
applied  
sciences

Article

The Evolutions in Time of Probability Density Functions of
Polydispersed Fuel Spray—The Continuous Mathematical Model

Shlomo Hareli 1,*, Ophir Nave 2 and Vladimir Gol’dshtein 1

����������
�������

Citation: Hareli, S.; Nave, O.;

Gol’dshtein, V. The Evolutions in

Time of Probability Density Functions

of Polydispersed Fuel Spray—The

Continuous Mathematical Model.

Appl. Sci. 2021, 11, 9739. https://

doi.org/10.3390/app11209739

Academic Editor: Adrian Irimescu

Received: 16 August 2021

Accepted: 3 October 2021

Published: 19 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Ben-Gurion University of the Negev, Beer Sheva 8455902, Israel;
vladimir@bgu.ac.il

2 Department of Mathematics, Jerusalem College of Technology, Jerusalem 91160, Israel; Naveof@gmail.com
* Correspondence: goodspid1@gmail.com

Abstract: The dynamics of the particle size distribution (PSD) of polydispersed fuel spray is important
in the evaluation of the combustion process. A better understanding of the dynamics can provide a
tool for selecting a PSD that will more effectively meet the needs of the system. In this paper, we
present an efficient and elegant method for evaluating the dynamics of the PSD. New insights into
the behaviour of polydispersed fuel spray were obtained. A simplified theoretical model was applied
to the experimental data and a known approximation of the polydispersed fuel spray. This model can
be applied to any distribution, not necessarily an experimental distribution or approximation, and
involves a time-dependent function of the PSD. Such simplified models are particularly helpful in
qualitatively understanding the effects of various sub-processes. Our main results show that during
the self-ignition process, the radii of the droplets decreased as expected, and the number of smaller
droplets increased in inverse proportion to the radius. An important novel result (visualised by
graphs) demonstrates that the mean radius of the droplets initially increases for a relatively short
period of time, which is followed by the expected decrease. Our modified algorithm is superior
to the well-known ‘parcel’ approach because it is much more compact; it permits analytical study
because the right-hand sides of the mathematical model are smooth, and thus eliminates the need
for a numerical algorithm to transition from one parcel to another. Moreover, the method can
provide droplet radii resolution dynamics because it can use step functions that accurately describe
the evolution of the radii of the droplets. The method explained herein can be applied to any
approximation of the PSD, and involves a comparatively negligible computation time.

Keywords: polydisperse fuel spray; particle size distribution dynamics; probability density function
dynamics; numerical analysis; spray combustion

1. Introduction

A polydispersed fuel spray consists of tens of thousands of droplets with completely
different radii scales [1–3]. Thus, to accurately trace the change in each droplet over time,
a large number of equations need to be solved. The simplest model, which does not
imply interactions between droplets, still requires many equations to be solved. For such
complicated models, analytical solutions are not available; hence, numerical methods are
required. Because solving such a high number of equations with computers cannot be
completed in any reasonable time, a ‘parcel’ approach was adopted [4–11]. However, due
to computation limits, the number of ‘parcels’ remains low and does not allow a correct
description of the polydispersed fuel spray dynamics.

Any study of particle size distribution (PSD) dynamics can help provide insight into
combustion processes. Despite the importance of this aspect of spray combustion, there
are few theoretical or numerical studies on this subject, which is mainly due to constraints
inherent in the situation being studied (e.g., [12–16]). Most of the main mechanisms of such
combustion processes remain unknown. However, the methods and dynamics described
herein add to our insights.
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The commonly used approximations of the initial experimental polydisperse size
distributions are the Rosin–Rammler distribution, Nukiyama–Tanasawa distribution, and
gamma distribution [17,18]. These approximations provide comparatively accurate repre-
sentations of experimental data, which allow extrapolation of values beyond the measure-
ment range. These approximations permit comparatively easy calculations of parameters
of interest, because they have already been built into computer software (e.g., MATLAB,
MATHEMATICA). However, to the best of our knowledge, there is no single mathematical
theory that accurately and precisely fits experimental data. Therefore, in the absence of
a theoretical basis, the Rosin–Rammler distribution is commonly used and allows us to
describe combustion dynamics using raw experimental data.

Most attempts to theoretically describe combustion processes that accompany poly-
dispersed sprays have resulted in complex systems of highly nonlinear partial differential
equations [19,20]. The main difficulty is describing the dynamics of individual droplets or
groups of droplets that compose the fuels. Semenov pioneered the description of thermal
explosion processes for gaseous fuels using simple ordinary differential equations [21].
History has shown that simplified Semenov-type models can often describe the main
characteristics of self-ignition in the homogeneous case [22]. However, the models built on
Semenov’s work that focus on sprays quickly became very complex when accounting for
various droplet radii [23]. The well-known ‘parcel’ method divides droplets into separate
sections, but due to computational complexity, this approach fails to estimate a realistic dis-
tribution. In the literature, we did not find any study that used more than 5–6 ‘parcels’, and
we attributed this to the increased computational complexity with each additional parcel.

In [24], the authors proposed using smooth probability density functions (PDFs) that
approximate discrete droplet radii distributions instead of a separate analysis of individual
droplets, the ‘parcel’ approximation. In this study, polydispersity is modelled using
smooth PDFs that correspond to the initial distribution of the size of the fuel droplets.
This approximation of a polydisperse spray is more accurate than the traditional ‘parcel’
approximation, and permits analytical treatment of the corresponding simplified model.
We note that any analytical treatment of the ‘parcel’ models is almost impossible because
the right-hand sides of the mathematical model are discontinuous. This is the main reason
that they are infrequently used.

In [24], the PDF approximations were compared with the ‘parcel’ approximations for
300 ‘parcels’ and found to be more accurate. Details about this comparison can be found
in [24].

The corresponding new models are low-dimensional and compact. In the case of
ignition processes, such models use a PDF. The density function is a smooth function of
only one variable, which is the droplet’s maximal or mean radius. These models allow us
to monitor different PDFs.

The main disadvantage of this approach is the rigid shape of PDFs in time (the smooth
PDFs correspond to the initial distribution of the size of the fuel droplets). This allowed us
to obtain reasonable estimates of thermal explosion limits, but the detailed properties of a
spray’s self-ignition are beyond the scope of this method.

In this study, we succeeded in resolving this problem partially. Here, we propose an
equation for the evolution of PDFs over time. We begin with the initial PSD and study
its dynamics. This modified method was applied to the well-known Rosin–Rammler,
Nukiyama–Tanasawa, and gamma distribution approximations of experimental distri-
butions. The main results show that during the self-ignition process, the droplet radii
decrease as expected, while the number of smaller droplets increases in inverse proportion
to the radius.

Our algorithm presented here is superior to the well-known ‘parcel’ approach, because
our model is much more compact, and the right-hand side of the present model is smooth.
As a result, we can use combinations of analytical and computational tools. This algorithm
can be applied to any approximation of PSD, and the computation time is negligible.
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In this study, we mainly consider the evolution of PDFs over time. We demonstrate the
main observations using a simplified model. One reason for this simplification is the need
to demonstrate the main features without additional complications using more detailed
models. We plan to check the main results for more complicated models in the future.

2. Model Description

We first present the constraints on the combustion models. Then, we present models
that incorporate PDFs that depend only on the maximal radius.

Several standard assumptions are commonly used for models that describe the thermal
explosion of vaporised fuel droplets. Our model is considered adiabatic, because ignition
processes occur faster than heat losses by diffusion processes. The pressure variations
were assumed to be negligible [21]. In addition, we assume that the diffusion of the
gas phase is insignificant compared to that of the liquid phase, and the heat transfer
coefficient is determined by the gas features [25]. We further assume that the liquid
temperature is identical to the temperature of the saturated liquid because a quasi-steady-
state approximation is reasonable for vaporising droplets [26]. Finally, the reaction is
modelled in the simplest possible way as a first-order, highly exothermic chemical reaction.
This means that the model is represented as a system of nonlinear ordinary differential
equations. Here, we present the mathematical model of polydisperse fuel spray, and the
discrete model (more details about the assumption of the model can be found in [23]):

αgρgcpg
dTg

dt
= αgµ f Q f AC f e

(− E
BTg ) − 4πλg(Tg − Td)

m

∑
i=1

Rdi
ndi

, (1)

d(R2
di)

dt
=

2λg

ρLL
(Td − Tg), i = 1, . . . , m, (m equations) (2)

dC f

dt
= −AC f e

(− E
BTg ) +

4πλg

Lαgµ f
(Tg − Td)

m

∑
i=1

Rdi
ndi

. (3)

The initial conditions are

at t = 0 : Tg(t = 0) = Tg0, Rdi
= Rdi0

, ∀i : Tdi
= Tg0, C f = C f 0. (4)

For the model above, the droplet radius distribution can be approximated by a smooth
PDF. The droplet radii sum is replaced by the integral of the corresponding PDF [17,24].
The motivation for this approximation is based on a standard representation of the Riemann
integral as a limit of the Riemann sum. This means that this approximation works better for
a high number of parcels and can be less accurate for small numbers of parcels. Formally,
we can use any smooth function that satisfies the equality.∫ ∞

0
R0P̂0(R0)dR0 =

m

∑
i=1

ndi
Rdi,0

. (5)

Here, we use the sub-index 0 for t = 0. We use commonly known distributions such
as the Rosin–Rammler, Nukiyama–Tanasawa, and gamma distributions as examples.

The corresponding normalised PDF is given by the following equations:

P0(R0) =
P̂0(R0)〈

P̂0
〉 , were;

〈
P̂0
〉
≡
∫ ∞

0
P̂0(R0)dR0. (6)

Note that the integration by variable R0 is an approximation that corresponds to the
sum of all the radii of the droplets at the initial time. The droplet estimation by the PDF
is superior to the ‘parcel’ approach, because the smooth PDF allows us to extrapolate
experimental data for radii that do not appear in the standard measurement. In addition,
the PDF is not affected by the limitations of the parcel method. The parcel method describes
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the droplet distribution poorly, because it usually uses a comparatively small number of
parcels due to calculation complexity.

Using (2) conditions, the radius R can be expressed as follows:

R =
(

R2
m − R2

m,0 + R2
0

)(1/2)
. (7)

Thus, R0 can be viewed as a function of R.

R0 = G(R) ≡
(

R2 − (R2
m − R2

m,0)
)(1/2)

. (8)

We define the rectangle function:

Πa(x) ≡ U0(x)−Ua(x). (9)

Here, U0(x), Ua(x) are unit step functions.
Using the last expressions, we have

F(Rm) ≡
m

∑
i=1

Rdi
ndi

=
∫ Rmax,0

0
R0P(R0)dR0 =∫ ∞

0
G(R)P0(G(R))ΠRm(R)dR. (10)

Here, P(R) is a corresponding smooth PDF function, such as Rosin–Rammler.
Finally, we obtain a nondimensional model in the spirit of Semenov’s theory. We use

the following parameters and nondimensional variables:

τ =
t

treact
, treact = A−1e

(
E

BTg0

)
, β =

BTg0

E
, γ =

cpgTg0ρg0

C f 0Q f µ f
β,

θ =
E

BTg0

Tg − Tg0

Tg0
, η =

C f

C f 0
, rm =

Rm

Rm,0
, Ψ =

Q f

L
(11)

ε2 =
Q f C f 0αgµ f

ρlν0L
, ε1 =

4πλgoRm,0
〈

P̂0
〉

βTg0

AQ f C f 0αgµ f
e

(
E

BTg0

)
,

The function F(Rm) can be recalculated as a function of rm:

G(R) =
(

R2 − (R2
m − R2

m,0

)(1/2)
=

Rm,0

{(
R

Rm,0

)2
−
((

Rm

Rm,0

)2
− 1

)}1/2

=

Rm,0

{(
R

Rm,0

)2
−
(

r2
m − 1

)}1/2

(12)

Finally, we obtain:
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Rm,0 F̃(rm) ≡ F(Rm) =
∫ ∞

0
G(R)P0(G(R))ΠRm(R)dR =

Rm,0

∫ ∞

0

{(
R

Rm,0

)2
−
(

r2
m − 1

)}1/2

P0

Rm,0

{(
R

Rm,0

)2
−
(

r2
m − 1

)}1/2
Πrm ·Rm,0(R)dR

⇒ F̃(rm) =
1

Rm,0
F(rm, Rm,0).

(13)

The following is a new dimensionless system of equations:

γ(1 + βθ)−1 dθ

dτ
= ηe(

θ
1+βθ ) − ε1(1 + βθ)1/2θF̃(rm), (14)

d(r2
m)

dτ
= −2

3
ε1ε2(1 + βθ)1/2θ, (15)

dη

dτ
= −ηe(

θ
1+βθ ) + ε1Ψ(1 + βθ)1/2θF̃(rm), (16)

where F̃(rm) is a function of the maximal dimensionless radius rm given in (13).
The non-dimensional initial conditions are as follows:

at τ = 0 : θ = 0, rm = 1, η = η0. (17)

Remark 1. Equation (2) has another representation that is useful for our study. Using d(R2
di)

dt =

2Rdi
d(Rdi)

dt , we can rewrite it as

d(Rdi)

dt
=

1
Rdi

λg

ρLL
(Td − Tg), i = 1, . . . , m, (m equations) (18)

Its dimensionless form is as follows:

d(rm)

dτ
= − 1

3rm
ε1ε2(1 + βθ)1/2θ. (19)

The right-hand sides of (18) and its dimensionless version are not Lipschitz functions
and have a singularity point where Rm = 0. Our analysis of the model does not include
the values of Rm that are very close to zero. Let us also mention that for very small radii,
the model itself is not strictly relevant [27].

3. Results and Discussion

Three PDFs that are widely used for theoretical interpretations of experimentally mea-
sured droplet radii distributions are the Rosin–Rammler distribution [28], the Nukiyama–
Tanasawa distribution [29], and the well-known gamma distribution. The distribution
parameters fit most of the experimental data. The proposed model was applied to arbitrary
general experimental data of a polydispersed fuel spray produced by a plain-jet air-blast
atomizer [18] and its approximations. All calculations were performed numerically using
MATLAB software. The experimental distribution and its approximations based on known
theoretical distributions that are used and normalised are presented in Figure 1.
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Figure 1. Normalized experimental probability distributions and various approximations by proba-
bility density functions (Nukiyama–Tanasawa, Rosin—Rammler, and gamma distributions) of the
droplets’ radii.

In the region close to rm = 1, we observed an almost linear behaviour of the maximal
radius rm as a function of time. This corresponds to initial fast motion (evaporation). Close
to this almost “linear” region, our model is valid; thus, we can study the various types of
dynamics that describe the PSD. The integrand of F represents the PSD. This conclusion
immediately follows from the definition of F (10). On the other side, the integrand of F̃ is
proportional to the PSD (it can be seen by Equation (13)). The dynamics of the PSD are
based on the initial PSD (initial measurement) and its different approximations by various
commonly used PDFs.

As shown in Figure 2, the behaviour of different integrands of F̃ is quantitatively very
similar. The experimental PSD is discontinuous, because it is discrete and divided into
several parcels, whereas all approximations are smooth. The integrands of F consist of
P0(G(R))ΠRm(R), which can be described with the help of PDFs (more accurately, it is
proportional to the PDFs).

Recall that the function F is an integral that depends on rm. In Figure 3, we can see
graphs of the integrand of F, and the area under the graph is a visualisation of F. The area
can also be interpreted as a function of the droplet mean radius. As the maximum radius
decreases, it is reasonable to suppose that the mean radius will decrease as well.

With the help of the current more accurate model (compared with its previous ver-
sion [24]), we can observe the dynamical behaviour of the probability functions. The results
are shown in Figure 4.

Our computations demonstrate a different type of behaviour for the mean radius
in the initial time period. We observe an increase in the mean radius for a short period
of time, followed by the expected behaviour (i.e., the decrease in the mean radius). A
similar behaviour was also observed for a different probability function (Figure 5). This
phenomenon is stable numerically. We have a heuristic explanation only, and hopefully,
one will be derived analytically in the future.
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(a) (b)

(c) (d)
Figure 2. The integrand of F̃ given by Equation (13) in the region near rm = 1 for experimental data and its approximations
(Nukiyama–Tanasawa, Rosin–Rammler, and gamma distributions), at various values of rm. (a) The integrand of F̃ at rm = 1.
(b) The integrand of F̃ at rm = 0.975. (c) The integrand of F̃ at rm = 0.95. (d) The integrand of F̃ at rm = 0.925.

Figure 3. Integrand of F given by Equation (10).



Appl. Sci. 2021, 11, 9739 8 of 12

(a) (b)

(c) (d)
Figure 4. Nukiyama–Tanasawa, Rosin–Rammler, and gamma probability for various rm values. (a) Probability at rm = 1.
(b) Probability at rm = 0.975. (c) Probability at rm = 0.95. (d) Probability at rm = 0.925.

Figure 5. The area of the probability integrand as a function of the rm for the various distributions
(Nukiyama–Tanasawa, Rosin—Rammler, and gamma).
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We can observe this numerical phenomenon of mean radius increase for any studied
PDF. For example, let us observe the behaviour of the integrand of the Nukiyama–Tanasawa
approximation (Figure 6) in time. For a heuristic explanation of this observation, we can
analyse Equation (18) in more detail. Recall Equation (18):

d(Rdi)

dt
=

1
Rdi

λg

ρLL
(Td − Tg), i = 1, . . . , m, (m equations) (20)

Figure 6. Nukiyama–Tanasawa integrand of F̃ given by Equation (13) for various values of rm.

For Td < Tg, the gas temperature was higher than the temperature of the droplets, and
the derivative was negative. The reduction of droplet radii over time is also valid because
the radius decreases in a high-temperature environment. As can be seen, the curve of any
droplet density function is shifted to the right with respect to time, as expected. The shift
occurs due to the reduction in the droplet size. A more important observation is as follows:
For any droplet, the radius reduction is proportional to the inverse of the radius. The last
insight indicates that droplets with a large radius will decrease in size more slowly than
droplets with a smaller radius. This phenomenon is seen in the graph, where the number
of small-radius droplets increases with time.

Consider the following possible explanation: Droplets with a higher ratio between
the surface and volume were more influenced by heat. From this remark, it follows that
the reduction in the size of smaller droplets is faster than that of larger ones. This can be
seen analytically because the derivatives of the radii of the droplets are proportional to the
inverse of their radii. Heuristically, this means that smaller droplets have lesser influence
on the mean radius than larger ones. Of course, this heuristic explanation is not an accurate
explanation, but for the moment, we have no accurate proof of the phenomena.

4. Conclusions

In this study, we modified the approach proposed in our previous work [24], where
we used smooth PDFs to approximate droplet radii distributions. This modification helps
us follow the dynamics of the PSD. In addition, we studied the time evolution of the PDFs.
The low computation time of the proposed approach allowed us to accurately follow the
dynamics of the experimentally measured PSD and its different smooth approximations.
These smooth approximations allowed us to explore the behaviour of PSDs using a combi-
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nation of analytical and computational methods. The new tools provided by our model
allow infinite accuracy, and can be applied on any theoretical PSD.

An important novel result (which is visualised by graphs) demonstrates that the mean
radius of the droplets first increases for a short time, followed by the expected decrease.
This means that the maximum mean radius is not located at the beginning of the process,
as expected.

Our approach is superior to the well-known ‘parcel’ approach because it does not
have the computational problems that limited the ‘parcel’ approach to a small number
of parcels. Moreover, the model is much more compact, and the right-hand side of the
equations is smooth. Our results show that the mean radius of the droplets eventually
decreases, but, surprisingly, initially increases. We associate this phenomenon of the
increase in the mean radius to the tendency of smaller droplets to evaporate at a higher
rate. The ability to research the evolution of a complex system of droplets in the ignition
process opens a window to an interesting new field in the analytical and numerical study
of spray combustion.

This new method can be applied to any PSD approximation, and the computation time
is negligible. For example, in this study, we applied the new tools to the well-known Rosin–
Rammler, Nukiyama–Tanasawa, and gamma distribution approximations of experimental
distributions. Our results were in good agreement with the experimental results.

We plan to check the main results for more complicated models in the future.
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Funding: This work was fund by Jerusalem college of technology and Ben Guion University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We used data available in our paper on combustion.

Conflicts of Interest: No conflicts of Interest.

Nomenclature

A constant pre-exponential rate factor
C molar concentration (k mol m−3)
c specific heat capacity (J kg−1 K−1)
E activation energy (J k mol−1)

L
liquid evaporation energy (i.e., latent heat of evaporation, enthalpy of evaporation)
(J kg−1)

ndi
number of droplets of size i per unit volume (m−3)

Q combustion energy (J kg−1)
B universal gas constant (J k mol−1 K−1)
Rdi

radius of size i drops (m)
Rmax,0 maximal droplet radius at t = 0 (m)
T temperature (K)
t time (s)
treact A−1e1/β (s)
P(·) probability density function
P̂(·) probability distribution function
U(·) unit step function
Π(·) rectangle function
Greek symbols and dimensionless parameters
α dimensionless volumetric phase content,
ν quantity equivalent to the volumetric phase content for the continuous model
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β
dimensionless reduced initial temperature (with respect to the activation temperature
E/B)

γ

dimensionless parameter that represents the reciprocal of the final dimensionless
adiabatic temperature of the thermally insulated system after the explosion has been
completed

ε1, ε2
dimensionless parameters introduced in Equation (11) that describe the interaction
between gaseous and liquid phases

µ molar mass (kg kmol−1)
λ thermal conductivity (W m−1 K−1)
ρ density (kg m−3)
τ dimensionless time

Ψ
represents the internal characteristics of the fuel (the ratio of the specific combustion
energy to the latent heat of evaporation) and is defined in Equation (11) (dimensionless)

Dimensionless variables
η dimensionless fuel concentration
θ dimensionless temperature
r dimensionless radius
Subscripts
d liquid fuel droplets
f combustible gas component of the mixture
g gas mixture
i number of droplet sizes
L liquid phase
p under constant pressure
s saturation line (surface of droplets)
0 initial state
m number of droplet sizes
Abbreviations
PDF probability density function
PSD particle size distribution

References
1. Wirtz, J.; Cuenot, B.; Riber, E. Numerical study of a polydisperse spray counterflow diffusion flame. Proc. Combust. Inst. 2021, 38,

3175–3182. [CrossRef]
2. Wang, Q.; Jaravel, T.; Ihme, M. Assessment of spray combustion models in large-eddy simulations of a polydispersed acetone

spray flame. Proc. Combust. Inst. 2019, 37, 3335–3344. [CrossRef]
3. Greenberg, J.B.; Katoshevski, D. Polydisperse spray diffusion flames in oscillating flow. Combust. Theory Model. 2016, 20, 349–372.

[CrossRef]
4. Greenberg, J.; Silverman, I.; Tambour, Y. On the origins of spray sectional conservation equations. Combust. Flame 1993, 93, 90–96.

[CrossRef]
5. Tambour, Y. Transient mass and heat transfer from a cloud of vaporizing droplets of various size distributions: A sectional

approach. Chem. Eng. Commun. 1986, 44, 183–196. [CrossRef]
6. Tambour, Y. Simulation of coalescence and vaporization of kerosene fuel sprays in a turbulent jet—A sectional approach. In

Proceedings of the 21st Joint Propulsion Conference, Monterey, CA, USA, 8–10 July 1985; American Institute of Aeronautics and
Astronautics: Reston, VA, USA, 1985.

7. Tambour, Y. Vaporization of polydisperse fuel sprays in a laminar boundary layer flow: A sectional approach. Combust. Flame
1984, 58, 103–114. [CrossRef]

8. Anidjar, F.; Tambour, Y.; Greenberg, J. Mass exchange between droplets during head-on collisions of multisize sprays. Int. J. Heat
Mass Transf. 1995, 38, 3369–3383. [CrossRef]

9. Silverman, I.; Greenberg, J.; Tambour, Y. Stoichiometry and polydisperse effects in premixed spray flames. Combust. Flame 1993,
93, 97–118. [CrossRef]

10. Tambour, Y.; Zehavi, S. Derivation of near-field sectional equations for the dynamics of polydisperse spray flows: An analysis of
the relaxation zone behind a normal shock wave. Combust. Flame 1993, 95, 383–409. [CrossRef]

11. Silverman, I.; Greenberg, J.B.; Tambour, Y. Asymptotic analysis of a premixed polydisperse spray flame. SIAM J. Appl. Math. 1991,
51, 1284–1303. [CrossRef]

12. Aggrawal, S.K. A review of spray ignition phenomena: Present status and future research. Prog. Energy Combust. Sci. 1998, 24,
565–600. [CrossRef]

13. Stone, R. Introduction to Internal Combustion Engines; Macmillan: London, UK, 1998.

http://doi.org/10.1016/j.proci.2020.05.042
http://dx.doi.org/10.1016/j.proci.2018.06.011
http://dx.doi.org/10.1080/13647830.2015.1132773
http://dx.doi.org/10.1016/0010-2180(93)90085-H
http://dx.doi.org/10.1080/00986448608911354
http://dx.doi.org/10.1016/0010-2180(84)90086-5
http://dx.doi.org/10.1016/0017-9310(95)00091-M
http://dx.doi.org/10.1016/0010-2180(93)90086-I
http://dx.doi.org/10.1016/0010-2180(93)90006-O
http://dx.doi.org/10.1137/0151064
http://dx.doi.org/10.1016/S0360-1285(98)00016-1


Appl. Sci. 2021, 11, 9739 12 of 12

14. Sazhin, E.M.; Sazhin, S.S.; Heikal, M.R.; Babushok, V.I.; Johns, R.A. A detailed modeling of the spray ignition process in diesel
engines. Combust. Sci. Technol. 2000, 160, 317–344. [CrossRef]

15. Greenberg, J.B. Droplet size distribution effects in an edge flame with a fuel spray. Combust. Flame 2017, 179, 228–237. [CrossRef]
16. Noh, D.; Gallot-Lavallée, S.; Jones, W.P.; Navarro-Martinez, S. Comparison of droplet evaporation models for a turbulent,

non-swirling jet flame with a polydisperse droplet distribution. Combust. Flame 2018, 194, 135–151. [CrossRef]
17. Babinsky, E.; Sojka, P.E. Modeling drop size distributions. Prog. Energy Combust. Sci. 2002, 28, 303–329. [CrossRef]
18. Urbán, A.; Józsa, V. Investigation of Fuel Atomization with Density Functions. Period. Polytech. Mech. Eng. 2018, 62, 33–41.

[CrossRef]
19. Warnatz, J.; Maas, U.; Dibble, W.R. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant

Formation; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006.
20. Kolakaluria, S.S.R.; Panchagnulab, M.V. Trends in multiphase modeling andsimulation of sprays. Int. J. Spray Combust. Dyn. 2014,

6, 317–356. [CrossRef]
21. Semenov, N.N. Zur theorie des verbrennugsprozesse. Z. Phys. 1928, 48, 571–581. [CrossRef]
22. Kats, G.; Greenberg, J. Forced thermal ignition of a polydisperse fuel spray. Combust. Sci. Technol. 2018, 190, 849–877. [CrossRef]
23. Bykov, V.; Goldfarb, I.; Greenberg, V. Auto-ignition of a polydisperse fuel spray. Proc. Combust. Inst. 2007, 31, 2257–2264.

[CrossRef]
24. Nave, O.; Gol’dshtein, V.M.; Bykov, V. A probabilistic model of thermal explosion in polydisperse fuel spray. Appl. Math. Comput.

2010, 217, 2698–2709. [CrossRef]
25. Sazhin, S.; Martynov, S.; Kristyadi, T.; Crua, C.; Heikal, M.R. Diesel fuel spray penetration, heating, evaporation and ignition:

Modelling vs. experimentation. Int. J. Eng. Syst. Model. Simul. 2008, 1, 1–19.
26. Williams, F.A. The Fundamental Theory of Chemically Reacting Flow System; Benjamin-Cummings: Menlo Park, CA, USA, 1985.
27. Tyurenkova, V.V. Non-equilibrium diffusion combustion of a fuel droplet. Acta Astronaut. 2012, 75, 78–84. [CrossRef]
28. Rosin, P.; Rammler, E. Laws governing the fineness of powdered coal. J. Inst. Fuel 1933, 7, 29–36.
29. Nukiyama, S.; Tanasawa, Y. Experiments on the atomization of liquids in an airstream. Trans. Jpn. Soc. Mech. Eng. 1939, 5, 68–75.

http://dx.doi.org/10.1080/00102200008935806
http://dx.doi.org/10.1016/j.combustflame.2017.02.002
http://dx.doi.org/10.1016/j.combustflame.2018.04.018
http://dx.doi.org/10.1016/S0360-1285(02)00004-7
http://dx.doi.org/10.3311/PPme.11312
http://dx.doi.org/10.1260/1756-8277.6.4.317
http://dx.doi.org/10.1007/BF01340021
http://dx.doi.org/10.1080/00102202.2017.1415893
http://dx.doi.org/10.1016/j.proci.2006.08.075
http://dx.doi.org/10.1016/j.amc.2010.07.078
http://dx.doi.org/10.1016/j.actaastro.2012.01.010

	Introduction
	Model Description
	Results and Discussion
	Conclusions
	References

