
applied
sciences

Article

Enhance Text-to-Text Transfer Transformer with Generated
Questions for Thai Question Answering

Puri Phakmongkol and Peerapon Vateekul *

����������
�������

Citation: Phakmongkol, P.; Vateekul,

P. Enhance Text-to-Text Transfer

Transformer with Generated

Questions for Thai Question

Answering. Appl. Sci. 2021, 11, 10267.

https://doi.org/10.3390/

app112110267

Academic Editor:

Arturo Montejo-Ráez

Received: 20 September 2021

Accepted: 27 October 2021

Published: 1 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University,
Bangkok 10300, Thailand; puri.pmk@gmail.com
* Correspondence: peerapon.v@chula.ac.th

Abstract: Question Answering (QA) is a natural language processing task that enables the machine
to understand a given context and answer a given question. There are several QA research trials
containing high resources of the English language. However, Thai is one of the languages that have
low availability of labeled corpora in QA studies. According to previous studies, while the English
QA models could achieve more than 90% of F1 scores, Thai QA models could obtain only 70% in our
baseline. In this study, we aim to improve the performance of Thai QA models by generating more
question-answer pairs with Multilingual Text-to-Text Transfer Transformer (mT5) along with data
preprocessing methods for Thai. With this method, the question-answer pairs can synthesize more
than 100 thousand pairs from provided Thai Wikipedia articles. Utilizing our synthesized data, many
fine-tuning strategies were investigated to achieve the highest model performance. Furthermore, we
have presented that the syllable-level F1 is a more suitable evaluation measure than Exact Match
(EM) and the word-level F1 for Thai QA corpora. The experiment was conducted on two Thai QA
corpora: Thai Wiki QA and iApp Wiki QA. The results show that our augmented model is the winner
on both datasets compared to other modern transformer models: Roberta and mT5.

Keywords: natural language processing; question answering; machine reading comprehension

1. Introduction

One of the Natural Language Processing (NLP) tasks that allow machines to under-
stand the information in text format and answer given questions is Question Answering
(QA). Many researchers aim to develop QA systems in many languages because QA sys-
tems have many benefits and can be used as a part of many intelligent systems such as
chat bots, or answer highlighters in search engines. One of the most popular languages
developed in QA tasks is English. There are many techniques and machine learning
models as well as many language resources that contribute to QA system development
in the English language. For example, the Text-to-Text Transfer Transformer model [1], a
Transformer-based model [2] that was trained with the huge English dataset called Colossal
Clean Crawled Corpus (C4) [3], achieved state-of-the-art results in SQuAD 1.1 [4] with an
F1 score of 96.22%. These contributions can support English QA models to reach higher
performance than other languages.

There are several research works about Thai QA, for example, using heuristic functions
to extract the answer, developed by Hatsanai Decha et al. [5], and using the Bi-Directional
Attention Flow (BiDAF) model [6] developed by Theerit Lapchaicharoenkit et al. [7].
However, one of the most important limitations of Thai QA is a lack of availability of
training data. There are currently only two datasets of Thai QA: Thai Wiki QA [8] and
iApp Wiki QA. Each sample of both datasets consists of a context, a question, and a ground
truth answer. Both datasets are span extraction type such that the answer to the question
is the span of text in the corresponding context. Thai Wiki QA contains 15,000 samples
while iApp Wiki QA contains 7242 samples. Each dataset has a small number of samples

Appl. Sci. 2021, 11, 10267. https://doi.org/10.3390/app112110267 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4805-0448
https://doi.org/10.3390/app112110267
https://doi.org/10.3390/app112110267
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110267
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110267?type=check_update&version=2

Appl. Sci. 2021, 11, 10267 2 of 17

compared to an English span extraction dataset such as SQuAD 1.1, which contains more
than 100 thousand samples. With this limitation, directly using the same techniques or
models of the English language such as deep learning models with Thai corpora might not
be able to utilize the capability of models to raise the performance.

In this paper, we aim to improve the Thai QA model performance by presenting
an enhanced QA framework tailored for the Thai language, with low training resources.
First, the limitation of data is overcome by generating synthesized data using Raul Puri
et al.’s method [9]. We further investigated and improved their technique in many aspects:
the synthesized data selection (all vs. filtered data) and the fine-tuning strategies (merge
and sequence). Second, we employed recent transformer models, where the pretrained
weights supported the Thai language. There are two chosen models in our comparison:
WanchanBERTa [10] and Multilingual Text-to-Text Transfer Transformer (mT5) [11]. Third,
we presented preprocessing methods for the Thai language to reduce the misspelling
words as well as to improve the quality of data. Final, the metrics that are widely used
in QA tasks for evaluating model performance, such as Exact Match (EM) and F1 score,
are not sufficient due to inabilities of the word tokenizer and the ambiguity of the Thai
language. To obtain nearer-correct scores, we proposed a Syllable-level F1 that calculates
the F1 score with syllable-tokens of prediction and the ground truth instead of word-tokens.
In this work, we evaluated the models with syllable-level F1 along with word-level F1. The
details of each module in our framework are explained in Chapter 3. The experiment was
conducted on two Thai QA corpora: Thai Wiki QA and iApp Wiki QA. The results showed
that the synthesized data along with a sequence fine-tuning strategy outperformed the
original Transformer based models.

In summary, our contributions are as follows:

• We present a data preprocessing method for the Thai Language.
• We demonstrate fine-tuning of two Transformer based models, WangchanBERTa

and mT5, for the QA task, with synthesized data and real human-labeled corpus,
and achieve higher EM and F1 scores than those when using only the real human-
labeled data.

• We compare the quality of the generated question-answer pairs used in the QA models
as well as training strategies.

• We propose new metrics: Syllable-level F1 to evaluate the models along with the
original Word-level F1.

We organize the rest of this paper as follows. Related works are introduced in Section 2,
followed by the presentation of our proposed framework in Section 3. We then explain our
experiment settings in Section 4. The result and discussion are presented in Sections 5 and 6,
and finally the conclusion of our work in Section 7.

2. Literature Review

In this section, we introduce related research to our work. This section is divided
into five parts as follows: recent research on QA, research on Thai QA, data augmentation
methods, the Text-to-Text Transfer Transformer, and the WangchanBERTa model.

2.1. Recent Research in Question Answering

Most recent research works on NLP focus on developing language models to use
with many tasks including the QA task. Most language models use the Transformer
model as a part of their processing because the Transformer model has proved that it
can reach higher performance than older-style NLP models, such as BiDAF [6], that use
Long Short-Term Memory (LSTM) [12]. BERT [13] is the first Transformer based language
model that uses only the encoder part of the Transformer. There are two sizes of BERT
models: BERTBase with 12 layers of Encoder and BERTLarge with 24 layers of Encoder. In
the experiment, BERT could achieve state-of-the-art performance in QA tasks. BERTBase
could reach 80.8 and 88.5 EM and F1 scores, respectively, BERTLarge could also reach

Appl. Sci. 2021, 11, 10267 3 of 17

84.1 and 90.9 EM and F1 scores, respectively, when tested with SQuAD 1.1, while BiDAF
could achieve only 68.0 and 77.3 EM and F1 scores, respectively.

There were several trials to develop a BERT model to better predict span, which is
more appropriate with QA tasks. SpanBERT [14] is one of these. SpanBERT changed some
functions of the pretraining process by using span masking instead of token masking,
and adding a Span Boundary Objective to train the model to predict the masked span
with adjoining words. SpanBERT used BERTLarge architecture and applied a described
method. SpanBERT was tested with the SQuAD 1.1 dataset to evaluate its performance,
and achieved 88.8 and 94.6 EM and F1 scores, respectively.

However, neither of those developments was chosen to use in our work because
WangchanBERTa was considered a better model than BERT, and SpanBERT must be pre-
trained with Thai documents before using, which is not convenient to use.

2.2. Researches in Thai Question Answering

Hatsanai Decha et al. [5] developed a QA system in Thai with a keyword extraction
method by finding keywords from questions and using extracted keywords to find candi-
date answers from a set of contexts, then finding the best answer with a heuristic function
called word order consistency, which functions in a manner that measures similarity be-
tween contexts and questions. This work does not use deep learning model, it is thus not
directly related to our work.

Theerit Lapchaicharoenkit et al. [7] modified the BiDAF model to support two types
of questions, span extraction type and yes-no question type, by adding a question type
classifier to the model. The model also used contextualized word embedding from the
BERT model that was pretrained with only Thai documents. The model was tested in a
competition called the National Software Contest organized in Thailand in 2018–2019. This
competition dataset consisted of 15,000 samples of span extraction tasks and 2000 samples
of yes-no question tasks.

Nevertheless, we did not use both above-mentioned works in our research because
the first method was not related to our work, and Transformer based models have proved
that they could achieve better performance than BiDAF in QA tasks.

2.3. Data Augmentation Methods

There are several research works in data augmentation for improving the performance
in QA tasks. Bhuwan Dhingra et al. [15] presented a cloze-style question generation method
by extracting questions and answers using the document structure of English articles that
mostly provides the summary of articles in the introduction. They used the BiDAF model
as a QA model. This method was able to raise the EM and F1 evaluation scores by 0.32%
and 0.11%, respectively.

Raul Puri et al. [9] introduced a Question Generation pipeline with three Transformer
based models inside. There are three steps of the pipeline including (1) answer generation,
(2) question generation, and (3) question filtration. Answer generation is performed by
a BERT model trained to select the candidate answer from a given context. Question
generation is performed by a GPT-2 model [16] trained to create a proper question to a
given context and answer. The last step, Question filtration, is performed by a BERT model
trained with question answering objectives with human-labeled data. The researchers
used this model to predict an answer from the generated question and context. If the
answer from this model was equivalent to the answer from the answer generation step,
they considered the generated question-answer pair to be an admissible sample. With
this pipeline, they were able to generate more than 19 million question-answer pairs from
Wikipedia articles, and used them to train the BERT model. The result achieved more than
their baseline EM and F1 scores by 1.7% and 1.2%, respectively.

To conclude, the first method cannot be used with Thai articles because the Thai
article structure is more ambiguous than English. It cannot simply extract the answers and

Appl. Sci. 2021, 11, 10267 4 of 17

questions by using heuristic rules. Given this limitation, using a deep learning model to
extract answers and questions is a more appropriate method to synthesize the data.

2.4. The Text-to-Text Transfer Transformer Model

The Text-to-Text Transfer Transformer (T5) [1] is one of the Transformer based models
that uses the same architecture of Transformer as shown in Figure 1. The objective of
T5 models is to support every NLP task by treating every text processing problem as a
“text-to-text” task, by taking the given text as input and producing new text as output. With
this method, many tasks could be used with this model, for example, Question Answering,
document summarization, or sentiment classification. There is research work that uses a
set of documents containing 101 languages, including Thai, to pretrain T5 models called
Multilingual Text-to-Text Transfer Transformer (mT5) [11].

Appl. Sci. 2021, 112, 267 4 of 17

Wikipedia articles, and used them to train the BERT model. The result achieved more than

their baseline EM and F1 scores by 1.7% and 1.2%, respectively.

To conclude, the first method cannot be used with Thai articles because the Thai ar-

ticle structure is more ambiguous than English. It cannot simply extract the answers and

questions by using heuristic rules. Given this limitation, using a deep learning model to

extract answers and questions is a more appropriate method to synthesize the data.

2.4. The Text-to-Text Transfer Transformer Model

The Text-to-Text Transfer Transformer (T5) [1] is one of the Transformer based mod-

els that uses the same architecture of Transformer as shown in Figure 1. The objective of

T5 models is to support every NLP task by treating every text processing problem as a

“text-to-text” task, by taking the given text as input and producing new text as output.

With this method, many tasks could be used with this model, for example, Question An-

swering, document summarization, or sentiment classification. There is research work

that uses a set of documents containing 101 languages, including Thai, to pretrain T5 mod-

els called Multilingual Text-to-Text Transfer Transformer (mT5) [11].

Due to the model’s ability to be used with various tasks, this model was used in our

research in both the question generation and question answering parts.

Figure 1. Model architecture of Transformer [2] that was used in the mT5 model.

2.5. The WangchanBERTa Model

WangchanBERTa [10] is a pretrained language model based on the Roberta [17] con-

figuration. The architecture of Roberta is the same as that of BERT in terms of using only

the Encoder part of the Transformer model as shown in Figure 2. WangchanBERTa was

pretrained on a large set of Thai documents including social media texts, news, and public

articles. In addition, the appropriate methods were applied to the texts before training.

The result showed that this model beat other Thai supported Transformer based models,

Figure 1. Model architecture of Transformer [2] that was used in the mT5 model.

Due to the model’s ability to be used with various tasks, this model was used in our
research in both the question generation and question answering parts.

2.5. The WangchanBERTa Model

WangchanBERTa [10] is a pretrained language model based on the Roberta [17] con-
figuration. The architecture of Roberta is the same as that of BERT in terms of using only
the Encoder part of the Transformer model as shown in Figure 2. WangchanBERTa was
pretrained on a large set of Thai documents including social media texts, news, and public
articles. In addition, the appropriate methods were applied to the texts before training.
The result showed that this model beat other Thai supported Transformer based models,
such as Multilingual BERT, on many downstream tasks. We used this model in question
answering part to compare with the mT5 model.

Appl. Sci. 2021, 11, 10267 5 of 17

Appl. Sci. 2021, 112, 267 5 of 17

such as Multilingual BERT, on many downstream tasks. We used this model in question

answering part to compare with the mT5 model.

Figure 2. Model architecture of BERT that uses the Encoder part of the Transformer model. (Note:

This architecture is also used in the Roberta model.)

3. Proposed Method

This section explains the components of the proposed QA framework. For example,

preprocessing methods for Thai texts, question-answer pairs generation, training strate-

gies of QA models and model evaluation. The components of the framework are illus-

trated in Figure 3.

Figure 3. Illustration of the proposed overall QA framework.

3.1. Preprocessing Methods for Thai Texts

All Thai texts must be preprocessed with appropriate methods before being used in

training and testing with the models. The first step is applying lowercase characters to the

text in case there are English characters in the text. The second step is normalizing the text

into the correct and standard form by removing duplicate characters, and changing the

Figure 2. Model architecture of BERT that uses the Encoder part of the Transformer model. (Note:
This architecture is also used in the Roberta model.)

3. Proposed Method

This section explains the components of the proposed QA framework. For exam-
ple, preprocessing methods for Thai texts, question-answer pairs generation, training
strategies of QA models and model evaluation. The components of the framework are
illustrated in Figure 3.

Appl. Sci. 2021, 112, 267 5 of 17

such as Multilingual BERT, on many downstream tasks. We used this model in question

answering part to compare with the mT5 model.

Figure 2. Model architecture of BERT that uses the Encoder part of the Transformer model. (Note:

This architecture is also used in the Roberta model.)

3. Proposed Method

This section explains the components of the proposed QA framework. For example,

preprocessing methods for Thai texts, question-answer pairs generation, training strate-

gies of QA models and model evaluation. The components of the framework are illus-

trated in Figure 3.

Figure 3. Illustration of the proposed overall QA framework.

3.1. Preprocessing Methods for Thai Texts

All Thai texts must be preprocessed with appropriate methods before being used in

training and testing with the models. The first step is applying lowercase characters to the

text in case there are English characters in the text. The second step is normalizing the text

into the correct and standard form by removing duplicate characters, and changing the

Figure 3. Illustration of the proposed overall QA framework.

3.1. Preprocessing Methods for Thai Texts

All Thai texts must be preprocessed with appropriate methods before being used
in training and testing with the models. The first step is applying lowercase characters
to the text in case there are English characters in the text. The second step is normaliz-
ing the text into the correct and standard form by removing duplicate characters, and
changing the order of word typing to the correct one. With this step, we could reduce
misspelled words in the datasets, which enables the model to work more accurately. We
used the implementation of PyThaiNLP’s normalization function [18] for normalizing
texts as described.

Appl. Sci. 2021, 11, 10267 6 of 17

3.2. Question-Answer Pairs Generation

The method for generating question-answer pairs is based on Raul Puri et al.’s
method [9], which consists of three steps: (1) Answer Generation, (2) Question Gener-
ation, and (3) Question Filtration. This method is able to generate a set of triplets which
include Context c, Question q and Answer a by using a given set of Articles A, pursuant to
Probability p(q, a|c) .

The difference of implementation between Raul Puri et al.’s work and our work is
the selection of the base models in the Question Generation pipeline. In our work, we
used the same type of models corresponding to the original work, WangchanBERTa for
BERT and mT5 for GPT-2, but our models support the Thai language. The summaries of
the different models are shown in Table 1. However, we used the mT5 model instead of
WangchanBERTa in the Answer Generation step because we found that the mT5 model
could generate more appropriate answers than WangchanBERTa.

Table 1. Difference of implementation between Raul Puri et al.’s work and ours in the Question
Generation pipeline.

Implementation Answer Generation Question
Generation Question Filtration

Raul Puri et al. BERT GPT-2 BERT
Our mT5-Large mT5-Large WangchanBERTa

3.2.1. Step 1: Answer Generation

Due to the difficulty and ambiguity of the Thai Language, extracting answer candi-
dates from heuristic rules is not sufficient to select the high-quality answers because natural
language processing tools for Thai do not perform correctly in every word or sentence;
sometimes word features from the given text are extracted incorrectly.

To overcome this limitation, the Answer Generation Model—p(a|c) was used to
select an appropriate word to be an Answer â of a sample. Unlike Raul Puri et al.’s
implementation, we fine-tuned the mT5-Large model by using Context c as an input of the
model to learn the answer distribution of the dataset as shown in Figure 4. The answer
was selected by the highest probability score.

Appl. Sci. 2021, 112, 267 6 of 17

order of word typing to the correct one. With this step, we could reduce misspelled words

in the datasets, which enables the model to work more accurately. We used the implemen-

tation of PyThaiNLP’s normalization function [18] for normalizing texts as described.

3.2. Question-Answer Pairs Generation

The method for generating question-answer pairs is based on Raul Puri et al.’s

method [9], which consists of three steps: (1) Answer Generation, (2) Question Generation,

and (3) Question Filtration. This method is able to generate a set of triplets which include

Context 𝒄, Question 𝒒 and Answer 𝒂 by using a given set of Articles 𝑨, pursuant to

Probability 𝒑(𝒒, 𝒂|𝒄).

The difference of implementation between Raul Puri et al.’s work and our work is

the selection of the base models in the Question Generation pipeline. In our work, we used

the same type of models corresponding to the original work, WangchanBERTa for BERT

and mT5 for GPT-2, but our models support the Thai language. The summaries of the

different models are shown in Table 1. However, we used the mT5 model instead of

WangchanBERTa in the Answer Generation step because we found that the mT5 model

could generate more appropriate answers than WangchanBERTa.

Table 1. Difference of implementation between Raul Puri et al.’s work and ours in the Question

Generation pipeline.

Implementation Answer Generation Question Generation Question Filtration

Raul Puri et al. BERT GPT-2 BERT

Our mT5-Large mT5-Large WangchanBERTa

3.2.1. Step 1: Answer Generation

Due to the difficulty and ambiguity of the Thai Language, extracting answer candi-

dates from heuristic rules is not sufficient to select the high-quality answers because nat-

ural language processing tools for Thai do not perform correctly in every word or sen-

tence; sometimes word features from the given text are extracted incorrectly.

To overcome this limitation, the Answer Generation Model—𝒑(𝒂|𝒄) was used to se-

lect an appropriate word to be an Answer 𝒂̂ of a sample. Unlike Raul Puri et al.’s imple-

mentation, we fine-tuned the mT5-Large model by using Context 𝒄 as an input of the

model to learn the answer distribution of the dataset as shown in Figure 4. The answer

was selected by the highest probability score.

Figure 4. The input and the output of the Answer Generation Model.

3.2.2. Step 2: Question Generation

In this step, the Question Generation Model—𝒑(𝒒|𝒂̂, 𝒄) was trained to a generated

question in accordance with a given context and answer. We fine-tuned the mT5-Large

model by using Context 𝒄 and selected Answer 𝒂̂ from Answer Generation Model as in-

puts as shown in Figure 5.

Figure 4. The input and the output of the Answer Generation Model.

3.2.2. Step 2: Question Generation

In this step, the Question Generation Model—p(q|â, c) was trained to a generated
question in accordance with a given context and answer. We fine-tuned the mT5-Large
model by using Context c and selected Answer â from Answer Generation Model as inputs
as shown in Figure 5.

Appl. Sci. 2021, 11, 10267 7 of 17

Appl. Sci. 2021, 112, 267 7 of 17

Figure 5. The inputs and the output of the Question Generation Model.

3.2.3. Step 3: Question Filtration

After obtaining a Generated Question 𝒒̂ from Question Generation Model and an

Answer 𝒂̂ from Answer Generation Model, we already obtained a triplet of generated

data (𝒄, 𝒒̂, 𝒂̂). Before using a sample from the generated data, we must verify if this triplet

is admissible. To achieve this, we trained a Question Filtration model in the question an-

swering task with labeled training data. After that, we applied the generated Question 𝒒̂

and Context 𝒄 to the Question Filtration model for predicting the Answer 𝒂̃ as shown in

Figure 6. We then compared the Answer 𝒂̃ from the model with Answer 𝒂̂ from the tri-

plet. If these two answers are equivalent, then this triplet is considered an admissible and

high-quality sample. Thus, the process of generating a question-answer pair is illustrated

in Figure 7.

Figure 6. The inputs and the output of the Question Filtration model.

Figure 7. Illustration of the Question Generation pipeline.

Figure 5. The inputs and the output of the Question Generation Model.

3.2.3. Step 3: Question Filtration

After obtaining a Generated Question q̂ from Question Generation Model and an
Answer â from Answer Generation Model, we already obtained a triplet of generated
data (c, q̂, â). Before using a sample from the generated data, we must verify if this triplet
is admissible. To achieve this, we trained a Question Filtration model in the question
answering task with labeled training data. After that, we applied the generated Question
q̂ and Context c to the Question Filtration model for predicting the Answer ã as shown
in Figure 6. We then compared the Answer ã from the model with Answer â from the
triplet. If these two answers are equivalent, then this triplet is considered an admissible and
high-quality sample. Thus, the process of generating a question-answer pair is illustrated
in Figure 7.

Appl. Sci. 2021, 112, 267 7 of 17

Figure 5. The inputs and the output of the Question Generation Model.

3.2.3. Step 3: Question Filtration

After obtaining a Generated Question 𝒒̂ from Question Generation Model and an

Answer 𝒂̂ from Answer Generation Model, we already obtained a triplet of generated

data (𝒄, 𝒒̂, 𝒂̂). Before using a sample from the generated data, we must verify if this triplet

is admissible. To achieve this, we trained a Question Filtration model in the question an-

swering task with labeled training data. After that, we applied the generated Question 𝒒̂

and Context 𝒄 to the Question Filtration model for predicting the Answer 𝒂̃ as shown in

Figure 6. We then compared the Answer 𝒂̃ from the model with Answer 𝒂̂ from the tri-

plet. If these two answers are equivalent, then this triplet is considered an admissible and

high-quality sample. Thus, the process of generating a question-answer pair is illustrated

in Figure 7.

Figure 6. The inputs and the output of the Question Filtration model.

Figure 7. Illustration of the Question Generation pipeline.

Figure 6. The inputs and the output of the Question Filtration model.

In this part, we selected to use WangchanBERTa as a base model because this model
is similar to Raul Puri et al.’s work that used BERT as a base model. Moreover, the
WangchanBERTa model is more proper to use in Thai because it was pretrained with Thai
documents. Before using it, we fine-tuned the question answering task to this model with
Thai QA datasets as we describe in Section 4.1.

In conclusion, we compared two types of generated data: (1) filtered generated data,
and (2) all generated data in the experiment. The ‘filtered generated data’ is the set of
samples (c, q̂, â) that passes the Question Filtration step while the ‘all generated data’ is
the set of triplets (c, q̂, â) after passing Question Generation step, whether it passes the
Question Filtration step or not.

Appl. Sci. 2021, 11, 10267 8 of 17

Appl. Sci. 2021, 112, 267 7 of 17

Figure 5. The inputs and the output of the Question Generation Model.

3.2.3. Step 3: Question Filtration

After obtaining a Generated Question 𝒒̂ from Question Generation Model and an

Answer 𝒂̂ from Answer Generation Model, we already obtained a triplet of generated

data (𝒄, 𝒒̂, 𝒂̂). Before using a sample from the generated data, we must verify if this triplet

is admissible. To achieve this, we trained a Question Filtration model in the question an-

swering task with labeled training data. After that, we applied the generated Question 𝒒̂

and Context 𝒄 to the Question Filtration model for predicting the Answer 𝒂̃ as shown in

Figure 6. We then compared the Answer 𝒂̃ from the model with Answer 𝒂̂ from the tri-

plet. If these two answers are equivalent, then this triplet is considered an admissible and

high-quality sample. Thus, the process of generating a question-answer pair is illustrated

in Figure 7.

Figure 6. The inputs and the output of the Question Filtration model.

Figure 7. Illustration of the Question Generation pipeline. Figure 7. Illustration of the Question Generation pipeline.

3.3. Question Answering Models Training

In QA model training, we selected two Transformer based models as a baseline QA
model: WangchanBERTa and mT5. In addition, we compared two training strategies for
fine-tuning QA models with generated data and real human-labeled data.

The first training strategy is the Sequence Strategy, which involves sequentially fine-
tuning the generated data, followed by the real human-labeled training data. The Sequence
Strategy process is illustrated in Figure 8.

Appl. Sci. 2021, 112, 267 8 of 17

In this part, we selected to use WangchanBERTa as a base model because this model

is similar to Raul Puri et al.’s work that used BERT as a base model. Moreover, the

WangchanBERTa model is more proper to use in Thai because it was pretrained with Thai

documents. Before using it, we fine-tuned the question answering task to this model with

Thai QA datasets as we describe in Section 4.1.

In conclusion, we compared two types of generated data: (1) filtered generated data,

and (2) all generated data in the experiment. The ‘filtered generated data’ is the set of

samples (𝒄, 𝒒̂, 𝒂̂) that passes the Question Filtration step while the ‘all generated data’ is

the set of triplets (𝒄, 𝒒̂, 𝒂̂) after passing Question Generation step, whether it passes the

Question Filtration step or not.

3.3. Question Answering Models Training

In QA model training, we selected two Transformer based models as a baseline QA

model: WangchanBERTa and mT5. In addition, we compared two training strategies for

fine-tuning QA models with generated data and real human-labeled data.

The first training strategy is the Sequence Strategy, which involves sequentially fine-

tuning the generated data, followed by the real human-labeled training data. The Se-

quence Strategy process is illustrated in Figure 8.

Figure 8. Illustration of the training flow of the Sequence Strategy.

The other training strategy is Merge Strategy, which merges the generated data and

the real training data, and fine-tunes at the same time, as illustrated in Figure 9.

Figure 9. Illustration of the training flow of the Merge Strategy.

Figure 8. Illustration of the training flow of the Sequence Strategy.

The other training strategy is Merge Strategy, which merges the generated data and
the real training data, and fine-tunes at the same time, as illustrated in Figure 9.

Appl. Sci. 2021, 11, 10267 9 of 17

Appl. Sci. 2021, 112, 267 8 of 17

In this part, we selected to use WangchanBERTa as a base model because this model

is similar to Raul Puri et al.’s work that used BERT as a base model. Moreover, the

WangchanBERTa model is more proper to use in Thai because it was pretrained with Thai

documents. Before using it, we fine-tuned the question answering task to this model with

Thai QA datasets as we describe in Section 4.1.

In conclusion, we compared two types of generated data: (1) filtered generated data,

and (2) all generated data in the experiment. The ‘filtered generated data’ is the set of

samples (𝒄, 𝒒̂, 𝒂̂) that passes the Question Filtration step while the ‘all generated data’ is

the set of triplets (𝒄, 𝒒̂, 𝒂̂) after passing Question Generation step, whether it passes the

Question Filtration step or not.

3.3. Question Answering Models Training

In QA model training, we selected two Transformer based models as a baseline QA

model: WangchanBERTa and mT5. In addition, we compared two training strategies for

fine-tuning QA models with generated data and real human-labeled data.

The first training strategy is the Sequence Strategy, which involves sequentially fine-

tuning the generated data, followed by the real human-labeled training data. The Se-

quence Strategy process is illustrated in Figure 8.

Figure 8. Illustration of the training flow of the Sequence Strategy.

The other training strategy is Merge Strategy, which merges the generated data and

the real training data, and fine-tunes at the same time, as illustrated in Figure 9.

Figure 9. Illustration of the training flow of the Merge Strategy. Figure 9. Illustration of the training flow of the Merge Strategy.

3.4. Model Evaluation

We used the F1 score and Exact Match (EM), which are widely used in span extraction
Question Answering tasks [19] to evaluate the performance of models. The Exact Match
measures how much the model is able to retrieve the exact ground truth span correctly in
the whole dataset. The F1 score is a harmonic mean of precision and recall of prediction
compared to the ground truth. Originally, to measure the precision and the recall, we count
the number of words found in both the prediction and the ground truth.

To calculate the F1 score, the equations below were used. TP refers to ‘True Positive’,
that counts the tokens appearing in both the prediction and the ground truth. FP refers to
‘False Positive’ that counts the tokens that appear only in the prediction. FN refers to ‘False
Negative’, which means the number of the tokens that appear only in the ground truth.
The F1 score of the dataset is an average of the F1 score of every sample.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2× Precision× Recall

Precision + Recall
(3)

F1 =
∑N

i=1 F1i

N
(4)

Due to the imperfections of the Thai word tokenizer, measuring at the word-level
might not be sufficient. In English, there are space separators between words that make
English easier to be tokenized into words. On the other hand, the Thai language is more
ambiguous as there is no space between words. Thus, the Word-level F1 depends on the
quality of the tokenizer used. To overcome this, we also calculated the F1 score at the
syllable-level.

The Syllable-level F1 score, the F1 score that calculates based on syllable tokens, is
a more appropriate metric than the Word-level F1 score for a language ambiguous to
segment because of the following reasons. First, due to the quality of word tokenizers,
using different word tokenizers may result in different F1 scores and cause the score to
be unable to be compared with other works. Secondly, because of the imperfection of
word tokenizers, there are still mistakes when segmenting some similar words. Lastly,
due to the ambiguity of the Thai language, some Thai words can be tokenized in many
ways, especially the proper nouns. In contrast, using syllables to calculate scores is less
ambiguous because there is only a way to segment a word into syllables that maintains a
unit of pronunciation.

In this experiment, we used the ‘newmm’ tokenizer [18] that is currently one of the
fastest and the most reliable word tokenizers for the Thai language. However, as shown
inthe example in Table 2, the ‘newmm’ tokenizer could not tokenize the word into a

Appl. Sci. 2021, 11, 10267 10 of 17

proper form. To address this problem, we evaluated the predictions with Syllable-level
F1 along with Word-level F1. Using syllable tokens to calculate the F1 score could obtain
a more accurate score to the linguistic word segmentation than word tokens because the
syllable tokenizer can extract overlapping words into pieces of syllables while the word
tokenizer cannot.

Table 2. Example of tokenization used in this work.

Appl. Sci. 2021, 112, 267 10 of 17

Table 2. Example of tokenization used in this work.

 Original Word Human-Tokenized
Use Word Tokenizer

(newmm)
Syllable

Tokenizer

Ground truth
มลายู

(Malay language
in short term)

มลายู มลายู ม | ลา | ยู

Prediction ภาษามลาย ู
(Malay language) ภาษา | มลายู ภาษามลาย ู

ภา | ษา | ม
| ลา | ยู

F1 Score 66.6 0.0 77.49

Similar to the English language, Thai words can have one or more syllables. Tokeniz-
ing a word into syllables means dividing the word by a unit of pronunciation that has one
vowel sound. For example, in Table 2, the word “�����” (Malay language in the short
term) can be pronounced as /mala:ju:/ which has three syllables as “� | �� | ��”; each
piece can be pronounced as /ma/, /la:/ and /ju:/ respectively. Another example is the word
“����” (language), which can be pronounced as /pa:sa:/. This word has two syllables as
“�� | ��”; each piece can be pronounced as /pa:/ and /sa:/ sequentially.

4. Experiment Setup
In this section, we describe the datasets used in the experiments, tools and parameter

setup as follows.

4.1. Datasets
There are two Thai QA corpora used in our experiments: Thai Wiki QA and iApp

Wiki QA. The dataset statistics of both datasets are shown in Table 3.
Thai Wiki QA [8] is a SQuAD-like dataset in the Thai language. It was used as a QA

competition dataset in Thailand National Software Contest (NSC), during 2018–2019. This
dataset consists of 15,000 question-answer pairs with contexts from Thai Wikipedia and
annotated by 15 native Thai speakers with many kinds of expertise and education levels.
The publisher of Thai Wiki QA also published 125,302 Thai Wikipedia articles to support
this dataset as an open domain QA task. In this study, we also used the published articles
for generating more question answering samples.

iApp Wiki QA (https://github.com/iapp-technology/iapp-wiki-qa-dataset (accessed
on 10 September 2021)) is a SQuAD-like dataset published by iApp Technology Company
Limited. This dataset includes 7242 question-answer pairs made with Thai Wikipedia ar-
ticles. However, the publisher of this dataset does not provide information about the data
annotation method.

Table 3. Datasets splitting for experiments.

Dataset No. of Training Set No. of Validation Set No. of Test Set
Thai Wiki QA 9045 1005 4950
iApp Wiki QA 5761 742 439

4.2. Tools and Parameter Setup
For all implementations of models including Question Generation and Question An-

swering parts, we used HuggingFace’s Transformers [20] for model developments and
training, including model architecture, model configuration and model weights. Hug-
gingFace also provided model training tools. All models in our research used default
training arguments provided by HuggingFace, except the learning rate, batch size, weight
decay, and number of epochs for training. We changed the value of the learning rate to 10ି଺, the weight decay to 0.01, and the number of epochs to 25. We also changed the value

Similar to the English language, Thai words can have one or more syllables. Tokenizing
a word into syllables means dividing the word by a unit of pronunciation that has one
vowel sound. For example, in Table 2, the word “

Appl. Sci. 2021, 112, 267 10 of 17

Table 2. Example of tokenization used in this work.

 Original Word Human-Tokenized
Use Word Tokenizer

(newmm)
Syllable

Tokenizer

Ground truth
มลายู

(Malay language
in short term)

มลายู มลายู ม | ลา | ยู

Prediction ภาษามลาย ู
(Malay language) ภาษา | มลายู ภาษามลาย ู

ภา | ษา | ม
| ลา | ยู

F1 Score 66.6 0.0 77.49

Similar to the English language, Thai words can have one or more syllables. Tokeniz-
ing a word into syllables means dividing the word by a unit of pronunciation that has one
vowel sound. For example, in Table 2, the word “�����” (Malay language in the short
term) can be pronounced as /mala:ju:/ which has three syllables as “� | �� | ��”; each
piece can be pronounced as /ma/, /la:/ and /ju:/ respectively. Another example is the word
“����” (language), which can be pronounced as /pa:sa:/. This word has two syllables as
“�� | ��”; each piece can be pronounced as /pa:/ and /sa:/ sequentially.

4. Experiment Setup
In this section, we describe the datasets used in the experiments, tools and parameter

setup as follows.

4.1. Datasets
There are two Thai QA corpora used in our experiments: Thai Wiki QA and iApp

Wiki QA. The dataset statistics of both datasets are shown in Table 3.
Thai Wiki QA [8] is a SQuAD-like dataset in the Thai language. It was used as a QA

competition dataset in Thailand National Software Contest (NSC), during 2018–2019. This
dataset consists of 15,000 question-answer pairs with contexts from Thai Wikipedia and
annotated by 15 native Thai speakers with many kinds of expertise and education levels.
The publisher of Thai Wiki QA also published 125,302 Thai Wikipedia articles to support
this dataset as an open domain QA task. In this study, we also used the published articles
for generating more question answering samples.

iApp Wiki QA (https://github.com/iapp-technology/iapp-wiki-qa-dataset (accessed
on 10 September 2021)) is a SQuAD-like dataset published by iApp Technology Company
Limited. This dataset includes 7242 question-answer pairs made with Thai Wikipedia ar-
ticles. However, the publisher of this dataset does not provide information about the data
annotation method.

Table 3. Datasets splitting for experiments.

Dataset No. of Training Set No. of Validation Set No. of Test Set
Thai Wiki QA 9045 1005 4950
iApp Wiki QA 5761 742 439

4.2. Tools and Parameter Setup
For all implementations of models including Question Generation and Question An-

swering parts, we used HuggingFace’s Transformers [20] for model developments and
training, including model architecture, model configuration and model weights. Hug-
gingFace also provided model training tools. All models in our research used default
training arguments provided by HuggingFace, except the learning rate, batch size, weight
decay, and number of epochs for training. We changed the value of the learning rate to 10ି଺, the weight decay to 0.01, and the number of epochs to 25. We also changed the value

” (Malay language in the short term)
can be pronounced as /mala:ju:/ which has three syllables as “

Appl. Sci. 2021, 112, 267 10 of 17

Table 2. Example of tokenization used in this work.

 Original Word Human-Tokenized
Use Word Tokenizer

(newmm)
Syllable

Tokenizer

Ground truth
มลายู

(Malay language
in short term)

มลายู มลายู ม | ลา | ยู

Prediction ภาษามลาย ู
(Malay language) ภาษา | มลายู ภาษามลาย ู

ภา | ษา | ม
| ลา | ยู

F1 Score 66.6 0.0 77.49

Similar to the English language, Thai words can have one or more syllables. Tokeniz-
ing a word into syllables means dividing the word by a unit of pronunciation that has one
vowel sound. For example, in Table 2, the word “�����” (Malay language in the short
term) can be pronounced as /mala:ju:/ which has three syllables as “� | �� | ��”; each
piece can be pronounced as /ma/, /la:/ and /ju:/ respectively. Another example is the word
“����” (language), which can be pronounced as /pa:sa:/. This word has two syllables as
“�� | ��”; each piece can be pronounced as /pa:/ and /sa:/ sequentially.

4. Experiment Setup
In this section, we describe the datasets used in the experiments, tools and parameter

setup as follows.

4.1. Datasets
There are two Thai QA corpora used in our experiments: Thai Wiki QA and iApp

Wiki QA. The dataset statistics of both datasets are shown in Table 3.
Thai Wiki QA [8] is a SQuAD-like dataset in the Thai language. It was used as a QA

competition dataset in Thailand National Software Contest (NSC), during 2018–2019. This
dataset consists of 15,000 question-answer pairs with contexts from Thai Wikipedia and
annotated by 15 native Thai speakers with many kinds of expertise and education levels.
The publisher of Thai Wiki QA also published 125,302 Thai Wikipedia articles to support
this dataset as an open domain QA task. In this study, we also used the published articles
for generating more question answering samples.

iApp Wiki QA (https://github.com/iapp-technology/iapp-wiki-qa-dataset (accessed
on 10 September 2021)) is a SQuAD-like dataset published by iApp Technology Company
Limited. This dataset includes 7242 question-answer pairs made with Thai Wikipedia ar-
ticles. However, the publisher of this dataset does not provide information about the data
annotation method.

Table 3. Datasets splitting for experiments.

Dataset No. of Training Set No. of Validation Set No. of Test Set
Thai Wiki QA 9045 1005 4950
iApp Wiki QA 5761 742 439

4.2. Tools and Parameter Setup
For all implementations of models including Question Generation and Question An-

swering parts, we used HuggingFace’s Transformers [20] for model developments and
training, including model architecture, model configuration and model weights. Hug-
gingFace also provided model training tools. All models in our research used default
training arguments provided by HuggingFace, except the learning rate, batch size, weight
decay, and number of epochs for training. We changed the value of the learning rate to 10ି଺, the weight decay to 0.01, and the number of epochs to 25. We also changed the value

”; each piece can
be pronounced as /ma/, /la:/ and /ju:/ respectively. Another example is the word “

Appl. Sci. 2021, 112, 267 10 of 17

Table 2. Example of tokenization used in this work.

 Original Word Human-Tokenized
Use Word Tokenizer

(newmm)
Syllable

Tokenizer

Ground truth
มลายู

(Malay language
in short term)

มลายู มลายู ม | ลา | ยู

Prediction ภาษามลาย ู
(Malay language) ภาษา | มลายู ภาษามลาย ู

ภา | ษา | ม
| ลา | ยู

F1 Score 66.6 0.0 77.49

Similar to the English language, Thai words can have one or more syllables. Tokeniz-
ing a word into syllables means dividing the word by a unit of pronunciation that has one
vowel sound. For example, in Table 2, the word “�����” (Malay language in the short
term) can be pronounced as /mala:ju:/ which has three syllables as “� | �� | ��”; each
piece can be pronounced as /ma/, /la:/ and /ju:/ respectively. Another example is the word
“����” (language), which can be pronounced as /pa:sa:/. This word has two syllables as
“�� | ��”; each piece can be pronounced as /pa:/ and /sa:/ sequentially.

4. Experiment Setup
In this section, we describe the datasets used in the experiments, tools and parameter

setup as follows.

4.1. Datasets
There are two Thai QA corpora used in our experiments: Thai Wiki QA and iApp

Wiki QA. The dataset statistics of both datasets are shown in Table 3.
Thai Wiki QA [8] is a SQuAD-like dataset in the Thai language. It was used as a QA

competition dataset in Thailand National Software Contest (NSC), during 2018–2019. This
dataset consists of 15,000 question-answer pairs with contexts from Thai Wikipedia and
annotated by 15 native Thai speakers with many kinds of expertise and education levels.
The publisher of Thai Wiki QA also published 125,302 Thai Wikipedia articles to support
this dataset as an open domain QA task. In this study, we also used the published articles
for generating more question answering samples.

iApp Wiki QA (https://github.com/iapp-technology/iapp-wiki-qa-dataset (accessed
on 10 September 2021)) is a SQuAD-like dataset published by iApp Technology Company
Limited. This dataset includes 7242 question-answer pairs made with Thai Wikipedia ar-
ticles. However, the publisher of this dataset does not provide information about the data
annotation method.

Table 3. Datasets splitting for experiments.

Dataset No. of Training Set No. of Validation Set No. of Test Set
Thai Wiki QA 9045 1005 4950
iApp Wiki QA 5761 742 439

4.2. Tools and Parameter Setup
For all implementations of models including Question Generation and Question An-

swering parts, we used HuggingFace’s Transformers [20] for model developments and
training, including model architecture, model configuration and model weights. Hug-
gingFace also provided model training tools. All models in our research used default
training arguments provided by HuggingFace, except the learning rate, batch size, weight
decay, and number of epochs for training. We changed the value of the learning rate to 10ି଺, the weight decay to 0.01, and the number of epochs to 25. We also changed the value

”
(language), which can be pronounced as /pa:sa:/. This word has two syllables as “

Appl. Sci. 2021, 112, 267 10 of 17

Table 2. Example of tokenization used in this work.

 Original Word Human-Tokenized
Use Word Tokenizer

(newmm)
Syllable

Tokenizer

Ground truth
มลายู

(Malay language
in short term)

มลายู มลายู ม | ลา | ยู

Prediction ภาษามลาย ู
(Malay language) ภาษา | มลายู ภาษามลาย ู

ภา | ษา | ม
| ลา | ยู

F1 Score 66.6 0.0 77.49

Similar to the English language, Thai words can have one or more syllables. Tokeniz-
ing a word into syllables means dividing the word by a unit of pronunciation that has one
vowel sound. For example, in Table 2, the word “�����” (Malay language in the short
term) can be pronounced as /mala:ju:/ which has three syllables as “� | �� | ��”; each
piece can be pronounced as /ma/, /la:/ and /ju:/ respectively. Another example is the word
“����” (language), which can be pronounced as /pa:sa:/. This word has two syllables as
“�� | ��”; each piece can be pronounced as /pa:/ and /sa:/ sequentially.

4. Experiment Setup
In this section, we describe the datasets used in the experiments, tools and parameter

setup as follows.

4.1. Datasets
There are two Thai QA corpora used in our experiments: Thai Wiki QA and iApp

Wiki QA. The dataset statistics of both datasets are shown in Table 3.
Thai Wiki QA [8] is a SQuAD-like dataset in the Thai language. It was used as a QA

competition dataset in Thailand National Software Contest (NSC), during 2018–2019. This
dataset consists of 15,000 question-answer pairs with contexts from Thai Wikipedia and
annotated by 15 native Thai speakers with many kinds of expertise and education levels.
The publisher of Thai Wiki QA also published 125,302 Thai Wikipedia articles to support
this dataset as an open domain QA task. In this study, we also used the published articles
for generating more question answering samples.

iApp Wiki QA (https://github.com/iapp-technology/iapp-wiki-qa-dataset (accessed
on 10 September 2021)) is a SQuAD-like dataset published by iApp Technology Company
Limited. This dataset includes 7242 question-answer pairs made with Thai Wikipedia ar-
ticles. However, the publisher of this dataset does not provide information about the data
annotation method.

Table 3. Datasets splitting for experiments.

Dataset No. of Training Set No. of Validation Set No. of Test Set
Thai Wiki QA 9045 1005 4950
iApp Wiki QA 5761 742 439

4.2. Tools and Parameter Setup
For all implementations of models including Question Generation and Question An-

swering parts, we used HuggingFace’s Transformers [20] for model developments and
training, including model architecture, model configuration and model weights. Hug-
gingFace also provided model training tools. All models in our research used default
training arguments provided by HuggingFace, except the learning rate, batch size, weight
decay, and number of epochs for training. We changed the value of the learning rate to 10ି଺, the weight decay to 0.01, and the number of epochs to 25. We also changed the value

/

Appl. Sci. 2021, 112, 267 10 of 17

Table 2. Example of tokenization used in this work.

 Original Word Human-Tokenized
Use Word Tokenizer

(newmm)
Syllable

Tokenizer

Ground truth
มลายู

(Malay language
in short term)

มลายู มลายู ม | ลา | ยู

Prediction ภาษามลาย ู
(Malay language) ภาษา | มลายู ภาษามลาย ู

ภา | ษา | ม
| ลา | ยู

F1 Score 66.6 0.0 77.49

Similar to the English language, Thai words can have one or more syllables. Tokeniz-
ing a word into syllables means dividing the word by a unit of pronunciation that has one
vowel sound. For example, in Table 2, the word “�����” (Malay language in the short
term) can be pronounced as /mala:ju:/ which has three syllables as “� | �� | ��”; each
piece can be pronounced as /ma/, /la:/ and /ju:/ respectively. Another example is the word
“����” (language), which can be pronounced as /pa:sa:/. This word has two syllables as
“�� | ��”; each piece can be pronounced as /pa:/ and /sa:/ sequentially.

4. Experiment Setup
In this section, we describe the datasets used in the experiments, tools and parameter

setup as follows.

4.1. Datasets
There are two Thai QA corpora used in our experiments: Thai Wiki QA and iApp

Wiki QA. The dataset statistics of both datasets are shown in Table 3.
Thai Wiki QA [8] is a SQuAD-like dataset in the Thai language. It was used as a QA

competition dataset in Thailand National Software Contest (NSC), during 2018–2019. This
dataset consists of 15,000 question-answer pairs with contexts from Thai Wikipedia and
annotated by 15 native Thai speakers with many kinds of expertise and education levels.
The publisher of Thai Wiki QA also published 125,302 Thai Wikipedia articles to support
this dataset as an open domain QA task. In this study, we also used the published articles
for generating more question answering samples.

iApp Wiki QA (https://github.com/iapp-technology/iapp-wiki-qa-dataset (accessed
on 10 September 2021)) is a SQuAD-like dataset published by iApp Technology Company
Limited. This dataset includes 7242 question-answer pairs made with Thai Wikipedia ar-
ticles. However, the publisher of this dataset does not provide information about the data
annotation method.

Table 3. Datasets splitting for experiments.

Dataset No. of Training Set No. of Validation Set No. of Test Set
Thai Wiki QA 9045 1005 4950
iApp Wiki QA 5761 742 439

4.2. Tools and Parameter Setup
For all implementations of models including Question Generation and Question An-

swering parts, we used HuggingFace’s Transformers [20] for model developments and
training, including model architecture, model configuration and model weights. Hug-
gingFace also provided model training tools. All models in our research used default
training arguments provided by HuggingFace, except the learning rate, batch size, weight
decay, and number of epochs for training. We changed the value of the learning rate to 10ି଺, the weight decay to 0.01, and the number of epochs to 25. We also changed the value

”; each piece can be pronounced as /pa:/ and /sa:/ sequentially.

4. Experiment Setup

In this section, we describe the datasets used in the experiments, tools and parameter
setup as follows.

4.1. Datasets

There are two Thai QA corpora used in our experiments: Thai Wiki QA and iApp
Wiki QA. The dataset statistics of both datasets are shown in Table 3.

Table 3. Datasets splitting for experiments.

Dataset No. of Training Set No. of Validation Set No. of Test Set

Thai Wiki QA 9045 1005 4950
iApp Wiki QA 5761 742 439

Thai Wiki QA [8] is a SQuAD-like dataset in the Thai language. It was used as a QA
competition dataset in Thailand National Software Contest (NSC), during 2018–2019. This
dataset consists of 15,000 question-answer pairs with contexts from Thai Wikipedia and
annotated by 15 native Thai speakers with many kinds of expertise and education levels.
The publisher of Thai Wiki QA also published 125,302 Thai Wikipedia articles to support
this dataset as an open domain QA task. In this study, we also used the published articles
for generating more question answering samples.

iApp Wiki QA (https://github.com/iapp-technology/iapp-wiki-qa-dataset (accessed
on 10 September 2021)) is a SQuAD-like dataset published by iApp Technology Company
Limited. This dataset includes 7242 question-answer pairs made with Thai Wikipedia
articles. However, the publisher of this dataset does not provide information about the
data annotation method.

https://github.com/iapp-technology/iapp-wiki-qa-dataset

Appl. Sci. 2021, 11, 10267 11 of 17

4.2. Tools and Parameter Setup

For all implementations of models including Question Generation and Question An-
swering parts, we used HuggingFace’s Transformers [20] for model developments and
training, including model architecture, model configuration and model weights. Hugging-
Face also provided model training tools. All models in our research used default training
arguments provided by HuggingFace, except the learning rate, batch size, weight decay,
and number of epochs for training. We changed the value of the learning rate to 10−6, the
weight decay to 0.01, and the number of epochs to 25. We also changed the value of batch
size to 12 if the trained model was WangchanBERTa, and to 4 if the trained model was
mT5-Base and mT5-Large.

We selected the number of batch size configurations based on technical reasons. Our
system, DGX A100 with NVIDIA A100 GPU, could use only a batch size of 4 for training
mT5-Base and mT5-Large models due to its enormous trainable parameters; 580 M for
mT5-Base and 1.2 B for mT5-Large, while the WangchanBERTa model has only 110 M of
parameters. Thus, we selected a batch size of 12 for training the WangchanBERTa model to
decrease disparities and make them comparable.

The other apparatus used in this research was PyThaiNLP, a Thai natural language
processing toolkit. We used this tool for applying text preprocessing before applying the
text to the models. In addition, this tool provides the Thai syllable tokenizer and text
tokenizers used in this research, such as the ‘newmm’ tokenizer, which is a fast and reliable
Thai word tokenizer.

5. Results

In this section, we report the results of the experiments in several aspects. First,
we explain the overall results by comparing every combination of QA models, training
strategies, and generated data. The overall results correspond to Tables 4 and 5, which are
the main results, and Table 6, which shows the dataset statistics of the augmented data.
Secondly, we explain the performance related to training strategies. Thirdly, we describe
the comparison of the generated data used. Fourthly, we present the comparison of base
QA models. Lastly, we explain the results of the Syllable-level F1 score and provide some
samples from the test set calculated Syllable-level F1 score.

Table 4. The experiment result of our method compared to baseline models of Thai Wiki QA. (EM, W-F1, and S-F1 refer to
Exact Match, word-level F1 and syllable-level F1 respectively. Boldface refers to the winner.).

Thai Wiki QA Baseline + Filtered Generated Pairs (FLT) + All Generated Pairs (ALL)

EM W-F1 S-F1 EM W-F1 S-F1 EM W-F1 S-F1

WangchanBERTa (WBT)

Sequence Strategy (SEQ)
43.92 70.73 74.71

45.90 73.35 77.55 46.48 74.40 78.60
Merge Strategy (MRG) 44.63 71.11 75.15 43.35 71.09 75.26

mT5-Base (mT5)

Sequence Strategy (SEQ)
64.14 78.24 80.35

70.42 83.64 85.29 69.03 83.02 84.74
Merge Strategy (MRG) 69.01 82.88 84.68 63.66 79.30 81.17

Table 5. The experiment result of our method compared to baseline models of iApp Wiki QA. (EM, W-F1, and S-F1 refer to
Exact Match, word-level F1 and syllable-level F1 respectively. Boldface refers to the winner.).

iApp Wiki QA Baseline + Filtered Generated Pairs (FLT) + All Generated Pairs (ALL)

EM W-F1 S-F1 EM W-F1 S-F1 EM W-F1 S-F1

WangchanBERTa (WBT)

Sequence Strategy (SEQ)
30.58 69.68 71.81

32.88 71.81 74.42 33.15 72.98 75.14
Merge Strategy (MRG) 29.77 69.59 71.97 31.66 70.37 72.82

mT5-Base (mT5)

Sequence Strategy (SEQ)
29.36 63.46 63.71

56.02 81.31 82.58 58.05 81.97 83.15
Merge Strategy (MRG) 57.10 81.42 82.57 53.45 79.53 80.81

Appl. Sci. 2021, 11, 10267 12 of 17

Table 6. Dataset statistics after combining with generated data.

Datasets No. Training Set
No. Training Set

+ Filtered Generated
Pairs

No. Training Set
+ All Generated

Pairs

Thai Wiki QA 9045 62,610 (+592.2%) 119,813 (+1224.6%)
iApp Wiki QA 5761 59,326 (+929.8%) 116,529 (+1922.7%)

5.1. Overall Results

The experiment was conducted based on two Thai QA datasets: Thai Wiki QA and
iApp Wiki QA. We compared the results in three aspects: quality of the synthesized
question-answer pairs, training strategies, and baseline models used in this experiment—
WangchanBERTa and mT5-Base. Furthermore, we also evaluated the results in exact match
(EM), word-level F1 (W-F1) and Syllable-level F1 (S-F1). The results are summarized in
Table 4 for Thai Wiki QA and Table 5 for iApp Wiki QA. The training set statistics, including
the generated dataset, are illustrated in Table 6.

In the result description, we created the combination name for readily referring to the
tested model. The combination name consists of three parts: the QA models, training strate-
gies, and augmented data used. The QA models have two possible types: WangchanBERTa
(WBT) and mT5-Base (mT5). Training strategies have two possible strategies: Sequence
(SEQ) and Merge (MRG). Lastly, the generated data used in the experiments have two
types: Filtered (FLT) and ALL. All three parts connect together with the dash symbol
(-). For example, mT5-SEQ-FLT refers to using the mT5 model fine-tuned with filtered
generated data and the Sequence strategy.

We compared the results with the baseline models which are the question answering
models that were trained with real human-labeled data only. In most cases, using generated
data could improve the performance of every metric. In the Thai Wiki QA dataset, using
the mT5-SEQ-FLT provided the best performance combination that beat the result of the
baseline of mT5-Base by 6.28%, 5.14%, and 4.94% for EM, word-level F1, and syllable-level
F1, respectively. In the iApp Wiki QA dataset, the best performance combination used the
mT5-SEQ-ALL, which beat the baseline result of mT5-Base by 28.69%, 18.51%, and 19.44%
EM, word-level F1, and syllable-level F1, respectively. Using all generated data with iApp
Wiki QA could slightly improve performance compared to using the filtered generated
data because the human-labeled training set of iApp Wiki QA has a smaller number of
samples, compared to those of Thai Wiki QA, and it needs more data to fine-tune. However,
the results between using the filtered generated pairs and all the generated pairs are not
much different. We can conclude that using mT5-SEQ-FLT is the best combination that
outperforms both datasets.

5.2. Comparison of the Training Strategies

The difference between the two training strategies is the fine-tuning steps. Sequence
Strategy is sequentially fine-tuned on the generated data before the real data while Merge
Strategy fine-tunes the combination of the generated data and the real data at the same
time. As a result, in most combinations, using Sequence Strategy explicitly outperforms
Merge Strategy, as shown in Tables 4 and 5 in the Sequence Strategy rows.

5.3. Comparison of Using Different Qualities of the Generated Question-Answer Pairs

In our trial, fine-tuning with the filtered generated pairs versus doing so with all gen-
erated pairs has no difference between the numbers of the outperforming cases. However,
if we consider only the Sequence Strategy cases, the number of the outperforming cases
of fine-tuning with the filtered generated pairs is greater than that of fine-tuning with
all generated pairs. We can therefore conclude that using the filtered generated pairs is
preferrable compared to using all generated pairs.

However, according to Table 5, which shows the result of the mT5-Base model with
the Sequence Strategy, using all generated data (mT5-SEQ-ALL) is slightly better than using

Appl. Sci. 2021, 11, 10267 13 of 17

the filtered generated data (mT5-SEQ-FLT), but the number of training samples is around
twice as much, which consumes longer training time. In this case, we can summarize that
using the filtered generated data is better than using all generated data in terms of the
training duration.

5.4. Comparison of the Baseline Models

In the baseline experiments, the tables show that the results of outperforming models
are different depending on the datasets. However, when we apply our method, as listed in
Tables 4 and 5 in the columns “+ Filtered Generated Pairs” and “+ All Generated Pairs,”
compared to the column “Baseline,” the mT5-Base model outperforms WanchanBERTa in
all cases.

5.5. Comparison of the Syllable-Level F1

From Tables 4 and 5, the syllable-level F1 scores of all combinations are greater than
the word-level F1 score. The mT5-SEQ-FLT in Thai Wiki QA has a syllable-level F1 score
greater than the word-level F1 score by 1.65%, and the mT5-SEQ-ALL in iApp Wiki QA has
a syllable-level F1 score greater than the word-level F1 score by 1.18%. The reason is that
there are some predicted answers and/or ground truth answers that the word tokenizer
used in the F1 score calculation does not perform correctly due to inability of tokenizer itself.
This results in some overlapping words not counted to calculate the F1 score. However,
the syllable tokenizer can tokenize those overlapping words into syllables and is able to
calculate a nearer-correct F1 score. We provide some examples of the predicted answer and
ground truth answer in Table 7, showing that the syllable F1 score gives a more accurate
result than the word-level F1 score.

Table 7. Examples of the predicted answer and the ground truth answer that show the syllable-level
F1; all results get 0 of the word-level F1.

Appl. Sci. 2021, 112, 267 13 of 17

5.3. Comparison of Using Different Qualities of the Generated Question-Answer Pairs
In our trial, fine-tuning with the filtered generated pairs versus doing so with all gen-

erated pairs has no difference between the numbers of the outperforming cases. However,
if we consider only the Sequence Strategy cases, the number of the outperforming cases
of fine-tuning with the filtered generated pairs is greater than that of fine-tuning with all
generated pairs. We can therefore conclude that using the filtered generated pairs is pre-
ferrable compared to using all generated pairs.

However, according to Table 5, which shows the result of the mT5-Base model with
the Sequence Strategy, using all generated data (mT5-SEQ-ALL) is slightly better than us-
ing the filtered generated data (mT5-SEQ-FLT), but the number of training samples is
around twice as much, which consumes longer training time. In this case, we can summa-
rize that using the filtered generated data is better than using all generated data in terms
of the training duration.

5.4. Comparison of the Baseline Models
In the baseline experiments, the tables show that the results of outperforming models

are different depending on the datasets. However, when we apply our method, as listed
in Tables 4 and 5 in the columns “+ Filtered Generated Pairs” and “+ All Generated Pairs,”
compared to the column “Baseline,” the mT5-Base model outperforms WanchanBERTa in
all cases.

5.5. Comparison of the Syllable-Level F1
From Tables 4 and 5, the syllable-level F1 scores of all combinations are greater than

the word-level F1 score. The mT5-SEQ-FLT in Thai Wiki QA has a syllable-level F1 score
greater than the word-level F1 score by 1.65%, and the mT5-SEQ-ALL in iApp Wiki QA
has a syllable-level F1 score greater than the word-level F1 score by 1.18%. The reason is
that there are some predicted answers and/or ground truth answers that the word to-
kenizer used in the F1 score calculation does not perform correctly due to inability of to-
kenizer itself. This results in some overlapping words not counted to calculate the F1
score. However, the syllable tokenizer can tokenize those overlapping words into sylla-
bles and is able to calculate a nearer-correct F1 score. We provide some examples of the
predicted answer and ground truth answer in Table 7, showing that the syllable F1 score
gives a more accurate result than the word-level F1 score.

Table 7. Examples of the predicted answer and the ground truth answer that show the syllable-level
F1; all results get 0 of the word-level F1.

Predicted Answer Ground Truth Answer Syllable-Level F1
มหาวทิยาลัยรามคําแหง

(Ramkhamhaeng University)
รามคําแหง

(Ramkhamhaeng)
66.67

คณะนิติศาสตร
(Faculty of Law)

นิติศาสตร
(Law)

85.71

คมนาคม
(Transportation)

กระทรวงคมนาคม
(Ministry of Transportation)

75.00

ไมลมลุกขนาดเล็ก
(Small biennial plant)

ลมลุก
(Biennial)

57.14

6. Discussion
In this section we further analyze the improvement of the models in detail. First, we

explain the analysis of model improvements by using the distribution of the word-level
F1 score of both datasets. Secondly, we report the model performance by question types.
Questions are classified by keyword extraction from Table 8. The results of each question

6. Discussion

In this section we further analyze the improvement of the models in detail. First, we
explain the analysis of model improvements by using the distribution of the word-level
F1 score of both datasets. Secondly, we report the model performance by question types.
Questions are classified by keyword extraction from Table 8. The results of each question
type are illustrated in Tables 9 and 10. Lastly, we present the comparison of word tokenizers
in terms of word-level F1 score calculation in Tables 11 and 12.

Appl. Sci. 2021, 11, 10267 14 of 17

Table 8. Example of question word categories in Thai.

Appl. Sci. 2021, 112, 267 15 of 17

6.2. Model Performance Analysis by Question Types
From the questions in the datasets, they can be classified into six groups based on the

types of answers as follows.
• Who: a group of questions that requires an answer as a person name
• What: a group of questions that requires an answer as a thing or a name of things
• Where: a group of questions that requires an answer as a name of places, for instance,

countries, provinces, or states
• Year: a group of questions that requires an answer as a year, either Common Era

(C.E.) or Buddhist Era (B.E.)
• Date: a group of questions that requires an answer as a date
• Number: a group of questions that requires an answer as a number

We classified questions in a test set by keyword detection. The keywords that were
used to categorize the questions are listed in Table 8. We next evaluated the model per-
formance of each question type. The results from both datasets are listed in Tables 9 and
10. The results show that the best combination of both datasets can raise the performance
above the baseline in most question types, except the question type ‘Year’ of iApp Wiki
QA, which has the Word-level F1 score slightly lower than the baseline. After investigat-
ing, we found that there were only eight samples in the group ‘Year’ of iApp Wiki QA,
which made this group of samples sensitive to the change of F1 score. However, the Syl-
lable-level F1 score of this group improved after applying our method. This indicates that
the best combination of iApp-Wiki-QA (mT5-SEQ-ALL) could predict more accurate an-
swers, compared to the baseline model. This is further evidence that our method can in-
crease the QA model performance.

Table 8. Example of question word categories in Thai.

Who What Where Year Date Number
ใคร

(Who)
อะไร

(What)
ที่ไหน

(Where)
ปใด

(What year)
วันที่เทาใด

(Which date)
เทาไร

(How many/much)
คนใด

(Which one)
...ใด

(What/Which …)
ที่ใด

(Where)
ปไหน

(What year)
วันใด

(Which date)
เทาใด

(How many/much)

คนไหน
(Which one)

...ไหน
(What/Which …)

ประเทศใด
(Which country)

พ.ศ. ใด
(What B.E. year)

เม่ือใด
(When)

ก่ี...
(How many/much

of)

 จังหวดัใด
(Which province)

ค.ศ. ใด
(What C.E. year)

Table 9. Model performance evaluated on the Thai Wiki QA dataset classified by question types.

Question Type mT5 Baseline mT5-SEQ-FLT % of Improvement
 EM W-F1 S-F1 EM W-F1 S-F1 EM W-F1 S-F1

Overall Performance 64.14 78.24 80.35 70.42 83.64 85.29 9.79 6.90 6.15
Who 69.16 82.03 81.40 73.05 85.87 85.30 5.62 4.68 4.79
What 62.90 77.45 80.48 68.82 82.89 85.24 9.41 7.02 5.91

Where 67.54 83.23 83.02 76.61 88.82 88.93 13.42 6.72 7.12
Year 76.04 83.06 85.03 83.83 88.75 89.53 10.24 6.85 5.29
Date 58.88 79.53 79.21 72.08 90.13 89.43 22.42 13.33 12.90

Number 61.99 74.14 76.67 68.19 78.94 81.32 10.00 6.47 6.07

Table 9. Model performance evaluated on the Thai Wiki QA dataset classified by question types.

Question Type mT5 Baseline mT5-SEQ-FLT % of Improvement

EM W-F1 S-F1 EM W-F1 S-F1 EM W-F1 S-F1

Overall
Performance 64.14 78.24 80.35 70.42 83.64 85.29 9.79 6.90 6.15

Who 69.16 82.03 81.40 73.05 85.87 85.30 5.62 4.68 4.79
What 62.90 77.45 80.48 68.82 82.89 85.24 9.41 7.02 5.91

Where 67.54 83.23 83.02 76.61 88.82 88.93 13.42 6.72 7.12
Year 76.04 83.06 85.03 83.83 88.75 89.53 10.24 6.85 5.29
Date 58.88 79.53 79.21 72.08 90.13 89.43 22.42 13.33 12.90

Number 61.99 74.14 76.67 68.19 78.94 81.32 10.00 6.47 6.07

Table 10. Model performance evaluated on the iApp Wiki QA dataset classified by question types.

Question Type mT5 Baseline mT5-SEQ-ALL % of Improvement

EM W-F1 S-F1 EM W-F1 S-F1 EM W-F1 S-F1

Overall
Performance 29.36 63.46 63.71 58.05 81.97 83.15 97.72 29.17 30.51

Who 48.57 67.03 66.30 65.71 86.10 87.77 35.29 28.45 32.38
What 32.18 65.00 66.56 56.02 81.03 82.64 74.08 24.66 24.16

Where 33.33 68.22 71.85 55.56 79.72 85.17 66.69 16.85 18.54
Year 62.50 84.17 79.17 62.50 82.08 81.25 0.00 −2.48 2.63
Date 9.68 63.91 58.22 62.90 87.97 86.43 549.79 37.64 48.45

Number 13.83 55.49 53.70 60.64 80.90 80.76 338.47 45.79 50.39

Table 11. The result of Word-level F1 with different types of tokenizers of the Thai Wiki QA dataset.

Model ‘Newmm’
(Word-Level F1)

AttaCut
(Word-Level F1)

Syllable Tokenizer
(Syllable-Level F1)

WangchanBERTa
Baseline 70.73 64.46 74.71

mT5 Baseline 78.24 73.58 80.35
mT5-SEQ-FLT 83.64 78.98 85.29

Appl. Sci. 2021, 11, 10267 15 of 17

Table 12. The result of Word-level F1 with different types of tokenizers of the iApp Wiki QA dataset.

Model ‘Newmm’
(Word-Level F1)

AttaCut
(Word-Level F1)

Syllable Tokenizer
(Syllable-Level F1)

WangchanBERTa
Baseline 69.68 65.42 71.81

mT5 Baseline 63.46 59.75 63.71
mT5-SEQ-ALL 81.97 78.87 83.15

6.1. Analysis of Model Improvement

To investigate what the improvement to the result is, we use the charts of the F1
score distribution to visualize how the score increases. We report only the result of the
mT5-Base models because the results from Tables 4 and 5 show that the mT5-Base model
outperforms the WangchanBERTa model. Based on the Thai Wiki QA dataset illustrated in
Figure 10, the result of the baseline of the mT5-Base model (a) shows that there are more
than 500 erroneous samples of F1 = 0, which means that those predicted answers are not
overlapping with the ground truth answers. After using the combination mT5-SEQ-FLT
(b), the result shows that the number of the perfect answers of F1 = 100 increases while the
number of samples of F1 = 0 decreases. This is a proof that this method can increase the
QA model performance.

Appl. Sci. 2021, 112, 267 14 of 17

type are illustrated in Tables 9 and 10. Lastly, we present the comparison of word tokeniz-

ers in terms of word-level F1 score calculation in Tables 11 and 12.

6.1. Analysis of Model Improvement

To investigate what the improvement to the result is, we use the charts of the F1 score

distribution to visualize how the score increases. We report only the result of the mT5-

Base models because the results from Tables 4 and 5 show that the mT5-Base model out-

performs the WangchanBERTa model. Based on the Thai Wiki QA dataset illustrated in

Figure 10, the result of the baseline of the mT5-Base model (a) shows that there are more

than 500 erroneous samples of F1 = 0, which means that those predicted answers are not

overlapping with the ground truth answers. After using the combination mT5-SEQ-FLT

(b), the result shows that the number of the perfect answers of F1 = 100 increases while the

number of samples of F1 = 0 decreases. This is a proof that this method can increase the

QA model performance.

(a) (b)

Figure 10. F1 distribution of the Thai Wiki QA dataset: (a) the result from the mT5-Base baseline model, and (b) the result

from the combination mT5-SEQ-FLT of the Thai Wiki QA dataset.

The F1 distribution of the iApp Wiki QA dataset is illustrated in Figure 11. It repre-

sents a similar result to that of Thai Wiki QA; after applying the generated data and the

Sequence strategy with mT5-Base model (mT5-SEQ-ALL), the number of perfect answers

of F1 = 100 increases while the number of F1 = 0 cases decreases. This is also a proof that

this method can increase the QA model performance even though the dataset is changed.

(a) (b)

Figure 11. F1 distribution of the iApp Wiki QA dataset: (a) the result from the mT5-Base baseline model, and (b) the result

from the combination mT5-SEQ-ALL of the iApp Wiki QA dataset.

Figure 10. F1 distribution of the Thai Wiki QA dataset: (a) the result from the mT5-Base baseline model, and (b) the result
from the combination mT5-SEQ-FLT of the Thai Wiki QA dataset.

The F1 distribution of the iApp Wiki QA dataset is illustrated in Figure 11. It represents
a similar result to that of Thai Wiki QA; after applying the generated data and the Sequence
strategy with mT5-Base model (mT5-SEQ-ALL), the number of perfect answers of F1 = 100
increases while the number of F1 = 0 cases decreases. This is also a proof that this method
can increase the QA model performance even though the dataset is changed.

Appl. Sci. 2021, 112, 267 14 of 17

type are illustrated in Tables 9 and 10. Lastly, we present the comparison of word tokeniz-

ers in terms of word-level F1 score calculation in Tables 11 and 12.

6.1. Analysis of Model Improvement

To investigate what the improvement to the result is, we use the charts of the F1 score

distribution to visualize how the score increases. We report only the result of the mT5-

Base models because the results from Tables 4 and 5 show that the mT5-Base model out-

performs the WangchanBERTa model. Based on the Thai Wiki QA dataset illustrated in

Figure 10, the result of the baseline of the mT5-Base model (a) shows that there are more

than 500 erroneous samples of F1 = 0, which means that those predicted answers are not

overlapping with the ground truth answers. After using the combination mT5-SEQ-FLT

(b), the result shows that the number of the perfect answers of F1 = 100 increases while the

number of samples of F1 = 0 decreases. This is a proof that this method can increase the

QA model performance.

(a) (b)

Figure 10. F1 distribution of the Thai Wiki QA dataset: (a) the result from the mT5-Base baseline model, and (b) the result

from the combination mT5-SEQ-FLT of the Thai Wiki QA dataset.

The F1 distribution of the iApp Wiki QA dataset is illustrated in Figure 11. It repre-

sents a similar result to that of Thai Wiki QA; after applying the generated data and the

Sequence strategy with mT5-Base model (mT5-SEQ-ALL), the number of perfect answers

of F1 = 100 increases while the number of F1 = 0 cases decreases. This is also a proof that

this method can increase the QA model performance even though the dataset is changed.

(a) (b)

Figure 11. F1 distribution of the iApp Wiki QA dataset: (a) the result from the mT5-Base baseline model, and (b) the result

from the combination mT5-SEQ-ALL of the iApp Wiki QA dataset.
Figure 11. F1 distribution of the iApp Wiki QA dataset: (a) the result from the mT5-Base baseline model, and (b) the result
from the combination mT5-SEQ-ALL of the iApp Wiki QA dataset.

Appl. Sci. 2021, 11, 10267 16 of 17

6.2. Model Performance Analysis by Question Types

From the questions in the datasets, they can be classified into six groups based on the
types of answers as follows.

• Who: a group of questions that requires an answer as a person name
• What: a group of questions that requires an answer as a thing or a name of things
• Where: a group of questions that requires an answer as a name of places, for instance,

countries, provinces, or states
• Year: a group of questions that requires an answer as a year, either Common Era (C.E.)

or Buddhist Era (B.E.)
• Date: a group of questions that requires an answer as a date
• Number: a group of questions that requires an answer as a number

We classified questions in a test set by keyword detection. The keywords that were used to
categorize the questions are listed in Table 8. We next evaluated the model performance of each
question type. The results from both datasets are listed in Tables 9 and 10. The results show
that the best combination of both datasets can raise the performance above the baseline in most
question types, except the question type ‘Year’ of iApp Wiki QA, which has the Word-level F1
score slightly lower than the baseline. After investigating, we found that there were only eight
samples in the group ‘Year’ of iApp Wiki QA, which made this group of samples sensitive
to the change of F1 score. However, the Syllable-level F1 score of this group improved after
applying our method. This indicates that the best combination of iApp-Wiki-QA (mT5-SEQ-
ALL) could predict more accurate answers, compared to the baseline model. This is further
evidence that our method can increase the QA model performance.

6.3. Word Tokenizer Choices

In this work, we used ‘newmm’ for calculating the Word-level F1 score. However, there
are several choices of Thai word tokenizers that can be used. We conducted experiments to
compare two Thai word tokenizers; we selected AttaCut [21], a deep learning-based word
tokenizer for Thai, to compare with ‘newmm’. The results are shown in Tables 11 and 12.

From the results, the Word-level F1 scores from ‘newmm’ are higher than the Word-
level F1 scores from AttaCut in all cases. This means that the AttaCut tokenizer has more
tokenization mistakes on ambiguous words than ‘newmm’, which caused the drop of F1
scores. This proves that changing tokenizers may result in different Word-level F1 scores.
In contrast, using Syllable-level F1 can address this problem by tokenizing a word into
syllables, which is less ambiguous.

7. Conclusions

In this paper, we propose to employ transformer-based models for Thai QA, which
aims to improve the performance of the Thai question answering model. The limitation of
the low resource Thai QA corpora can be overcome by using a data generation composed of
three steps: answer generation, question generation, and question filtration. To utilize the
generated question-answer pairs, different fine-tuning strategies were investigated. Apart
from the model improvement, all challenges in Thai were addressed in data preprocessing.
We also propose a new evaluation metric at the syllable-level, which is more suitable for
the Thai language because there is no ambiguity in syllable tokenization. We conducted
experiments on two Thai question answering datasets, the Thai Wiki QA and the iApp
Wiki QA. The results showed that the generated data can explicitly enhance the model
performance from 78.24 to 83.64 in Thai Wiki QA and 63.46 to 81.97 in iApp Wiki QA, in
terms of the Word-level F1 score.

However, a limitation of our work is that our data generation technique is appropriate
with a span-extraction question answering task; the answer of the given question is part of
the given context only.

Appl. Sci. 2021, 11, 10267 17 of 17

Author Contributions: Conceptualization, P.P.; methodology, P.P.; software, P.P.; validation, P.V.;
data curation, P.P.; writing—original draft preparation, P.P.; writing—review and editing, P.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer

learning with a unified text-to-text transformer. arXiv 2019, arXiv:1910.10683.
2. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you

need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

3. Dodge, J.; Sap, M.; Marasovic, A.; Agnew, W.; Ilharco, G.; Groeneveld, D.; Gardner, M. Documenting the english colossal clean
crawled corpus. arXiv 2021, arXiv:2104.08758.

4. Rajpurkar, P.; Zhang, J.; Lopyrev, K.; Liang, P. Squad: 100,000+ questions for machine comprehension of text. arXiv 2016,
arXiv:1606.05250.

5. Decha, H.; Patanukhom, K. Development of thai question answering system. In Proceedings of the 3rd International Conference
on Communication and Information Processing, Tokyo, Japan, 24–26 November 2017; pp. 124–128.

6. Seo, M.; Kembhavi, A.; Farhadi, A.; Hajishirzi, H. Bidirectional attention flow for machine comprehension. arXiv 2016,
arXiv:1611.01603.

7. Lapchaicharoenkit, T.; Vateekul, P. Machine Reading Comprehension on Multiclass Questions Using Bidirectional Attention Flow
Models with Contextual Embeddings and Transfer Learning in Thai Corpus. In Proceedings of the 8th International Conference
on Computer and Communications Management, Singapore, 17–19 July 2020; pp. 3–8.

8. Trakultaweekoon, K.; Thaiprayoon, S.; Palingoon, P.; Rugchatjaroen, A. The first wikipedia questions and factoid answers corpus
in the thai language. In Proceedings of the 2019 14th International Joint Symposium on Artificial Intelligence and Natural
Language Processing (iSAI-NLP), Chiang Mai, Thailand, 7–9 November 2019; pp. 1–4.

9. Puri, R.; Spring, R.; Patwary, M.; Shoeybi, M.; Catanzaro, B. Training question answering models from synthetic data. arXiv 2020,
arXiv:2002.09599.

10. Lowphansirikul, L.; Polpanumas, C.; Jantrakulchai, N.; Nutanong, S. WangchanBERTa: Pretraining transformer-based Thai
Language Models. arXiv 2021, arXiv:2101.09635.

11. Xue, L.; Constant, N.; Roberts, A.; Kale, M.; Al-Rfou, R.; Siddhant, A.; Barua, A.; Raffel, C. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv 2020, arXiv:2010.11934.

12. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
13. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
14. Joshi, M.; Chen, D.; Liu, Y.; Weld, D.S.; Zettlemoyer, L.; Levy, O. Spanbert: Improving pre-training by representing and predicting

spans. Trans. Assoc. Comput. Linguist. 2020, 8, 64–77. [CrossRef]
15. Dhingra, B.; Pruthi, D.; Rajagopal, D. Simple and effective semi-supervised question answering. arXiv 2018, arXiv:1804.00720.
16. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI

Blog 2019, 1, 9.
17. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
18. Phatthiyaphaibun, W.; Suriyawongkul, A.; Chormai, P.; Lowphansirikul, L.; Siwatammarat, P.; Tanruangporn, P.P.; Charoen-

chainetr, P.; Udomcharoenchaikit, C.; Janthong, A.; Chaovavanichet, K.; et al. PyThaiNLP/pythainlp: PyThaiNLP v2.3.2 Release!
Zenodo 2021. [CrossRef]

19. Zeng, C.; Li, S.; Li, Q.; Hu, J.; Hu, J. A Survey on Machine Reading Comprehension—Tasks, Evaluation Metrics and Benchmark
Datasets. Appl. Sci. 2020, 10, 7640. [CrossRef]

20. Wolf, T.; Chaumond, J.; Debut, L.; Sanh, V.; Delangue, C.; Moi, A.; Cistac, P.; Funtowicz, M.; Davison, J.; Shleifer, S. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16–20 November 2020; pp. 38–45.

21. Chormai, P.; Prasertsom, P.; Rutherford, A. AttaCut: A Fast and Accurate Neural Thai Word Segmenter. arXiv 2019,
arXiv:1911.07056.

http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1162/tacl_a_00300
http://doi.org/10.5281/zenodo.5252483
http://doi.org/10.3390/app10217640

	Introduction
	Literature Review
	Recent Research in Question Answering
	Researches in Thai Question Answering
	Data Augmentation Methods
	The Text-to-Text Transfer Transformer Model
	The WangchanBERTa Model

	Proposed Method
	Preprocessing Methods for Thai Texts
	Question-Answer Pairs Generation
	Step 1: Answer Generation
	Step 2: Question Generation
	Step 3: Question Filtration

	Question Answering Models Training
	Model Evaluation

	Experiment Setup
	Datasets
	Tools and Parameter Setup

	Results
	Overall Results
	Comparison of the Training Strategies
	Comparison of Using Different Qualities of the Generated Question-Answer Pairs
	Comparison of the Baseline Models
	Comparison of the Syllable-Level F1

	Discussion
	Analysis of Model Improvement
	Model Performance Analysis by Question Types
	Word Tokenizer Choices

	Conclusions
	References

