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Abstract: This work presents different formulations to obtain the solution for the Giesekus con-
stitutive model for a flow between two parallel plates. The first one is the formulation based on
work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)].
The second formulation is based on the concept of changing the independent variable to obtain
the solution of the fluid flow components in terms of this variable. This change allows the flow
components to be obtained analytically, with the exception of the velocity profile, which is obtained
using a high-order numerical integration method. The last formulation is based on the numerical
simulation of the governing equations using high-order approximations. The results show that
each formulation presented has advantages and disadvantages, and it was investigated different
viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid
flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high
Weissenberg numbers.

Keywords: Giesekus model; flow between two parallel plates; exact solution; numerical solution;
high-order approximations; high Weissenberg number

1. Introduction

The solution for the velocity and extra-stress tensor distribution in a viscoelastic fluid
flow using a specific model can be obtained numerically and, sometimes, analytically. Each
specific model has its own complexity and limitations, compared to the real viscoelastic
fluids. The numerical solution of a laminar viscoelastic fluid flow is necessary for many
flow analyses, for instance, in laminar-turbulent transition flow studies. The fluid flow
components of this laminar flow can be obtained easily with some viscoelastic models,
for instance, the velocity and extra-stress tensor field solutions for the Oldroyd-B model
for the flow between two parallel plates. For some other models, the solution can require
more profound analysis and mathematical and numerical tools to be obtained, even for
simplified geometries.

In general, practical problems do not allow for analytical solutions due to their com-
plexity. For this reason, numerical methods for simulating non-Newtonian fluid flows
have been part of a very active area of research. Techniques for simulating viscoelas-
tic flows have been used to solve different constitutive models such as Oldroyd-B [1,2],
FENE-P [3,4], FENE-CR [5,6], PTT [4,7,8], and Giesekus [9,10]. The fluids that are elastic
and have a constant viscosity are known as Boger fluids and the Maxwell, Oldroyd-B, and
Giesekus models are suitable to simulate these fluids type [11].
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For the Giesekus constitutive model [12], Yoo and Choi [9] studied the analytical
solution for Couette and Poiseuille flows. For the Poiseuille flow, they obtained a semi-
analytical solution for the mean velocity. The values were obtained by the integration
(numerical, due to the complexity of the resulting equation) of the expression obtained for
the derivative of the mean velocity.

Schleiniger and Weinacht [10] continued Yoo and Choi’s [9] studies, presenting a weak
and classical solution for Poiseuille flow, with and without solvent viscosity contribution.
However, just like Yoo and Choi [9], the presented solution for the average velocity is
obtained implicitly.

More recently, Raisi [13] presented an approximation for the solution of the Couette–
Poiseuille flow for the Giesekus model. However, its results depend on the numerical
solution of the shear stress at the stationary plate by the Newton–Raphson method.

Ferrás [8] also carried out studies for the solution of the Poiseuille flow using the
Giesekus model, and showed an agreement between the results obtained by the mentioned
works and the guarantees of the solution existence for the branch 1/2 < αG ≤ 1.

Tomé et al. [14] presented a solution method for the Giesekus viscoelastic fluid flow
based on work by Schleiniger and Weinacht [10], where an analytical solution for the flow
between two parallel plates problem was proposed. In their work, the authors considered
a purely polymeric fluid flow.

Among the differential constitutive models, the laminar flow solution with the
Giesekus model can not be obtained directly, because the extra-stress tensor appears
non-linearly through the quadratic term. On the other hand, the model is considered to
better approximate the rheology of polymers [15,16] and has the advantage of simplicity
where only three parameters are involved: the temporal relaxation λ, the mobility param-
eter αG, and the viscosity of the polymer ηp. Furthermore, the Giesekus model is able to
predict the first and second normal-stress differences.

The current study presents different formulations to obtain the solution for the
Giesekus constitutive model considering the flow between two parallel plates (Poiseuille
flow for Newtonian fluid flow). The first one is the formulation proposed by Schleiniger
and Weinacht [10]. The second formulation is the independent variable change, a new
method proposed here, and the last method is the numerical simulation of the governing
equations using high-order approximations. Each formulation to solve the laminar flow
between two parallel plates has its advantages and disadvantages, and these features are
explored here.

The paper is divided as follows: Section 2 presents the governing equations; the
different formulations to obtain the laminar solution are presented in Section 3, includ-
ing a semi-analytical solution obtained through the results presented by Schleiniger and
Weinacht [10], a formulation to solve considering the independent variable change, and a
numerical formulation through the high-order numerical approximation. Section 4 shows
the results obtained with each formulation to solve the governing equations, investigating
the limitations of each solver. The main conclusions are presented in Section 5.

2. Mathematical Formulation

In this paper, we consider a non-Newtonian, two-dimensional, and incompressible
fluid flow, which is assumed to be unsteady and without body forces. The dimensionless
governing equations are given by the continuity equation:

∇ · u = 0, (1)

and the momentum equation:
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∂u
∂t

+∇ · (uu) = −∇p +
β

Re
∇2u +∇ · T, (2)

where u is the velocity field, t is the time, p is the pressure, β = ηs
η0

is the coefficient that
controls the solvent viscosity contribution (where η0 = ηs + ηp, with η0 being the total
viscosity, ηs and ηp being the solvent and polymer viscosity, respectively), Re = ρUL

η0
is the

Reynolds number (ρ is the fluid density) and T is the non-Newtonian extra-stress tensor
that must obey an appropriate constitutive equation.

The Giesekus constitutive model [12–15] is given by the following equation,

T + Wi
∇
T +

αGWiRe
(1− β)

(T · T) = 2(1− β)

Re
D, (3)

where D is the rate of deformation tensor, Wi = λU
L is the Weissenberg number, λ is the

relaxation-time of the fluid, L is the channel half-width, U is the velocity scale, αG is the

so-called mobility parameter (0 ≤ αG ≤ 1) and
∇
T is the upper-convected derivative of

T. This model is based on molecular concepts and it reproduces the characteristics of
polymeric fluids [8].

The system of Equations (1) and (2) with the Giesekus constitutive Equation (3) in
two-dimensional Cartesian coordinates (x, y) are adopted. For the formulation where the
solution is analytic or semi-analytic, some simplifications are carried out in the governing
equations. The assumptions of such flow for these formulations are: steady-state flow(

∂(·)
∂t = 0

)
, no variation of the velocity and tensor in the streamwise direction

(
∂(·)
∂x = 0,

u = u(y), T = T(y)
)

, normal velocity equal zero, and a constant streamwise pressure

gradient
(

∂p(x,y)
∂x = px < 0

)
. The value of the streamwise pressure gradient is achieved

considering the integral
∫ 1
−1 udy = 4/3. This value is obtained for the Newtonian veloc-

ity profile with a maximum value equal to 1 in the channel center. According to these
assumptions, it is considered a horizontal channel where the fluid flows in the streamwise
direction x; hence, the following system is taken into account:

px =
β

Re
u′′ + T′xy , (4)

∂p(x, y)
∂y

= T′yy , (5)

Txx − 2WiTxyu′ +
αGReWi
(1− β)

(
T2

xx + T2
xy

)
= 0 , (6)

Txy −WiTyyu′ +
αGReWi
(1− β)

Txy
(
Txx + Tyy

)
=

(1− β)

Re
u′ , (7)

Tyy +
αGReWi
(1− β)

(
T2

xy + T2
yy

)
= 0 . (8)

In addition, it will be considered −1 ≤ y ≤ 1 and, thus, Txx(0) = Txy(0) = Tyy(0) =
u′(0) = 0 at the center (y = 0).

3. Different Formulations to Obtain the Fully Developed Laminar Flow with the
Giesekus Model

This section presents different formulations to find the fully developed viscoelastic
fluid flow between parallel plates using the Giesekus model. The first formulation is based
on Schleiniger and Weinacht [10], the second one is a new formulation that solves the
Giesekus equation based on the independent variable change (y for the tensor Txy). With
this change in the system, it is possible to obtain a restriction condition for the pressure
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gradient, showing that this model has some restrictions on the previous formulation. The
third formulation is a high-order simulation (HOS) code using vorticity–velocity formula-
tion and a log-conformation formulation adopted for the extra-stress tensor calculation to
overcome the high Weissenberg number problem (HWNP).

3.1. Schleiniger and Weinacht Formulation

Here, we present the steps to solve analytically the non-linear system of equations
that represent the steady-state of the isothermal, incompressible flows of a Giesekus fluid
with a Newtonian solvent between two parallel plates. The formulation is based on [9,10],
who presented them using different dimensionless forms among each other. Schleiniger
and Weinacht (SW) [10] solved and discussed the solutions mathematically, considering
the Giesekus fluid with and without Newtonian solvent, and they commented about the
Giesekus fluid without the Newtonian solvent for the axisymmetric case. In their paper,
the solution is not obtained explicitly, i.e., the derivative of the solution may not be checked
out directly by the reader. Hence, this section will provide a detailed explanation to achieve
the analytical solution and a numerical algorithm for solving the implicit equation, which
is named herein the “semi-analytical solution”.

The system of equations—Equations (4)–(8) is analogous to the system (2.1)–(2.5),
solved by Schleiniger and Weinacht [10], with some differences in the dimensional system.

Rewriting Equation (8) in an equivalent form, we get:(
Tyy +

(1− β)

2αGReWi

)2

+ T2
xy =

(1− β)2

4α2
GRe2Wi2

, (9)

which provides two expressions to Tyy as a function of Txy,

Tyy =
−(1− β)±

√
(1− β)2 − 4α2

GRe2Wi2T2
xy

2αGReWi
. (10)

Since the extra-stress tensor should be equal to zero along the centerline of the channel,
the best choice in Equation (10) is the plus sign:

Tyy =
−(1− β) +

√
(1− β)2 − 4α2

GRe2Wi2T2
xy

2αGReWi
. (11)

Adding Equations (6) and (8), one can obtain:

(Txx + Tyy) +
αGReWi
(1− β)

[(Txx + Tyy)
2 − 2TxxTyy + 2T2

xy]− 2WiTxyu
′
= 0, (12)

or equivalently,

αGReWi
(1− β)

(Txx + Tyy)
2 + (Txx + Tyy)−

2αGReWi
(1− β)

TxxTyy+

+
2αGReWi
(1− β)

T2
xy = 2WiTxyu

′
.

(13)

The value of (Txx + Tyy) can be obtained from Equation (7):
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(Txx + Tyy) =
(1−β)

Re u
′
+ WiTyyu

′ − Txy
αG ReWi
(1−β)

Txy
. (14)

Moreover, Equation (14) implies that:

Txx =
(1− β)[(1− β) + ReWiTyy]u

′

αGRe2WiTxy
−

(1− β) + αGReWiTyy

αGReWi
. (15)

Equations (14) and (15) are valid for all y 6= 0. The values of the extra-stress tensor
components Txx, Tyy, Txy and the streamwise velocity component u

′
are known at centerline

y = 0.
Substituting Equations (14) and (15) into Equation (13) and carrying on some algebraic

manipulations, and with the use of Equation (8), one can obtain:

u
′
=

[ (1−β)
Re + bWiTyy]Txy

[ (1−β)
Re + WiTyy]2

, (16)

where b = 2αG − 1.
Equation (16) shows that u

′
is a function of the extra-stress tensor component Tyy and

Txy. As Equation (11) shows that the extra-stress tensor component Tyy is a function of the
extra-stress component Txy, it is possible to use Equation (11) in Equation (16); after some
algebraic manipulations, again, a equation for u

′
can be obtained:

u
′
=

2αGReTxy[(1− β) + b
√
(1− β)2 − 4α2

GRe2Wi2T2
xy]

[b(1− β) +
√
(1− β)2 − 4α2

GRe2Wi2T2
xy]

2
. (17)

We should comment about the sign of the square root term presented in Equation (17).
The solution of the Giesekus model needs to satisfy all equations, in particular Equation (8),
which was rewritten as Equation (9). The Equation (9) means that:(

Tyy +
(1− β)

2αGReWi

)2

≤ (1− β)2

4α2
GRe2Wi2

, (18)

and also

T2
xy ≤

(1− β)2

4α2
GRe2Wi2

. (19)

The restriction given by Equation (19) leads to (1− β)2 − 4α2
GRe2Wi2 ≥ 0, i.e., the

square root term presented in Equation (17) is always non-negative since Equation (8) has
to be taken into account. Therefore, this restriction must be respected in this paper.

Integrating Equation (4) with respect to y and using that Txy = u
′
= 0 at the centerline

y = 0, one can arrive at:

Txy =
−β

Re
u
′
+ pxy, −1 ≤ y ≤ 1, (20)

where px is a negative constant.
Substituting Equation (20) into Equation (17), one can obtain an implicit expression

for u
′
:

u
′
=

2αGRe(−β
Re u

′
+ pxy)[(1− β) + b

√
(1− β)2 − 4α2

GRe2Wi2(−β
Re u′ + pxy)2]

[b(1− β) +
√
(1− β)2 − 4α2

GRe2Wi2(−β
Re u′ + pxy)2]2

. (21)
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In order to obtain the analytical solution, it is necessary to follow the next steps:

1. Solve Equation (21) to obtain u
′

for a given px;
2. Solve Equation (20) to obtain Txy(y);
3. Solve Equation (11) to obtain Tyy(y);
4. Solve Equation (15) to obtain Txx(y).

Again, we should note that Equations (21), (20), (11) and (15) are similar to
Equations (5.2) to (5.5), given by Schleiniger and Weinacht [10], respectively, with some
differences in the dimensional system. Since sequence 2, 3, and 4 is followed, it is possible
to see that all of the components of the extra-stress tensor can be obtained explicitly, just
using some algebraic calculations. However, in step 1, it is not easy to solve u

′
analytically.

Therefore, in the next section, we will discuss the assumptions and the numerical strate-
gies adopted to choose px properly, to calculate u

′
, and to calculate the component of the

velocity u for complementing the present section, and for providing applicability of the
mathematical work by Schleiniger and Weinacht [10] in the engineering field.

3.2. Independent Variable Change

The formulation proposed here is based on the change of the independent variable in
the equation system. The equation system is rewritten in terms of the component tensor
Txy. This change in the equation system allows us to find a solution for y as a function
of Txy analytically. From the Equations (6) and (8), two solutions for each equation can
be obtained:

Txx =

(−1 + β)

(
1±

√
1− 4ReTxyWi2αG(ReTxyαG+2(−1+β)u′ )

(−1+β)2

)
2ReWiαG

, (22)

and

Tyy =

(−1 + β)

(
1±

√
1− 4Re2T2

xyWi2α2
G

(−1+β)2

)
2ReWiαG

. (23)

In the channel center, the extra-stress tensor should be zero. Therefore, the solution
adopted is the one with the signal of the minus (−) before the square root. From the
Equation (4), by integrating in the y direction, one can obtain an equation for u

′
(y):

u
′
=

Re
β

(
pxy− Txy

)
.

Substituting the last equation and the Equations (22) and (23) into Equation (7), the
resulting equation is a function of the variables px, y and the extra-stress tensor compo-
nent Txy:

(
Txy − pxy

)[
− 2 +

2
β
+

1
αG

1−

√
1−

4Re2T2
xyWi2α2

G
(−1 + β)2

+

+
1

αGβ

(√
1−

4Re2T2
xyWi2α2

G
(−1 + β)2 − 1

)]
+ Txy

√
1−

4Re2T2
xyWi2α2

G
(−1 + β)2 +

+Txy

√
1−

4Re2T2
xyWi2α2

G
(−1 + β)2 +

8Re2TxyWi2
(
Txy − pxy

)
αG

(−1 + β)β
= 0.

(24)
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The aim of this formulation is to solve the Equation (24) for y and then obtain a
solution y as a function of Txy. After some algebraic manipulations and simplifications,
two equations can be obtained, one is given by:

y =
Txy

px
.

This equation satisfies the hypothesis in the channel center, but from the equation
of the model, the relation between y and Txy is non-linear, so this equation should not be
adopted. The interesting equation is the second one, which expresses the non-linear relation
between the tensorial forces and the width of the channel, as one can see in the equation:

y =

[
Txy

(
− 2α2

G

(
(β− 1)

(
β

(√
1−

4α2
GRe2T2

xyWi2

(β− 1)2 − 1

)
+ 1

)
+

+Re2T2
xyWi2

)
+ αG(β− 1)(3β− 2)

(√
1−

4α2
GRe2T2

xyWi2

(β− 1)2 − 1

)
+

+(β− 1)2

(
1−

√
1−

4α2
GRe2T2

xyWi2

(β− 1)2

))]/
[

px

(
2αG(β− 1)2

(√
1−

4α2
GRe2T2

xyWi2

(β− 1)2 − 1

)
+

(β− 1)2

(
1−

√
1−

4α2
GRe2T2

xyWi2

(β− 1)2

)
−

−2α2
G(−β + ReTxyWi + 1)(β + ReTxyWi− 1)

)]
.

(25)

The Equation (25) allows to obtain a distribution of y from a given Txy. Starting from
the channel center, where Txy is zero, the values for Txy are increased to obtain, respectively,
y, until the channel boundaries, where y = ±1.

For this procedure, it is necessary to find a step size that is able to capture the extra-
stress tensor component Txy distribution until y = ±1. For that, an assumption that gives
us a 6th degree function is accomplished, in which coefficients are all the variables involved
in the flow. To obtain this function, it is assumed that, at the wall, the extra-stress tensor
component is Txy = hn, where h is the size of increment and n is the number of increment
needed to arrive in y = −1, starting from the channel center (notice that, if it is considered
the increment until y = 1, the assumption for Txy should be Txy = −hn).

Equation (25) is solved at the wall y = −1, assuming Txy = hn. After some algebraic
manipulations, we obtain a function in h, which gives the increment size as the lower real
root. The solution of this function has six roots (four complex and two real roots or four
real and two complex roots). The required solution is the lower real root. This function
is important because it allows one to estimate of the number of points that are needed to
obtain the distribution of the extra-stress tensor component in the channel (it is possible
because the function is also dependent on n). The function is given by:
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P(h) = α2
Gh6n6Re4Wi4 + 2α2

Gh5n5PxRe4Wi4 + h4(α2
Gn4Px2Re4Wi4+

+4α4
Gβ2n4Re2Wi2 − 12α3

Gβ2n4Re2Wi2 + 8α3
Gβn4Re2Wi2+

+11α2
Gβ2n4Re2Wi2 − 12α2

Gβn4Re2Wi2 + 2α2
Gn4Re2Wi2−

−3αGβ2n4Re2Wi2 + 5αGβn4Re2Wi2 − 2αGn4Re2Wi2)+

+h3(−8α3
Gβ2n3PxRe2Wi2 + 8α3

Gβn3PxRe2Wi2+

+12α2
Gβ2n3PxRe2Wi2 − 16α2

Gβn3PxRe2Wi2 + 4α2
Gn3PxRe2Wi2−

−5αGβ2n3PxRe2Wi2 + 9αGβn3PxRe2Wi2 − 4αGn3PxRe2Wi2)+

+h2(−2α2
Gβ3n2 + 5α2

Gβ2n2 − 4α2
Gβn2 + α2

Gn2 + 3αGβ3n2−
−8αGβ2n2 + 7αGβn2 − 2αGn2 + β3(−n2) + 3β2n2 − 3βn2+

+2α2
Gβ2n2Px2Re2Wi2 − 4α2

Gβn2Px2Re2Wi2 + 2α2
Gn2Px2Re2Wi2−

−2αGβ2n2Px2Re2Wi2 + 4αGβn2Px2Re2Wi2 − 2αGn2Px2Re2Wi2+

+n2) + h(2α2
Gβ4nPx− 8α2

Gβ3nPx + 12α2
Gβ2nPx− 8α2

GβnPx+

+2α2
GnPx− 3αGβ4nPx + 13αGβ3nPx− 21αGβ2nPx + 15αGβnPx−
−4αGnPx + β4nPx− 5β3nPx + 9β2nPx− 7βnPx + 2nPx)+

+α2
Gβ4Px2 − 4α2

Gβ3Px2 + 6α2
Gβ2Px2 − 4α2

GβPx2 + α2
GPx2−

−2αGβ4Px2 + 8αGβ3Px2 − 12αGβ2Px2 + 8αGβPx2 − 2αGPx2+

+β4Px2 − 4β3Px2 + 6β2Px2 − 4βPx2 + Px2

(26)

The next step of the present method is to calculate the distribution between the tensor
component Txy and y, and use it to find the gradient pressure px. In order to find the
pressure gradient, we adopted the existing condition of the solution in the real plane given
by Schleiniger and Weinacht [10]:

T2
xy ≤

(1− β)2

(2ReWiαG)2 . (27)

Using this condition in the Equation (25), at the wall y = 1, and solving the inequation
for px, we obtained an existence condition for the flow in terms of the pressure gradient:

px ≥
−1 + β + 2αG(2 + 2αG(−1 + β)− 3β)

2ReWi(1− 2αG)
2αG

. (28)

Note that if Re, Wi or αG is zero (UCM and Oldroyd-B), the pressure gradient does
not have a limiting value, the same happens if αG = 1

2 . From the inequation (28), it is
possible to see that the hypothesis of the pressure gradient component px lower than zero
is satisfied. After these calculations, it is possible to obtain all of the flow components using
the equations written in terms of the component tensor Txy.

The last step is the calculation of the velocity profile u(y) as a function of Txy. Equation (29)
shows the relation between the component tensor Txy and the derivative of the velocity
profile u(y),

u
′
=

Re
β

(
pxy− Txy

)
. (29)

For the calculation of the velocity profile, it is necessary to rewrite these equations in
terms of the tensor component Txy. For that, an expression for du

dTxy
is needed. Using the

chain rule, the Equation (29) can be rewritten as:
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du
dTxy

=
du
dy

dy
dTxy

=
Re
β

(
pxy− Txy

) dy
dTxy

. (30)

Integrating Equation (30) the following expression can be obtained:

u(Txy) =
Re
β

[
px

y2

2
− Txyy +

∫
ydTxy

]
. (31)

Solving
∫

ydTxy, it can be obtained:

u(Txy) =

(
(β− 1)3

(
2αG +

√
1−

4α2
GRe2T2

xyWi2

(β− 1)2 − 1

)
×

×
((

8(αG − 1)αG + 1
)(

2αG +

√
1−

4α2
GRe2T2

xyWi2

(β− 1)2 − 1

)
×

× log

(
− 2αG −

√
1−

4α2
GRe2T2

xyWi2

(β− 1)2 + 1

)
+

+
4αG(2αG − 1)

(
αG
(
2(β− 1)2 + Re2T2

xyWi2
)
− 2(β− 1)2

)
(β− 1)2

))/
/(

4αGReWi2
(
− 2αG(β− 1)2

(√
1−

4α2
GRe2T2

xyWi2

(β− 1)2 − 1

)
+

+(β− 1)2

(√
1−

4α2
GRe2T2

xyWi2

(β− 1)2 − 1

)
+

+2α2
G(−β + ReTxyWi + 1)(β + ReTxyWi− 1)

))
,

(32)

where the logarithm term does not have a solution in the real plane for any value of
αG, Re, Wi, Txy, and β. This information, about the equation for the velocity u, shows
that it is not possible, using this formulation, to obtain an analytical solution for velocity.
Therefore, the calculation sequence to obtain the main flow components is:

1. From Equation (28), it is possible to obtain the px max, used to start the simulation
and the recursive process;

2. Equation (26) allows one to obtain the step size required to find the point distribution
to increase Txy, to obtain the coordinate y, respectively;

3. Find u
′

by the Equation (29);
4. Integrate numerically u

′
to obtain the velocity u. It is important to emphasize that,

to calculate the integral numerically, an interpolation for new values of y equally
spaced is adopted, since the analytical y obtained from Txy is not equally spaced.
A high-order finite difference approximation was adopted for this calculation;

5. After the integral calculation, it is verified if the value of this integration is 4/3.
This is the value obtained for Newtonian fluid in a Poiseuille flow with a maximum
streamwise velocity equal to 1. If the value of the integral is different from 4/3,
the Newton–Raphson method is used to obtain a pressure gradient where the flow
resulting from this gradient has numerical integration of the velocity equal 4/3;

6. Using the expressions given in Equations (22) and (23), it is possible to obtain the
extra-stress tensor components distribution.
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3.3. High-Order Simulation (HOS)

For the numerical simulation of the Giesekus fluid flow, a high-order method is
adopted. In order to eliminate the pressure term in the Navier–Stokes Equation (2), the
vorticity–velocity formulation is adopted. Thus, the vorticity component in the z direction,
ωz, can be written as:

ωz =
∂u
∂y
− ∂v

∂x
. (33)

The equation system to be solved is given by:

∂u
∂y

+
∂v
∂x

= 0, (34)

∂2v
∂x2 +

∂2v
∂y2 = −∂ωz

∂x
, (35)

∂ωz

∂t
+

∂(uωz)

∂x
+

∂(vωz)

∂y
=

β

Re

(
∂2ωz

∂x2 +
∂2ωz

∂y2

)
+

∂2Txx

∂x∂y
+

∂2Txy

∂y2 −
∂2Txy

∂x2 −
∂2Tyy

∂x∂y
, (36)

and the Giesekus constitutive equation:

T + Wi
∇
T +

αGWiRe
(1− β)

(T · T) = 2(1− β)

Re
D. (37)

In this equation, the log-conformation method [17,18] is adopted to overcome the high
Weissenberg number problem—HWNP. Using this technique, a conformation tensor A is
adopted. The relation between T and the conformation tensor A is given by

T =
(1− β)

ReWi
(A− I), (38)

and
Ψ = loga(A). (39)

The equation to be solved using this technique is given as follows:

∂Ψ

∂t
+∇ · (uΨ) = (ΩΨ−ΨΩ) + 2B +

1
Wi

a−Ψ(I− aΨ)[I + αG(aΨ − I)], (40)

where a = e is the Euler’s number.
All of the spatial derivatives are approximated by fifth- and sixth-order compact finite

differences [19]. Time derivatives are discretized using a classical fourth-order Runge–
Kutta scheme [20]. The Poisson equation is solved using a multigrid full approximation
scheme (FAS) [21]. The calculation of the vorticity on the wall is performed according
to [22] using compact high-order finite difference approximations.

The boundary conditions adopted are Newtonian Poiseuille profile at the channel
entrance (left boundary), non-permeability and no-slip conditions at the walls (upper and
lower boundaries), and Neumann boundary conditions for the velocity at the channel
exit (right boundary). The problem is solved as an unsteady problem and a very long
channel is adopted to avoid the influence of the left boundary. The simulation is carried
out until the maximum difference between the vorticity in two consecutive time steps is
lower than 10−9.

The calculation sequence to obtain the main flow components by solving
Equations (34)–(36) and (40) is given by:

1. Apply a time integration for the vorticity and the extra-stress tensors Ψ (Runge–
Kutta method);

2. Calculate the extra-stress tensor components through the log-conformation method;
3. Calculate the right-hand side of the Poisson equation given by Equation (35);
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4. Calculate the velocity v by solving the Poisson equation—Equation (35);
5. Calculate the velocity u using the continuity equation—Equation (34);
6. Update the vorticity ωz at the walls;
7. Apply a filter after the last step of the time integrator.

The filtering strategy adopted in the last step is a 6th order compact filter given by [23].
The filter is applied at the end of each time step integration. It consists of recalculating
vorticity distribution through a tridiagonal system to eliminate the spurious oscillations
that can appear in the numerical solution.

For the results shown here, the number of points in the streamwise (x) and wall-normal
(y) directions were 9049 and 249, respectively. The distance between two consecutive points
were dx = 2π

16 and dy = 2
248 , and were constant in all domains.

4. Results

In this section, the results are presented for each formulation described. A comparison
and the advantages and disadvantages of each formulation is presented. The relation to
the pressure gradient obtained from the second formulation will be explored.

In order to explore the results, advantages, and disadvantages of each formulation,
different types of fluid and flows were simulated, varying the dimensionless parameters.

4.1. Agreement Region

In the present section, we present a comparison of the results obtained with the
three techniques in a range of parameters, where all are in agreement. In the range of
dimensionless parameters adopted in the present section, all of the formulations showed
good agreement. The range of parameters adopted here is given by:

• Reynolds number—0 < Re < 10,000;
• Weissenberg number—0 < Wi < 10;
• β parameter—0.01 < β < 1;
• αG parameter—0 < αG < 0.5.

Some results were chosen to show the range mentioned above. These results are
presented showing the variation of the streamwise velocity U(y) and the three components
of the extra-stress tensor Txx, Txy and Tyy in the wall-normal direction y.

Figures 1–3 show the comparison among the formulations presented for different
values of the dimensionless numbers Re, β, and αG in the range of the agreement region.

It is possible to observe very good agreement between the results obtained by different
formulations, both for β close to zero (close to polymeric fluid) and for β close to one (close
to Newtonian fluid).
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Figure 1. Streamwise velocity U(y) and the components of the extra-stress tensor Txx, Txy and Tyy variation in the wall-
normal direction y. Dimensionless numbers: Re = 2000, β = 0.25, αG = 0.1 and Wi = 2.
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Figure 2. Same as in Figure 1 for dimensionless numbers: Re = 5000, β = 0.5, αG = 0.2 and Wi = 2.
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For these simulations, different values for the dimensionless parameters of the flow
were considered, where all the formulations converge to a solution. It is noteworthy that the
formulations have certain limitations for some values for the dimensionless numbers. Out
of the agreement region, the results using the first and the second formulation diverges or
appears with oscillations on their field. The exploration of these bounds are shown below.

4.2. Purely Polymeric Flows

Considering the dimensionless number β = 0, the flow of a viscoelastic fluid is known
as a purely polymeric fluid flow, since there is no Newtonian solvent contribution in the
fluid composition.

The independent variable change formulation does not converge for a purely poly-
meric fluid. Therefore, for flows with β = 0, the Schleiniger and Weinacht [10] and HOS
formulations were used, and their results were compared.

Figures 4–6 show the variation of the streamwise velocity U(y) and the three compo-
nents of the extra-stress tensor Txx, Txy and Tyy in the wall-normal direction y.
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Figure 4. Same as in Figure 1 for dimensionless numbers: Re = 2000, β = 0, αG = 0.3 and Wi = 2.
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Figure 6. Same as in Figure 1 for dimensionless numbers: Re = 8000, β = 0, αG = 0.1 and Wi = 2.

The extra-stress tensor results obtained by the formulations of Schleiniger and
Weinacht [10] and HOS, considering the flow for a purely polymeric fluid, showed a
good agreement among each other. However, a small difference between the velocity
profiles can be observed at the channel center (u(y = 0)).

4.3. Low β Number—Close to Purely Polymeric Flows

As mentioned earlier, the formulation using the independent variable change does not
work for β = 0. However, an analysis of the results for this formulation was performed,
considering β close to zero. The results obtained by the formulation Schleiniger and
Weinacht [10] and by the HOS formulation are compared. The comparisons were carried
out for the streamwise velocity U(y) and the three components of the extra-stress tensor
Txx, Txy and Tyy, as can be seen in Figures 7–9, for β = 0.1, 0.05 and 0.01, respectively.
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Figure 7. Same as in Figure 1 for dimensionless numbers: Re = 5000, β = 0.1, αG = 0.3 and Wi = 2.
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Figure 9. Same as in Figure 1 for dimensionless numbers: Re = 2000, β = 0.01, αG = 0.3 and Wi = 2.

The results obtained are in agreement, however, as the value of the dimensionless num-
ber β decreases, the difference between the formulations increases. This shows precisely
the restriction commented above that, for the independent variable change formulation,
the lowest value for β has to be β = 0.01 in order to obtain acceptable results with this
formulation. It is worth mentioning that, as the solution obtained is analytical for all com-
ponents, except for the streamwise velocity, the increase in the number of points adopted
in the solution did not show an influence for lower values of β simulations.

4.4. High Weissenberg Number

The HOS formulation was implemented with the log-conformation technique for flow
simulation, considering high values of the Weissenberg number. The SW formulation [10]
was not able to converge to the solution when considering Re and Wi higher than 8000 and
10, respectively.

However, the formulation based on the independent variable change was able to
obtain solutions for any values of Re > 0, Wi > 0 and 0 < αG < 0.5, with the only
restriction to use the dimensionless number β > 0.01.

Figures 10–12 show the variation of the streamwise velocity U(y) and the three
components of the extra-stress tensor Txx, Txy and Tyy in the wall-normal direction y for
different dimensionless numbers of Re, β, αG, and with Weissenberg number Wi = 150, 300,
and 500.
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Figure 10. Same as in Figure 1 for dimensionless numbers: Re = 2000, β = 0.25, αG = 0.1 and Wi = 150.
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Figure 11. Same as in Figure 1 for dimensionless numbers: Re = 8000, β = 0.5, αG = 0.3 and Wi = 300.
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Figure 12. Same as in Figure 1 for dimensionless numbers: Re = 5000, β = 0.75, αG = 0.2 and Wi = 500.

One may observe that the results obtained by the different formulations are in agree-
ment. An interesting behavior presented by the HOS formulation can be observed. The
results obtained by this formulation, for high Weissenberg numbers, show oscillations for
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the extra-stress tensor components in the channel center, and as the Weissenberg number
increases, the oscillations are more pronounced.

Oscillations usually appear in simulations of flow between parallel plates close to
the wall and not in the channel center. However, for high values of the Weissenberg
number, a discontinuity is observed in the extra-stress tensor components in the channel
center. With the HOS formulation, even using the log-conformation technique to solve
the problem of the high Weissenberg number, oscillations were found in the extra-stress
tensor components in this region. The use of mesh refinement in the wall-normal direction
smooths these oscillations. It is also possible to adopt a stretched mesh, refining only in the
region of the channel center to reduce these oscillations and the computational cost.

4.5. Advantages and Disadvantages for Each Formulation

The formulation based on the Schleiniger and Weinacht formulation [10] is advanta-
geous in terms of the velocity cost in obtaining the flow components, because the system
of equations is solved in a semi-analytical way. Another advantage of this formulation is
the possibility to obtain the flow variables without the contribution of the solvent; that is,
flow for the purely polymeric fluid (β = 0). The disadvantage appears in the direction of
convergence towards the adequate pressure gradient for the ideal flow. This disadvantage
is related to the term inside the square root of Equation (21), it can becomes negative, and
the solution is no longer real. This behavior appears for high values of Weissenberg Wi,
Reynolds number Re, and the mobility parameter αG.

The formulation based on the independent variable change is advantageous for ana-
lytically obtaining the main components of the desired flow. Another advantage: there is
no restriction for the values of the flow variables, except those already found by Schleiniger
and Weinacht [10] (such as αG = 0.5). The disadvantage is the computational cost, since it
was not possible to obtain an analytical expression for this. It is necessary to interpolate
a new distribution for the tensor Txy to find an equally spaced domain of y, then it is nu-
merically integrated to the expression (29), and finally the streamwise velocity component
can be obtained. Another disadvantage of this formulation is the limitation of the flow
simulation for purely polymeric fluids (β = 0). The limitation arises from the equation for
the derivative of velocity (29), where the right-hand side terms are divided by β.

The solution obtained by high-order simulation is advantageous because simplifica-
tions are not adopted in the equation system that models the flow, so the problem is solved,
considering all of the terms in the equation system. The disadvantage of this formulation is
the computational cost, since many CPU hours are necessary to obtain the solution for each
case. The adopted code uses domain decomposition parallelization, high-order methods
for approximating the spatial derivatives, and a classical fourth-order Runge–Kutta method
for the temporal derivative.

The simulations were carried out in a computer Intel Xeon E5-2680v2 2.8 GHz. The
wall time required for the Schleiniger and Weinacht [10] and the independent variable
change formulations were less than 5 s. The high-order simulations were performed using
16 cores and the wall time was about 20 h.

5. Conclusions

This paper presents three different formulations to obtain the solution of a two-
dimensional viscoelastic fluid flow between two parallel plates, modeled by the Giesekus
constitutive equation.

The first formulation presented is based on the work by Schleiniger and Weinacht [10].
The second formulation presented is based on the idea of the independent variable change.
This change allows the flow components to be obtained analytically, except for the velocity
profile, obtained using a high-order numerical integration method. The third formulation
presented was called high-order simulation (HOS), i.e., the numerical simulation of the flow
modeled by the Navier–Stokes equations and the constitutive equation, using high-order
methods to obtain the solution.
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The Schleiniger and Weinacht [10] formulation is efficient to obtain the flow compo-
nents accurately and quickly. However, using many numerical methods for the solution
makes convergence difficult for specific parameter values. Each step is verified if the
value inside the square root is negative, making the solution complex and no longer real.
However, this formulation proved efficient in obtaining the flow components for purely
polymeric fluids (β = 0), converging to the solution for almost all values proposed. It did
not work for high values of Reynolds Re and Weissenberg Wi numbers.

The formulation based on the independent variable change proved to be very efficient,
as it solves all of the flow components analytically, but the velocity profile. The flow
components are obtained quickly and accurately, for any values of dimensionless numbers
of Reynolds Re, Weissenberg Wi, αG, and β > 0. The only limitation of this formulation is
when the fluid is composed of purely polymeric fluid flows, or near it β < 0.01.

The HOS formulation is based on the complete solution of the Navier–Stokes equations
and the considered constitutive equation. This formulation has a high computational cost
since the simulations take a long time to be solved. However, the numerical methods
used proved to obtain good results for the simulations carried out for all of the proposed
dimensionless parameters, with a high Weissenberg number, β = 0, αG, and Reynolds
number Re.

It could be observed that the formulations presented proved to be efficient at obtaining
the components of the desired flow. The results of the formulations were explored and
analyzed, and their respective limitations and efficiencies were commented on. These
results could be used to clarify and help researchers with which formulation is most
suitable, depending on the fluid and flow parameters adopted.
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