format string parameters on the stack memory, resulting in the occurrence
of format string vulnerability. There is a loop structure, and the ending condition is in-
putting an “exit” string. In the loop, the program can trigger the format string vulnerability
multiple times.

Heap-func The Heap-func is a PE file, which is mainly run on the Windows operating
system. The interaction of the program is through the command line, and it mainly receives
data from STDIO. The program contains a heap overflow vulnerability; the overflow data
can overwrite the function pointer of the structure on the heap space. The program will
call this function pointer during subsequent executions.

Heap-uaf The Heap-uaf is an ELF file, which is mainly run on the Linux operating
system. The interaction of the program is through the command line, and it mainly receives
data from STDIO. The program contains a use-after-free vulnerability. A vulnerable
structure in the program can continue to be used after being freed, and the vulnerable
structure contains function pointers, which will be called during subsequent executions.
After the target vulnerability structure is freed, other heaps can reoccupy it through
allocation functions, and overwriting the function pointer in the vulnerability structure.

Appl. Sci. 2021, 11, 9727 13 of 19

Heap-fmt The Heap-fmt is an ELF file, which is mainly run on the Linux operating
system. The interaction of the program is through the command line, and it mainly receives
data from STDIO. The program contains a format string vulnerability. External input can
directly affect the format string parameters on the heap memory. It can only trigger the
format string once.

The evaluation tests the benchmark in the environment with a combination of various
exploit mitigations. The ASLR mechanism bypassing needs complex methods (such as
heap spraying, address disclosure, etc.), which often requires unique software types,
strong vulnerability capabilities, and high PoC quality for real software. Therefore, the
automation of ASLR bypassing is still an academic difficulty, and there is currently little
work discussing the bypass of ASLR on real-world software, and we turn off the ASLR
exploit mitigation on the evaluation of real-world applications.

5.3. Overview of Results

We evaluated based on the above benchmark and conducted 54 sets of experimental
evaluations for different software and different exploit mitigations and compared them
with the Rex [8], which is one of the state-of-the-art open-source AEG solutions.

In the evaluation, some security mechanisms in the specific application were not
considered. For example, Bof, Fmt-3, Heap-uaf, and Heap-fmt were not tested to bypass
the SAFESEH mechanism, which is not supported by Linux. Free MP3 CD Ripper 2.6,
Free WMA MP3 Converter 1.8, etc. were not tested on the environment without GS safety
mechanism, and Mini-stream Ripper 2.7.7.100 was not tested on the environment with the
GS safety mechanism because the software is not open source and only the binary program
can be obtained. Therefore, the security mechanism cannot be turned off or on after the
source binary program is compiled.

The overview of the evaluation is shown in Table 3. AEMB was able to success-
fully generate the EXP in 11 applications and successfully bypassed 31 groups of exploit
mitigation combinations, 24 of which were failed to bypass by Rex.

In addition, we also tried to bypass the ASLR exploit mitigation for the test programs,
which was not considered by Rex. The results are shown in Table 4. A total of 12 ex-
periments were conducted, and S2MAB was able to successfully generate EXP in five
of them.

Table 3. List of results evaluated with AEMB and open-source approach Rex on benchmarks. The first row of each column
represents the experimental results of AEMB, the second row represents the experimental results of Rex, and the gray entries
represent the cases where AEMB can be exploited but Rex cannot.

Program Solution Null DEP GS GS + SAFESEH DEP + GS DEP + GS + SAFESEH
bof AEMB Y Y N - N -

Rex Y Y N - N -
Fmt-3 AEMB Y Y Y - Y -

Rex N N N - N -
BabyCookie AEMB Y Y Y Y Y Y

Rex N N N N N N
Heap-func AEMB Y N Y Y N N

Rex N N N N N N
Heap-uaf AEMB Y Y Y - Y -

Rex Y Y Y - Y -
Heap-fmt AEMB Y Y Y - Y -

Rex N N N - N -
Free MP3 CD Converter 1.8 AEMB - - Y Y Y Y

Rex - - N N N N
Free WMA MP3 Converter 1.8 AEMB - - Y Y N N

Rex - - N N N N
Adrenalin Player 2.2.5.3 AEMB - - Y Y Y Y

Rex - - N N N N
AudioCoder 0.8.18 AEMB - - N N N N

Rex - - N N N N

Appl. Sci. 2021, 11, 9727 14 of 19

Table 3. Cont.

Program Solution Null DEP GS GS + SAFESEH DEP + GS DEP + GS + SAFESEH
Nidesoft MP3 Converter 2.6.18 AEMB - - N N N N

Rex - - N N N N
Mini-stream Ripper 2.7.7.100 AEMB Y Y - - - -

Rex N N - - - -
DNSTracer 1.9 AEMB Y Y N - N -

Rex Y Y N - N -

Table 4. List of results evaluated with AEMB with ASLR exploit mitigation.

Program bof Fmt-3 BabyCookie Heap-func Heap-uaf Heap-fmt

ASLR Y N Y Y N N
ASLR+DEP Y N N N N N

5.4. Analysis of Results

AEMB can bypass the common DEP, GS, and SAFESEH exploit mitigations and it can
successfully exploit 29 cases that REX did not. Rex can generate ROP based on program
context, but it cannot bypass the GS and SAFESEH mechanisms. However, AEMB gives
more consideration to other exploit mitigations. In addition, Rex does not fit well with
Windows and therefore cannot generate code for Windows applications, but AEMB has
been adapted forWindows and Linux platforms. In summary, compared to Rex, AEMB has
stronger capability for exploit-mitigation bypassing and a wider application range.

There are three main reasons for the failure of some cases: 1. symbolic execution
platform and symbolic execution performance limitations; 2. the program running envi-
ronment being unable to meet the exploit mitigations bypassing conditions; 3. functional
limitation of AEMB.

The failure cases due to the symbolic execution platform and symbolic execution
performance limitations are AudioCoder and Nidesoft MP3 Converter. The reasons are
as follows:

• AudioCoder is complicated. When the system automatically exploits its vulnerability, it
still cannot produce results until all memory resources are consumed. When symbolic
execution analyzes this application, problems such as constraint explosions are caused
due to the large program scale and complex business logic, so the system cannot
generate EXP.

• The input of Nidesoft MP3 Converter vulnerabilities needs to be copied and pasted
into the software window. Therefore, limited by the symbolic execution platform, the
system cannot symbolize this type of inputs and cannot perform symbolic execution
analysis on it, so it cannot generate EXP. At present, the system can only symbolize
file-type input and STDIO input. Therefore, the input that triggers vulnerabilities
such as network sending, mouse clicks, etc. cannot be analyzed by the system, and the
system cannot automatically generate the EXP of the above-mentioned input methods.

Since the program’s operating environment cannot meet the exploit mitigation bypass
conditions, some cases failed, such as bof with GS, Heap-func with DEP, and Free WMA MP3
Converter with DEP + GS.

Since the Linux system does not support the SEH mechanism, it cannot meet the GS
bypassing conditions. Therefore, AEMB cannot generate the EXP for bof with GS.

For heap-related vulnerability, DEP bypassing often involves stack-migration oper-
ations. However, at the moment of hijacking EIP, no ROP gadget conforms to the stack
migration in the running environment of Heap-func, so AEMB cannot generate the EXP for
Heap-func with DEP.

Similar to Heap-func, the Free WMA MP3 Converter failed because there is no suitable
ROP gadget to adjust the stack.

Appl. Sci. 2021, 11, 9727 15 of 19

The case of exploit failure due to system function limitations is mainly reflected in the
bypassing of the ASLR. However, the bypassing method for ASLR is mainly passive, using
known addresses or using addresses in memory pages that are disabled for randomization.
The system does not support the inclusion of active address leaking [23], which leads to
the failure of the experiments in cases where the exploit conditions cannot be met in the
known addresses.

5.5. Exploit Generation Time

We recorded and organized the time consumed in each case, as shown in Figure 8.
The prototype system can automatically bypass the exploit mitigations of the above

test program at an average speed of 7.1 s (excluding the time of system startup and interface
loading). The time efficiency is acceptable.

It often consumes more time when bypassing the exploit mitigations under the Win-
dows system, whereas the time consumption under the Linux system is smaller. Real-world
applications consume more time than test programs, mainly due to the scale and complex-
ity of the cases. When multiple exploit mitigations are turned on, the bypassing time will
be longer.

0

2

4

6

8

10

bof
Fmt-3

BabyCookie
Heap-func

Heap-uaf
Heap-fmt

Free Mp3 CD Ripper 2.6

Free WMA MP3 Converter 1.8

Adrenalin Player 2.2.5.3

Mini-stream Ripper 2.7.7.100

DNSTracer 1.9

NULL DEP GS GS+SAFESEH DEP+GS DEP+GS+SAFESEH

Time/s

Figure 8. The time efficiency evaluated with AEMB on benchmarks.

6. Discussion

AEMB overcomes some of the dilemmas facing current research into bypassing of
exploit mitigations. However, AEMB still has some limitations and issues that need to be
overcome, so we discuss the limitations and future work.

6.1. Limitations

AEMB can bypass some of the exploit mitigations in a short time, but it still has some
problems:

• imitations of Exploit Techniques. There are many different types of vulnerability and
their corresponding exploit techniques. However, AEMB currently does not support so

Appl. Sci. 2021, 11, 9727 16 of 19

many exploit techniques, resulting in the failure of some types of vulnerabilities exploit
automatically. For example, Unlink Attack technology [24] is one of the techniques for
heap vulnerability exploit, but due to the complex attack process of this technology,
AEMB has not completed its modeling and automation.

• Limitations of Passive Bypassing Method. The current method of bypassing the
vulnerability exploitation mitigation mechanism in AEMB is to use PoC information
to passively complete the mitigation mechanism bypass. However, in many cases,
it is necessary to actively discover a new execution path to complete the mitigation
mechanism bypass. For example, in bypassing ASLR, actively leaking addresses [23]
or heap spraying [25] requires a new execution path, except for the execution path in
PoC. Unfortunately, AEMB cannot yet discover new execution paths.

6.2. Future Works

In the future, we will conduct further research on the above limitations.

• Increase in Exploit Techniques. More exploit techniques mean wider system applica-
bility. We should analyze and model more exploit techniques. In this way, the system
can automatically exploit more vulnerabilities and can use different technologies to
bypass the exploit mitigations.

• Exploration of Exploit Primitives. The exploit primitives are used to compose EXPs.
Although many primitives cannot cause such serious harm, they still play a significant
role in exploiting vulnerabilities. Therefore, it is necessary to scientifically define and
search for these exploit primitives in the program. This can also help us automatically
bypass more exploit mitigations.

• Combination of Exploit Primitives. After obtaining the exploit primitives, they need
to be combined according to specific rules. These rules are often abstracted from
expert experience and should reasonably guide the combination of exploit primitives.
In addition, the splicing between exploit primitives is often not straightforward, and
some techniques need to be used to operate them.

7. Related Work
7.1. Automatic Exploit Generation

The APEG [5] is a patch-based solution, which is an early attempt at AEG. It focuses
on the location of the patch, but this method does not deeply study the exploitation. The
AEG [4] solution uses source code assistance to extract the path constraints that trigger
the vulnerability. The Mayhem [7] solution uses dynamic instruction instrumentation
and taint analysis technology to detect whether jump instructions such as call and jmp
are controlled by input and then determines whether the execution control flow of the
program can be directly affected by external input; finally, it uses symbolic execution to
generate vulnerability verification code. The CRAX [6] solution is implemented based on
the S2E [12] symbolic execution platform. It dynamically analyzes the PoC that triggers
program crashes, improves symbolic execution efficiency, and can automatically exploit
vulnerabilities based on format strings, stack overflows, etc.

Rex [8] is an open-source AEG solution and it is one of the components of machaPhish
that won third place in the 2018 CGC finals. Refs. [26,27] contributed to the discovery of
exploit primitives. Ref. [28] can automatically generate multiple EXPs for a vulnerable
program using one corresponding abnormal input. Ref. [29] analyze the characteristics of
vulnerabilities and then propose to generate EXPs via the use of several proposed attack
techniques that can produce a shell based on the detected vulnerabilities.

Revery [10] attempts to exploit the vulnerability provided with non-exploitable PoCs
and proposes a novel layout-oriented fuzzing and a control-flow stitching solution. It also
contributed to the exploitation of heap memory vulnerabilities. Maze [30] manipulates
proof-of-concept (POC) samples’ heap layouts. It models the heap layouts techniques (such
as heap feng shui), and implements automated heap layout manipulation.

Appl. Sci. 2021, 11, 9727 17 of 19

However, none of the above AEG solutions have separate discussions and studies on
the bypassing of exploit mitigations.

7.2. Bypassing of Exploit Mitigations

Software security mechanism mitigation technology can mitigate exploit attacks to
a certain extent. Typical security mechanisms include Stack Guard [15], DEP (Data Ex-
ecution Prevention) [13], ASLR (Address Space Layout Randomization) [31], and CFI
(Control -Flow Integrity) [32]. The research on automated countermeasures against security
mechanisms is an important link in the automatic exploitation of software vulnerabilities.

Reference [33] can automatically generate ROP payloads for a given binary to ex-
ploit. The authors of [34] developed a new technique called data-flow stitching, which
systematically finds ways to join data flows in the program to generate data-oriented EXPs.

R2dlAEG [35,36], through the combination of the basic method of controlling flow
hijacking and the automatic realization of the Return-to-dl-resolve process, aiming at
control-flow hijacking vulnerabilities, it realizes the automatic generation of EXP that can
bypass the ASLR and NX protection mechanisms.

VScape [37] points out that a wide range of virtual call protections, which do not
break the C++ ABI (application binary interface), are vulnerable to an advanced attack
COOPLUS, even if the given vulnerabilities are weak. It assesses the effectiveness of virtual
call protections against this attack.

The above-mentioned work has researched the bypassing of exploit mitigations, but
they have not systematically studied the automatic bypassing of exploit mitigations. In
addition, there is no solution that studies the GS and SAFESEH, etc. in Windows.

8. Conclusions

In this paper, we propose a novel AEG solution AEMB to automatically bypass the
exploit mitigation mechanism. We first employ exploit mitigations bypassing to generate
the exploit mitigations bypassing payload and then use symbolic execution to achieve
the generation of working EXPs. We evaluated AEMB on real-world applications and
tested programs with six different combinations of exploit mitigations. Results showed
that AEMB is much more effective than previous works in bypassing exploit mitigations.
Furthermore, AEMB is efficient because it can finish the task in 7.1 s on average.

Author Contributions: Conceptualization, R.W. and Z.P.; methodology, R.W. and Z.P.; software,
R.W. and M.Z.; validation, R.W.; investigation, R.W.; resources, Z.P. and F.S.; writing—original draft
preparation, R.W.; writing—review and editing, Z.P., F.S. and R.W.; supervision, Z.P. and M.Z.; project
administration, Z.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by National Key Research and Development Project of China
(No. 2017YFB0802900).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to sincerely thank all the reviewers for your time and expertise
on this paper. Your insightful comments help us improve this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lyu, Q.; Zhang, D.; Da, R.; Zhang, H. ReFuzz: A Remedy for Saturation in Coverage-Guided Fuzzing. Electronics 2021, 10, 1921.

[CrossRef]
2. Kim, Y.; Yoon, J. MaxAFL: Maximizing Code Coverage with a Gradient-Based Optimization Technique. Electronics 2021, 10, 11.

[CrossRef]
3. Manès, V.J.M.; Han, H.; Han, C.; Cha, S.K.; Egele, M.; Schwartz, E.J.; Woo, M. The art, science, and engineering of fuzzing: A

survey. IEEE Trans. Softw. Eng. 2019. [CrossRef]

http://doi.org/10.3390/electronics10161921
http://dx.doi.org/10.3390/electronics10010011
http://dx.doi.org/10.1109/TSE.2019.2946563

Appl. Sci. 2021, 11, 9727 18 of 19

4. Avgerinos, T.; Cha, S.K.; Rebert, A.; Schwartz, E.J.; Woo, M.; Brumley, D. Automatic exploit generation. Commun. ACM 2014,
57, 74–84. [CrossRef]

5. Brumley, D.; Poosankam, P.; Song, D.; Zheng, J. Automatic patch-based exploit generation is possible: Techniques and implications.
In Proceedings of the 2008 IEEE Symposium on Security and Privacy (sp 2008), Oakland, CA, USA, 18–22 May 2008; pp. 143–157.

6. Huang, S.K.; Huang, M.H.; Huang, P.Y.; Lai, C.W.; Lu, H.L.; Leong, W.M. Crax: Software crash analysis for automatic exploit
generation by modeling attacks as symbolic continuations. In Proceedings of the 2012 IEEE Sixth International Conference on
Software Security and Reliability, Gaithersburg, MD, USA, 20–22 June 2012; pp. 78–87.

7. Cha, S.K.; Avgerinos, T.; Rebert, A.; Brumley, D. Unleashing mayhem on binary code. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 380–394.

8. Shellphish. Rex. Available online: https://github.com/angr/rex (accessed on 13 October 2021).
9. Huang, S.K.; Huang, M.H.; Huang, P.Y.; Lu, H.L.; Lai, C.W. Software crash analysis for automatic exploit generation on binary

programs. IEEE Trans. Reliab. 2014, 63, 270–289. [CrossRef]
10. Wang, Y.; Zhang, C.; Xiang, X.; Zhao, Z.; Li, W.; Gong, X.; Liu, B.; Chen, K.; Zou, W. Revery: From proof-of-concept to exploitable.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19
October 2018; pp. 1914–1927.

11. Zhao, Z.; Wang, Y.; Gong, X. HAEPG: An Automatic Multi-hop Exploitation Generation Framework. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 89–109.

12. Chipounov, V.; Kuznetsov, V.; Candea, G. S2E: A platform for In-Vivo multi-path analysis of software systems. Acm Sigplan Not.
2011, 46, 265–278. [CrossRef]

13. Andersen, S.; Abella, V. Memory Protection Technologies. Available online: http://technet.microsoft.com/en-us/library/bb457
155.aspx (accessed on 13 October 2021).

14. Aafer, Y. Notes on Non-Executable Stack. Available online: https://web.ecs.syr.edu/~wedu/seed/Labs_12.04/Files/NX.pdf
(accessed on 13 October 2021).

15. Sotirov, A.; Dowd, M. Bypassing Browser Memory Protections in Windows Vista. Available online: https://www.blackhat.com/
presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf (accessed on 13 October 2021).

16. Firmino, L. What Is the Difference between Exploit, Payload and Shellcode? Available online: https://www.linkedin.com/
pulse/what-difference-between-exploit-payload-shellcode-luiz (accessed on 13 October 2021).

17. De Moura, L.; Bjørner, N. Z3: An efficient SMT solver. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 337–340.

18. Robertson, C. /SAFESEH (Image has Safe Exception Handlers). Available online: https://docs.microsoft.com/en-us/cpp/
build/reference/safeseh-image-has-safe-exception-handlers?view=msvc-160 (accessed on 13 October 2021).

19. Bellard, F. QEMU, a fast and portable dynamic translator. In USENIX Annual Technical Conference; USENIX Association: Berkeley,
CA, USA, 2005; Volume 41, p. 46.

20. Cadar, C.; Dunbar, D.; Engler, D.R. Klee: Unassisted and automatic generation of high-coverage tests for complex systems
programs. OSDI 2008, 8, 209–224.

21. CVE. Available online: https://cve.mitre.org/ (accessed on 13 October 2021).
22. China National Vulnerability Database. Available online: https://www.cnvd.org.cn/ (accessed on 13 October 2021).
23. Serna, F.J. The Info Leak Era on Software Exploitation. Black Hat USA. 2012. Available online: https://paper.bobylive.com/

Meeting_Papers/BlackHat/USA-2012/BH_US_12_Serna_Leak_Era_Slides.pdf (accessed on 13 October 2021).
24. Designer, S. JPEG COM Marker Processing Vulnerability. Available online: https://www.openwall.com/articles/JPEG-COM-

Marker-Vulnerability (accessed on 13 October 2021).
25. Ratanaworabhan, P.; Livshits, V.B.; Zorn, B.G. NOZZLE: A Defense Against Heap-spraying Code Injection Attacks. In Proceedings

of the USENIX Security Symposium, Montreal, QC, Canada, 15–19 August 2009; pp. 169–186.
26. Eckert, M.; Bianchi, A.; Wang, R.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. Heaphopper: Bringing bounded model checking to

heap implementation security. In Proceedings of the 27th USENIX Security Symposium (USENIX Security 18), Baltimore, MD,
USA, 15–17 August 2018; pp. 99–116.

27. Yun, I.; Kapil, D.; Kim, T. Automatic techniques to systematically discover new heap exploitation primitives. In Proceedings of
the 29th USENIX Security Symposium (USENIX Security 20), Virtual Event, 12–14 August 2020; pp. 1111–1128.

28. Wang, M.; Su, P.; Li, Q.; Ying, L.; Yang, Y.; Feng, D. Automatic polymorphic exploit generation for software vulnerabilities. In
International Conference on Security and Privacy in Communication Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 216–233.

29. Wang, Z.; Zhang, Y.; Tian, Z.; Ruan, Q.; Liu, T.; Wang, H.; Liu, Z.; Lin, J.; Fang, B.; Shi, W. Automated vulnerability discovery and
exploitation in the Internet of Things. Sensors 2019, 19, 3362. [CrossRef]

30. Wang, Y.; Zhang, C.; Zhao, Z.; Zhang, B.; Gong, X.; Zou, W. MAZE: Towards Automated Heap Feng Shui. In 30th USENIX
Security Symposium (USENIX Security 21); USENIX Association: Berkeley, CA, USA, 2021; pp. 1647–1664.

31. Shacham, H.; Page, M.; Pfaff, B.; Goh, E.J.; Modadugu, N.; Boneh, D. On the effectiveness of address-space randomization. In
Proceedings of the 11th ACM conference on Computer and Communications Security, Washington, DC, USA, 25–29 October
2004; pp. 298–307.

32. Abadi, M.; Budiu, M.; Erlingsson, U.; Ligatti, J. Control-flow integrity principles, implementations, and applications. ACM Trans.
Inf. Syst. Secur. (TISSEC) 2009, 13, 1–40. [CrossRef]

http://dx.doi.org/10.1145/2560217.2560219
https://github.com/angr/rex
http://dx.doi.org/10.1109/TR.2014.2299198
http://dx.doi.org/10.1145/1961296.1950396
http://technet.microsoft.com/en-us/library/bb457155.aspx
http://technet.microsoft.com/en-us/library/bb457155.aspx
https://web.ecs.syr.edu/~wedu/seed/Labs_12.04/Files/NX.pdf
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf
https://www.linkedin.com/pulse/what-difference-between-exploit-payload-shellcode-luiz
https://www.linkedin.com/pulse/what-difference-between-exploit-payload-shellcode-luiz
https://docs.microsoft.com/en-us/cpp/build/reference/safeseh-image-has-safe-exception-handlers?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/reference/safeseh-image-has-safe-exception-handlers?view=msvc-160
https://cve.mitre.org/
https://www.cnvd.org.cn/
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2012/BH_US_12_Serna_Leak_Era_Slides.pdf
https://paper.bobylive.com/Meeting_Papers/BlackHat/USA-2012/BH_US_12_Serna_Leak_Era_Slides.pdf
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
http://dx.doi.org/10.3390/s19153362
http://dx.doi.org/10.1145/1609956.1609960

Appl. Sci. 2021, 11, 9727 19 of 19

33. Schwartz, E.J.; Avgerinos, T.; Brumley, D. Q: Exploit Hardening Made Easy. In Proceedings of the USENIX Security Symposium,
San Francisco, CA, USA, 8–12 August 2011; Volume 10.

34. Hu, H.; Chua, Z.L.; Adrian, S.; Saxena, P.; Liang, Z. Automatic generation of data-oriented exploits. In Proceedings of the 24th
USENIX Security Symposium (USENIX Security 15), Washington, DC, USA, 8–12 August 2015; pp. 177–192.

35. Di Federico, A.; Cama, A.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. How the ELF Ruined Christmas. In Proceedings of the 24th
USENIX Security Symposium (USENIX Security 15), Washington, DC, USA, 8–12 August 2015; pp. 643–658.

36. Fang, H.; Wu, L.; Wu, Z. Automatic Return-to-dl-resolve Exploit Generation Method Based on Symbolic Execution. 2019.
Available online: http://www.jsjkx.com/EN/10.11896/j.issn.1002-137X.2019.02.020 (accessed on 13 October 2021).

37. Chen, K.; Zhang, C.; Yin, T.; Chen, X.; Zhao, L. VScape: Assessing and Escaping Virtual Call Protections. In Proceedings of the
30th USENIX Security Symposium (USENIX Security 21), Virtual Event, 11–13 August 2021.

http://www.jsjkx.com/EN/10.11896/j.issn.1002-137X.2019.02.020

	Introduction
	Motivation
	Vulnerability and Exploit
	Impediment
	DEP
	GS

	Concept
	Our Solution: AEMB
	Exploit Mitigations Bypassing
	Exploit Generation

	Exploit Mitigations Bypassing
	Exploit-Mitigation Identification
	Bypassing Payload Generation
	Program Analysis
	DEP Bypassing Payload Generation
	GS and SAFESEH Bypassing Key Parameter Generation

	Payload Constraints Construction

	Exploit Generation
	Control-Flow Hijacking Vulnerability Exploit Constraint Construction
	Format Vulnerability Exploit Constraint Construction
	Constraint Solving and Exploit Generation

	Evaluation
	Implementation
	Benchmarks
	Overview of Results
	Analysis of Results
	Exploit Generation Time

	Discussion
	Limitations
	Future Works

	Related Work
	Automatic Exploit Generation
	Bypassing of Exploit Mitigations

	Conclusions
	References

