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Abstract: Muscle architectural parameters play a crucial role in the rate of force development,
strength, and sports performance. On the other hand, deteriorated muscle architectural parameters
are associated with injuries, sarcopenia, mortality, falls, and fragility. With the development of
technology, exergames have emerged as a complementary tool for physical therapy programs. The
PRISMA 2020 statement was followed during the systematic review and meta-analysis. CENTRAL,
CINAHL, PROQUEST, PubMed, and OpenGrey databases were searched last time on 22 September
2021. In total, five controlled trials were included in the systematic review. Twelve weeks of virtual
dance exercise (Dance Central game for Xbox 360®) showed a medium effect on the improvement of
hamstrings (g = 0.55, 95% CI (−0.03, 1.14), I2 = 0%) and the quadriceps femoris muscle cross-sectional
area (g = 0.58, 95% CI (0.1, 1.00), I2 = 0%) in community-dwelling older women. Additionally, a four-
week virtual balance-training program (the ProKin System) led to significant increments in the cross-
sectional areas of individual paraspinal muscles (14.55–46.81%). However, previously investigated
exergame programs did not show any medium or large effects on the architectural parameters of the
medial gastrocnemius muscle in community-dwelling older women. Distinct exergame programs
can be used as a complementary therapy for different prevention and rehabilitation programs.

Keywords: exergame; fascicle length; muscle architecture; muscle thickness; cross-sectional area;
pennation angle; serious game; systematic review; virtual

1. Introduction

Muscle architecture is a comprehensive term comprising fascicle geometry (fascicle
length and pennation angle) and muscle size (anatomical and physiological cross-sectional
areas, muscle thickness, and muscle length) [1]. Larger muscle sizes are strongly associated
with higher muscle strength [2–12]. Additionally, longer fascicle lengths and larger muscle
sizes increase the rate of force development, power generation, and sprint and walking
performances [10,13–22]. On the other hand, shorter fascicle lengths, smaller muscle sizes,
and muscle size ratios are associated with sport and orthopaedic injuries of the lower
extremity [23–32]. Furthermore, significant adverse alterations in the muscle size, fascicle
length, and pennation angle occur due to ageing [33,34]. The decrements in muscle size
and muscle functionality have been defined as sarcopenia [35,36], which is significantly
associated with an increased risk of falling, and consequently mortality and morbidity in the
elderly or people suffering from other health conditions [35,37–40]. Similarly, decrements in
muscle size were also detected due to the disuse of muscles after bed rest [41,42] or exposure
to microgravity [43]. These muscle atrophies might lead to reduced contractile performance
and metabolic dysregulations [44]. Therefore, muscle architectural parameters should also
be monitored during rehabilitation and prevention programs, such as the prevention of
falls in the elderly or the prevention of hamstring injuries in athletes, etc.

Virtual games (exergames) have emerged as a complementary tool to enhance physical
activity and exercise with the development of technology [45]. Due to its motivating and
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interactive features, it has been stated that exergames might increase commitment to
exercise [46–49]. Exergames, which mimic cycling, dancing, running, walking, playing
a sport modality, and resistance training, have become commercially available [50–56].
Nowadays, exergames have been used in various rehabilitation programs for cerebral
palsy, Parkinson’s disease, stroke, obesity, or sarcopenia [57]. A review article pointed
out that using exergames in physical therapy resulted in similar improvements as with
conventional therapy in most cases [57].

Numerous systematic reviews have focused on the effects of exergames on several
outcomes, including anxiety level [53], balance [58–61], cardiac rehabilitation [62,63], child-
hood obesity [64,65], cognition [66–71], depression [70,72,73], exercise behaviour [74], mo-
tor skills [75–77], muscle strength [54], musculoskeletal pain [78], physical activity [32,79–81],
postural control [82,83], psychological effects [84], quality of life [85], respiratory condi-
tions [78], social effects [86], and walking capacity [87].

Despite the crucial importance of the muscle architectural parameters, however, there
is no systematic review investigating the effects of exergames on skeletal muscle architec-
ture in the literature. Exploring the impacts of exergames on the architecture of skeletal
muscles can be a reference point for future directions of the development of exergames
and rehabilitation programs for people who need improvements in muscle architectural
parameters, such as the elderly, injured people, and patients exposed to long-term bed
rest. Therefore, this systematic review aimed to examine studies investigating exergames-
induced architectural alterations in the skeletal muscle architecture in humans, and to find
out the effect size of exergames on the stimulation of improvements in the architectural
parameters of individual muscles in humans.

2. Materials and Methods

The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA)
2020 statement [88] was used as the guideline of this review. The PRISMA 2020 checklist,
which consists of a 27-item checklist and focuses on the introduction, methods, results,
and discussion sections of a systematic review, is presented in the Supplementary Table
S1. Before this review, a systematic review protocol was registered on INPLASY (IN-
PLASY202140054) and is fully available online [89].

2.1. Information Sources

Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, ProQuest,
PubMed, and OpenGrey databases were searched first on 10 April 2021 for all dates
without applying a time limitation, and last on 22 September 2021. Additionally, reference
lists of eligible studies were screened in order to avoid publication bias caused by grey
literature as an addition to the OpenGrey database search. Database search histories are
shown in the Supplementary Table S2.

2.2. Database Search Strategy, Eligibility Criteria, and Study Selection Process

Databases were searched by the first (N.S.) and second (G.Y.) authors, using a combina-
tion of the following key terms: (“Active video gaming” OR Avatar OR AVG OR “Commer-
cial game” OR “Computer-based” OR “Computer based” OR “Computer feedback” OR
“Computer game” OR “Dance dance revolution” OR “Digital game” OR “Digital-game”
OR Exergam* OR “Game training” OR “Game exercise” OR “Game-based” OR “health
game” OR IREX OR Kinect OR “Lower limb power rehabilitation” OR Nintendo OR “Play
station” OR “Play-station” OR SensBalance OR “Serious game” OR “Serious gaming” OR
“Sony EyeToy” OR “Video game” OR “Video-game” OR “Videogame” OR “Video gaming”
OR “Video based” OR videobased OR “Video-based” OR “Virtual reality” OR VRT OR
Wii OR Wobble OR Xavi* OR XBOX OR X-box) AND (“Muscle architecture” OR “Cross
sectional area” OR “Cross-sectional area” OR Fascic* OR “Fiber length” OR “Fibre length”
OR “Muscle length” OR “Muscle structure” OR “Muscle thickness” OR “Muscle volume”
OR Pennat* OR Pinnat*).
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The eligibility criteria included studies (1) investigating the effects of an exergame
intervention; (2) presenting magnetic resonance imaging (MRI) or ultrasound measured
alterations in one or more specifically defined muscle architectural parameter(s) as an out-
come; (3) that were a full-text journal article; (4) written in the English language.

Duplicate records were removed by using the EndNote X9 computer program [90].
After the removal of duplicates, the remaining records were independently screened by the
first (N.S.) and second authors (G.Y.) in a blinded status via Rayyan—a web and mobile
app for systematic reviews [91]. Similarly, data extraction of the eligible studies was
independently performed by the lead (N.S.) and second (G.Y.) authors. Disagreements
about selecting the studies and extracting data were solved by discussion between the
lead (N.S.) and second (G.Y.) authors, and the third author (T.Y.) was considered as referee
in the case of unsolved disagreements. The first and second authors were blind to each
other’s decisions during the whole screening process. In the case of the absence of full-text
versions of the articles, the articles were obtained by contacting the Bangor University and
Tokyo Metropolitan University libraries.

2.3. Outcome Measures

Exergames-induced changes in the architectural parameters of individually defined
muscles, including the anatomical cross-sectional area, fascicle length, muscle thickness,
pennation angle, and the physiological cross-sectional area, were the constituted outcome
measures of this systematic review.

2.4. Quality Assessment of Eligible Studies

The Downs and Black checklist [92], which consisted of a 27-item checklist, was used
for quality of assessment of both non-randomised and randomised trials. This systematic
review used the following classifications for the quality of evidence: 26–28 = excellent,
20–25 = good, 15–19: fair, and ≤14 = poor quality, based on the previous systematic
reviews [93,94]. The first (N.S.) and second authors (G.Y.) independently assessed the
quality level of the eligible studies. Any conflicts that arose with regard to the assessment
of quality was solved by a discussion between the first and second authors, and the
third author (T.Y.) was considered the referee for the unsolved conflicts. In addition to the
quality assessment of eligible studies, the risk of bias of included studies was independently
assessed by the first and second authors via The Cochrane Collaboration’s tool for assessing
the risk of bias in randomised trials [95]. Included studies were examined based on random
sequence generation, allocation concealment, blinding participants and personnel, blinding
outcome assessment, incomplete outcome data, selective reporting, and other bias. Each
risk of bias assessment category ranked selected studies as having “low risk of bias”,
“unclear risk of bias”, or “high risk of bias”. The risk of bias summary—review authors’
judgements about each risk of bias item for each included analysis, and the risk of bias
graph—review authors’ conclusions about each risk of bias item presented as percentages
across all included studies, were created via the RevMan 5.4.1 computer program [96].

2.5. Data Extraction

The extracted data included the following information: author, year, groups, number
of participants, participant characteristics, type of exercises allocated to groups, materials
used for exercise interventions, total weeks, sessions, sets, repetitions, measured muscle,
measurement device and regions, type of the muscle architectural parameter, and results
of the eligible studies.

2.6. Meta-Analysis

Quantitative analyses were completed using the Review Manager (RevMan 5.4.1)
program [96]. For an exercise intervention group, a placebo or control group was considered
a comparator. As summary statistics, Hedge’s (adjusted) g effect size (the standardised
mean difference (SMD)) was estimated for each meta-analysis by using RevMan [96]. The
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difference between Hedge’s (adjusted) g and Cohen’s d is that Hedge’s (adjusted) g corrects
a potential estimation bias when the sample size is smaller than 20 participants [97]. The
effect sizes of the exergame interventions were interpreted as small (0.2), medium (0.5),
or large (0.8), which were generally used for interpreting the Cohen’s d [98] and Hedges’
g [99] effect sizes [100].

For a case of a missing standard deviation (SD) from the baseline score, which is
commonly seen in continuous data-carrying studies [101], the following formula was used
for calculations [101,102]:

SDchange =
√

SD2baseline + SD2 f inal − (2 × r × SDbaseline × SD f inal)

In this formula, SDchange represents the SD of the mean changes from the baseline,
SDbaseline represents the SD of the pre-test, SDfinal corresponds to the SD of the post-test,
and the r represents the correlations between the SDfinal and SDbaseline measurements.

In the meta-analyses, statistical heterogeneity was calculated via chi-squared (χ2, or
Chi2) statistics, and the level of the statistical heterogeneity was assessed by I2 statistics,
which defines the percentage ratio of the variability in effect calculations due to heterogene-
ity rather than chance [103]. The I2 values were classified as low (25%), moderate (50%), and
high (75%) [104]. A more conservative random effect (RE) model, 95% confidence interval,
continuous data, and inverse variance features of a meta-analysis were applied during the
quantitative analyses [105]. The RE model was defined as a better tool that accounts for
statistical and methodological heterogeneities by a recent meta-analytic study [106].

3. Results
3.1. Study Selection

After the removal of duplicate records, a total of 184 records were independently
screened based on titles and abstracts. One hundred seventy-seven records were ex-
cluded based on the exclusion criteria, and seven records were included based on the
pre-determined eligibility criteria. The seven records and an additional two records, which
were retrieved throughout the third database searches, were independently screened based
on the full text. Eventually, five studies [107–111] were found eligible and included in this
systematic review. The process of selecting eligible studies is presented in the PRISMA
2020 flow chart in Figure 1.

3.2. Quality Assessment of Included Studies

Once the first and second authors had independently assessed the evidence level of
both randomised and non-randomised studies via the Downs and Black checklist [92], and
the risk of bias of included studies by using The Cochrane Collaboration’s tool for assessing
risk of bias in randomised trials [95], any disagreements were solved by discussion between
the first (N.S.) and second (G.Y.) authors, and the third author (T.Y.) was considered a referee
in the case of unsolved disagreements. Consequently, the evidence levels of three studies
were detected as having a “fair level” [108,110,111]. The evidence levels of the other studies
were assigned the “good level” [107,109]. The quality assessments of each study are shown
in detail in Table 1, a risk of bias summary—review authors’ judgements about each risk
of bias item for each included study is presented in Figure 2, and a risk of bias graph—
review authors’ judgements about each risk of bias item presented as percentages across
all included studies is presented in Figure 3.
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Figure 1. PRISMA 2020 flow diagram.

Table 1. Quality assessment of eligible studies.

Biesek et al.
(2021) [107]

Gallo et al.
(2019) [108]

Nambi et al.
(2020) [109]

Rodrigues et al.
(2018) [110]

Vojciechowski
et al. (2021) [111]

Reporting

Q1 Is the hypothesis/aim/objective
of the study clearly described? 1 1 1 1 1

Q2
Are the main outcomes to be

measured clearly described in the
introduction or methods section?

1 1 1 1 1

Q3
Are the characteristics of the

patients included in the study
clearly described?

1 1 1 1 1

Q4 Are the interventions of interest
clearly described? 1 1 1 1 1

Q5

Are the distributions of principal
confounders in each group of

subjects to be compared clearly
described?

0 0 0 0 0
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Table 1. Cont.

Biesek et al.
(2021) [107]

Gallo et al.
(2019) [108]

Nambi et al.
(2020) [109]

Rodrigues et al.
(2018) [110]

Vojciechowski
et al. (2021) [111]

Q6 Are the main findings of the study
clearly described? 1 1 1 1 1

Q7
Does the study provide estimates
of the random variability in the

data for the main outcomes?
1 0 1 0 0

Q8
Have all important adverse events
that may be a consequence of the

intervention been reported?
1 0 0 1 0

Q9
Have the characteristics of

patients lost to follow-up been
described?

1 1 1 1 1

Q10

Have actual probability values
been reported (e.g., 0.035 rather

than <0.05) for the main outcomes,
except where the probability value

is less than 0.001?

1 1 1 1 1

External Validity

Q11

Were the subjects asked to
participate in the study

representative of the entire
population from which they were

recruited?

UTD UTD UTD UTD UTD

Q12

Were those subjects who were
prepared to participate

representative of the entire
population from which they were

recruited?

UTD UTD UTD UTD UTD

Q13

Were the staff, places, and facilities
where the patients were treated

representative of the treatment the
majority of patients receive?

1 1 1 1 1

Internal Validity—Bias

Q14
Was an attempt made to blind

study subjects to the intervention
they received?

0 0 0 0 0

Q15
Was an attempt made to blind

those measuring the main
outcomes of the intervention?

0 1 1 0 0

Q16
If any of the results of the study
were based on “data dredging”,

was this made clear?
1 1 1 1 1

Q17

In trials and cohort studies, do the
analyses adjust for different

lengths of follow-up of patients?
Or in case-control studies, is the

time period between the
intervention and outcome the
same for cases and controls?

1 1 1 1 1

Q18
Were the statistical tests used to

assess the main outcomes
appropriate?

1 1 1 1 1
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Table 1. Cont.

Biesek et al.
(2021) [107]

Gallo et al.
(2019) [108]

Nambi et al.
(2020) [109]

Rodrigues et al.
(2018) [110]

Vojciechowski
et al. (2021) [111]

Q19 Was compliance with the
intervention/s reliable? 1 1 1 1 1

Q20 Were the main outcome measures
used accurate (valid and reliable)? 1 1 1 1 1

Internal validity—Confounding (selection Bias)

Q21

Were the patients in different
intervention groups (trials and

cohort studies), or were the cases
and controls (case-control studies)

recruited from the same
population?

1 1 1 1 1

Q22

Were study subjects in different
intervention groups (trials and

cohort studies), or were the cases
and controls (case-control studies)
recruited over the same period of

time?

1 1 1 1 1

Q23 Were study subjects randomised
to intervention groups? 1 0 1 0 0

Q24

Was the randomised intervention
assignment concealed from both

patients and health care staff until
recruitment was complete and

irrevocable?

UTD 0 UTD 0 0

Q25

Was there an adequate adjustment
for confounding in the analyses
from which the main findings

were drawn?

1 1 1 1 1

Q26 Were losses of patients to
follow-up taken into account? 1 1 1 1 1

Power

Q27

Did the study have sufficient
power to detect a clinically
important effect, where the

probability value for a difference
resulting from chance is less

than 5%?

1 1 1 1 1

Total 21 19 21 19 18

Quality of evidence Good Fair Good Fair Fair

Abbreviations: UTD, Unable to determine;
0, no; 1, yes.
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Figure 2. Risk of bias summary: review authors’ judgements about each risk of bias item for each
included study (created via RevMan 5.4.1).

Figure 3. Risk of bias graph: review authors’ judgements about each risk of bias item presented as
percentages across all included studies.
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3.3. Characteristics of Included Studies

Participants’ age, population type, physical activity levels, and intervention and
measurement characteristics of the included studies are illustrated in Table 2. Two stud-
ies [107,109] were classified as randomised controlled, and three studies [108,110,111] were
classified as non-randomised controlled studies. Two studies [107,108] examined the effects
of twelve-week exergame interventions on the medial gastrocnemius muscle architecture,
while two studies [109,110] focused on the effects of twelve-week exergame interventions
on the quadriceps femoris muscle cross-sectional area of community-dwelling older women.
Additionally, one study [110] assessed the impacts of a twelve-week exergame training
on the hamstring cross-sectional area of community-dwelling older women, and another
study [109] measured the effects of four weeks of exergame intervention on the multifidus
muscle thickness and the paraspinal muscle cross-sectional area in football players.

Table 2. Characteristics of included studies.

Study
(Year)

Groups, Number of
Participants (n), Type of
Exercises Allocated to

Groups

Participants’
Characteristics

(Population, Age,
Physical Activity

Levels)

Material(s)
for

Exercise(s)

Total Weeks,
Sessions, Sets
and Repetition

of Exercises

Measured
Muscles for

the
Architectural
Parameter(s)

Measurement
Device and
Region(s)

Type of
Muscle

Architectural
Parameter(s)

Biesek
et al.

(2021) *

-Exergames training
group (ETG) (n = 14):
Performed 12 weeks of
exergames training.
-Control group (CG)
(n = 15);

-Community-
dwelling older
women.
-Age:
ETG = 71.2 ± 4.2,
CG: 70.04 ± 3.9.
-Physical activity
level: Not specified.

-Nintendo
Wii Fit
Plus® +
balance
platform.

-Total of
12 weeks,
two sessions
per week, each
session was
approximately
50 min.

-Medial gas-
trocnemius
muscle.

-A 2D B-mode US.
30% and 40% of
the distance
between the
popliteal line and
lateral malleolus
of the fibula.

-Fascicle
length (FL).
-Muscle
Thickness
(MT).
-Pennation
angle (PA).

Gallo
et al.

(2019)

-Exercise Group (EG)
(n = 22): Performed 12
weeks of virtual dance
exercise.
-Control Group (CG)
(n = 20): Kept their
daily lifestyle.

-Community-
dwelling older
women.
-Age:
EG = 69.3 ± 3.7, CG
= 70.3 ± 5.6.
-Physical activity
level: Moderately
active.

-Dance
Central
game for
Xbox 360®

and Kinect.

-Total of
12 weeks, three
sessions per
week, each
session was
40 min.

-Medial gas-
trocnemius
muscle.

-A 2D B-mode US.

20%, 30%, and
40% of the
distance between
lateral condyle of
the tibia and
lateral malleolus
of the fibula.

-Fascicle
length (FL).
-Muscle
Thickness
(MT).
-Pennation
angle (PA).

Nambi
et al.

(2020)

-Virtual Reality Training
Group (VRT-G) (n = 12):
Performed virtual
reality-based balance
training for core stability
muscles using the
ProKin system.
-Combined Physical
Rehabilitation Group
(CPR-G) (n = 12):
Performed
a rehabilitation protocol
that particularly
emphasised balance
exercises at home by
using a Swiss ball.
-Control Group
(Control-G) (n = 12):
Performed conventional
balance training.
-Additionally, all
participants underwent
20 min hot-pack therapy
and therapeutic US
(1.5 W/cm2 intensity
1 Mhz frequency) and
prescribed home-based
exercise protocol
(10 reps, 2 sets per day
for 4 weeks).

-Male football
players.
-Age:
VRT-G= 21.3 ± 2.6,
CPR-G: 21.8 ± 2.2,
Control-G:
20.9 ± 2.8.
-Physical activity
level: University
football players
with chronic lower
back pain.

-The
ProKin
system for
the VRT-G.
-A Swiss
Ball for the
CPR-G.

-Total of
4 weeks.
-VRT-G:
5 sessions per
week; each
session was
30 min.
-CPR-G:
10 repetitions,
3 sets,
5 sessions per
week.
-Control-G:
10–15 repetitions
per day,
5 sessions per
week.

-Multifidus
and
paraspinal
muscles.

-MRI and
Diagnostic US.
-Paraspinal
muscles (psoas
major, quadratus
lumborum,
multifidus and
erector spinae)
measured at
L3–L4 levels by
using an MRI.
-The left and right
multifidus muscle
at L4 and L5
levels by using
a US.

-Cross-
sectional area
(CSA) of the
paraspinal
muscles.
-MT of the
multifidus.
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Table 2. Cont.

Study
(Year)

Groups, Number of
Participants (n), Type of
Exercises Allocated to

Groups

Participants’
Characteristics

(Population, Age,
Physical Activity

Levels)

Material(s)
for

Exercise(s)

Total Weeks,
Sessions, Sets
and Repetition

of Exercises

Measured
Muscles for

the
Architectural
Parameter(s)

Measurement
Device and
Region(s)

Type of
Muscle

Architectural
Parameter(s)

Rodrigues
et al.

(2018)

Intervention Group (IG)
(n = 22, 10 fallers,
12 non-fallers):
Completed a
video-game dance
training program.
Control Group (CG)
(n = 25, 12 fallers,
13 non-fallers): Kept
their daily routine.

-Community-
dwelling older
women.
-Age: IG
fallers = 69.8 ± 4.3,
IG non-fallers =
68.9 ± 3.3, CG
fallers = 73.6 ± 5.4,
CG non-fallers =
68.7 ± 4.8.
-Physical activity
level: Low to
moderate physical
activity levels.

-Dance
Central
game for
Xbox 360®

and Kinect.

-12 weeks,
3 sessions per
week, each
session was
~40 min.

-Hamstrings
and
quadriceps
femoris.

-MRI
-Measurements
were taken from
the mid-point
between the
femur’s inferior
condyle border
and the greater
trochanter.

-CSA of the
hamstrings
and
quadriceps
femoris.

Vojciech-
owski
et al.

(2021)

Training Group (TG)
(n = 21): Performed
12 weeks of a virtual
dance training program.
Control Group (CG)
(n = 21): Kept their daily
routine.

-Community-
dwelling older
women.
-Age: TG = 69 ± 4,
CG = 71 ± 5.
-Physical activity
level: At least
moderately active.

-Dance
Central
game for
Xbox 360®

and Kinect.

-12 weeks,
3 sessions per
week, each
session was
~40 min.

-Quadriceps
femoris.

-MRI
-Measurements
were taken from
the mid-point
between the
anterior superior
iliac spine and the
femoral condyle.

-CSA of
quadriceps
femoris.

* For this study of Biesek et al. (2021), the other groups investigating effects of supplementation and training combinations were not
mentioned in the table for solely examining the effects of exergames.

3.4. Meta-Analyses

In total, four studies were included in the meta-analyses [107,108,110,111]. Firstly, two
studies [110,111] were included in the meta-analysis assessing the effects of twelve-week
virtual dance training (Dance Central game for Xbox 360® and Kinect) on the quadri-
ceps femoris cross-sectional area in community-dwelling older women (Figure 4 ). Sec-
ondly, study subgroups of another study [110] were included in the meta-analysis mea-
suring the effects of twelve-week virtual dance training (Dance Central game for Xbox
360® and Kinect) on the hamstrings cross-sectional area in community-dwelling older
women (Figure 5). In both cases, twelve-week virtual dance training (Dance Central game
for Xbox 360® and Kinect) showed a medium effect on the improvement of hamstrings
(g = 0.55, 95% CI (−0.03, 1.14), I2 = 0%) and the quadriceps femoris (g = 0.58, 95% CI (0.17,
1.00), I2 = 0%) muscle cross-sectional areas without statistical heterogeneity in community-
dwelling older women.

Figure 4. The effects of twelve weeks exergames on the quadriceps femoris muscle cross-sectional area in community-
dwelling older women. Note: The first line of Rodrigues et al. [110] represents fallers, and the second line represents
non-fallers. This forest plot was created via RevMan [96].

Thirdly, two studies [107,108] were included in meta-analyses assessing the impacts of
twelve weeks of exergame interventions (Nintendo Wii Fit Plus® + balance platform [107]
and Dance Central game for Xbox 360® + Kinect [108]) on the gastrocnemius muscle ar-
chitectural parameters, including fascicle length, muscle thickness, and pennation angle,
in community-dwelling older women. Individually or as combined in the meta-analyses,
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these exergames had no positive medium or large effects on increasing medial gastrocne-
mius fascicle length (g = −0.40, 95% CI (−1.10, 0,31), I2 = 74% (Figure 6a)), muscle thickness
(g = −0.04, 95% CI (−0.41, 0.33), I2 = 25% (Figure 6b)), or pennation angle (g = −0.08, 95%
CI (−0.40, 0.23), I2 = 0% (Figure 6c)).

Figure 5. The effects of twelve weeks of exergames on the hamstring muscle cross-sectional area of community-dwelling
older women. Note: The first line of Rodrigues et al. [110] represents fallers, and the second line represents non-fallers. This
forest plot was created via RevMan [96].

Figure 6. The effects of twelve weeks of exergames on the medial gastrocnemius muscle architecture in community-dwelling
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older women: (a) fascicle length; (b) muscle thickness; (c) pennation angle. * In this meta-analysis, the given data in the
study of Biesek et al. [107] was not calculable by RevMan [96]. Note: The first, second, and third Gallo et al. in each forest
plot respectively represent the measurements taken from 20%, 30%, and 40% distances in the relevant study [108]. These
forest plots were created via RevMan [96].

Lastly, one study [109] was not included in the meta-analyses due to the absence
of other methodologically similar studies investigating the same topic. In this study,
Nambi et al. [109] examined the effects of four-week virtual reality balance training (the
ProKin system) on multifidus muscle thickness and paraspinal muscles, including mul-
tifidus again, cross-sectional area in university-level football players with chronic lower
back pain.

As a result, Nambi and colleagues reported significant increments in the paraspinal
muscle cross-sectional areas (psoas major: 25.58–26.19%, quadratus lumborum: 41.67–46.81%,
multifidus: 44.23–43.40%, erector spinae: 14.55–14.63%) and 6.4–8.46% increments in
multifidus muscle thickness (Supplementary Table S3).

4. Discussion

To the authors’ knowledge, this systematic review is the first systematic review focus-
ing particularly on the effects of exergames on the architectural parameters of the skeletal
muscles in humans. Based on studies identified to have a fair level of quality [110,111],
12 weeks of virtual dance exercises (Dance Central game for Xbox 360®) has a medium
effect on increasing the quadriceps femoris muscle cross-sectional area. Likewise, 12 weeks
of virtual dance exercises (Dance Central game for Xbox 360®) has a medium effect on
increasing the quadriceps femoris muscle cross-sectional area based on a study with fair-
level quality [110]. Additionally, a good-quality study [109] pointed out that four weeks
of virtual balance training (via using the ProKin system) was significantly more effective
than home-based balance training with the Swiss ball and conventional balance training in
increasing paraspinal muscle size at the L3–L4 level and multifidus muscle size at the L4–L5
level in football players with chronic lower back pain. More specifically, the four weeks
of virtual balance training [109] led to 14.55–46.81% increments in the paraspinal muscle
cross-sectional areas (psoas major: 25.58–26.19%, quadratus lumborum: 41.67–46.81%, mul-
tifidus: 44.23–43.40%, erector spinae: 14.55-14.63%) and 6.4–8.46% increments in multifidus
muscle thickness (Supplementary Table S3). On the other hand, meta-analyses measuring
the impacts of twelve weeks of exergame interventions (Nintendo Wii Fit Plus® + balance
platform [107] and Dance Central game for Xbox 360® + Kinect [108]) on gastrocnemius
muscle architectural parameters, including fascicle length, muscle thickness, and pennation
angle, in community-dwelling older women could not detect any positive medium or large
effects of these exergames on the medial gastrocnemius muscle architectural parameters
based on the fair–good-level studies [107,108].

From the perspective of the effects of 12 weeks of virtual dance exercises (Dance
Central game for Xbox 360®), medium effects on the increase in muscle size of the quadri-
ceps femoris and hamstrings of community-dwelling older women were detected by the
meta-analyses of this study. Moreover, the effect size of 12 weeks of virtual dance exercises
on quadricep muscle size increments in community-dwelling older and faller women was
large (g = 0.92) (Figure 4). When considering older people, falling is one of the major
reasons for mortality, loss of independence, or severe health problems [112–114]. Thirty per
cent of community-dwelling people 65 years old or older fall every year [115,116]. Small
muscle size was defined as an indicator of a higher risk of falls in community-dwelling
older people [39,40,117,118]. Therefore, 12 weeks of virtual dance exercises (Dance Central
game for Xbox 360®) can be used as a complementary therapy in fall prevention programs
for the elderly due to its medium to large effects on increasing cross-sectional areas of the
hamstrings and quadriceps femoris.

Additionally, Nambi and colleagues [109] found significantly favourable increments
in the paraspinal and multifidus muscle sizes from the virtual balance training as compared
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to combined physical rehabilitation, which included balance exercises using a Swiss Ball,
or conventional balance training. Previously, balance training with a Swiss Ball was
considered the golden standard for balance training and enhancing the strength of core
muscles [119]. However, four weeks of virtual reality balance training using the ProKin
system led to percentage increments approximately two times higher in the cross-sectional
areas of the individual paraspinal muscles (erector spinae, multifidus, psoas major, and
quadratus lumborum) than four weeks of combined physical therapy, which included
a Swiss Ball balance training (Supplementary Table S3). Hence, virtual reality balance
training might be used as an alternative tool to improve the sizes of the paraspinal muscles.
More studies may wish to confirm the effects of virtual reality balance training on core
muscles. Furthermore, lower back pain is prevalent in many sports [120] and might reduce
the size of core muscles, including multifidus and psoas major [121]. Decreased multifidus
muscle size has previously been found to be associated with lower extremity injuries in
sports [23–27]. Therefore, a future randomised controlled trial can examine the effects of
virtual balance training on the multifidus muscle size in athletes without lower back pain.

Despite the comprehensive database searches, the main limitation of this systematic
review is its use of only five eligible studies. Having more eligible studies might have
allowed this systematic review to have more precise conclusions about more skeletal
muscles. However, to the authors’ knowledge, this systematic review retrieved all the
relevant studies. Additionally, all the eligible studies were published in the last three years.
This fact could indicate that the quantity of studies investigating the effects of exergames on
muscle architecture might increase in the future. Therefore, this systematic review might be
updated in the future in order to explore the effects of exergames on the architecture of other
muscles. An additional limitation of this study is the lack of publication bias assessments
or meta-regression analyses since there were less than ten studies used. The Cochrane
Handbook for Systematic Review of Interventions clearly states that there should be at
least ten studies in a meta-analysis for detecting publication bias in funnel plots or meta-
regression analyses [122]. Thus, differences in the training interventions and populations
are considered to be other confounding factors in the meta-analysis. Future studies might
be conducted on the effects of exergames on other muscle architectures in order to obtain
an overall idea of the effectiveness of exergames in improving the architectural parameters
of human skeletal muscles.

5. Conclusions

Twelve weeks of virtual dance exercise (Dance Central game for Xbox 360®) showed
a medium effect on improving the hamstrings and the quadriceps femoris muscle cross-
sectional area of community-dwelling older women. Additionally, a four-week virtual
balance training program (the ProKin System) led to significant increments in the size of
paraspinal muscles. However, one twelve-week virtual dance exercise program (Dance
Central game for Xbox 360®) [108] or another twelve-week exergame training program
(Nintendo Wii Fit Plus® + balance platform) [107] did not show any medium or large
effects on the increase of the medial gastrocnemius muscle architectural parameters in
community-dwelling older women. These results should be interpreted cautiously due to
the small number of eligible studies.

In conclusion, twelve weeks of virtual dance exercise (Dance Central game for Xbox
360®) might be used as a complementary therapy in fall and fragility prevention programs
for community-dwelling older women due to its positive effects on increasing hamstrings
and quadricep femoris muscle sizes. Additionally, a four-week virtual balance training
program (the ProKin System) can be included in rehabilitation programs for chronic lower
back pain in university-level football players to increase the paraspinal muscle cross-
sectional area in football players with chronic lower back pain. Moreover, the exergames
which showed positive effects on increasing muscle sizes, e.g., the virtual dance game and
the virtual balance training, can also be used as complementary therapies for home-based
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rehabilitation programs. Consequently, more studies are needed to have an overall idea of
the effects of exergames on muscle architectural parameters in humans.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112110325/s1, Table S1: The PRISMA 2020 Statement Checklist, Table S2: Database Search
Histories, Table S3: Training-induced percentage changes in muscle architectural parameters in the
study of Nambi and colleagues.
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The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [CrossRef] [PubMed]

96. The Cochrane Collaboration. Review Manager [Computer Program], 5.4.1; The Nordic Cochrane Centre: Copenhagen, Dan-
mark, 2020.

97. Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs.
Front. Psychol. 2013, 4, 863. [CrossRef]

98. Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988.
99. Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: New York, USA, 2014.
100. Brydges, C.R. Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology. Innov. Aging 2019, 3, igz036.

[CrossRef] [PubMed]
101. Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions, version 5.1.0 [updated March 2011]; The

Cochrane Collaboration: Chichester, UK, 2011.
102. Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Effect Sizes Based on Means. In Introduction to Meta-Analysis; John

Wiley & Sons Ltd: Chichester, UK, 2009; pp. 21–32. [CrossRef]
103. Deeks, J.J.; Higgins, J.P.T.; Altman, D.G. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic

Reviews of Interventions, version 5.0.2; Higgins, J.G.S., Ed.; The Cochrane Collaboration: Chichester, UK, 2011.
104. Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560.

[CrossRef]
105. DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [CrossRef]
106. Green, B.; Bourne, M.N.; van Dyk, N.; Pizzari, T. Recalibrating the risk of hamstring strain injury (HSI): A 2020 systematic

review and meta-analysis of risk factors for index and recurrent hamstring strain injury in sport. Br. J. Sports Med. 2020, 54, 1081.
[CrossRef] [PubMed]

107. Biesek, S.; Vojciechowski, A.S.; Filho, J.M.; Menezes Ferreira, A.C.R.; Borba, V.Z.C.; Rabito, E.I.; Gomes, A.R.S. Effects of Exergames
and Protein Supplementation on Body Composition and Musculoskeletal Function of Prefrail Community-Dwelling Older
Women: A Randomized, Controlled Clinical Trial. Int. J. Environ. Res. Public Health 2021, 18, 9324. [CrossRef]

108. Gallo, L.H.; Rodrigues, E.V.; Melo Filho, J.; da Silva, J.B.; Harris-Love, M.O.; Gomes, A.R.S. Effects of virtual dance exercise on
skeletal muscle architecture and function of community dwelling older women. J. Musculoskelet. Neuronal Interact. 2019, 19, 50.
[PubMed]

109. Nambi, G.; Abdelbasset, W.; Alqahtani, B. Radiological (Magnetic Resonance Image and Ultrasound) and biochemical effects of
virtual reality training on balance training in football players with chronic low back pain: A randomized controlled study. J. Back
Musculoskelet. Rehabil. 2020, 34, 1–9. [CrossRef]

110. Rodrigues, E.V.; Gallo, L.H.; Guimarães, A.T.B.; Melo Filho, J.; Luna, B.C.; Gomes, A.R.S. Effects of dance exergaming on
depressive symptoms, fear of falling, and musculoskeletal function in fallers and nonfallers community-dwelling older women.
Rejuvenation Res. 2018, 21, 518–526. [CrossRef]

111. Vojciechowski, A.S.; Silva, C.T.S.; Rodrigues, E.V.; Gallo, L.H.; Melo Filho, J.; Gomes, A.R.S. Does Physical Dance Training with
Virtual Games Change Muscle Quality of Community-Dwelling Older Women? Games Health J. 2021. [CrossRef]

112. Kwan, E.; Straus, S.E. Assessment and management of falls in older people. CMAJ 2014, 186, E610–E621. [CrossRef]
113. Schoene, D.; Valenzuela, T.; Lord, S.R.; de Bruin, E.D. The effect of interactive cognitive-motor training in reducing fall risk in

older people: A systematic review. BMC Geriatr. 2014, 14, 107. [CrossRef] [PubMed]
114. Stevens, J.A.; Mahoney, J.E.; Ehrenreich, H. Circumstances and outcomes of falls among high risk community-dwelling older

adults. Inj. Epidemiol. 2014, 1, 1–9. [CrossRef]
115. Akyol, A.D. Falls in the elderly: What can be done? Int. Nurs. Rev. 2007, 54, 191–196. [CrossRef] [PubMed]
116. Ganz, D.A.; Bao, Y.; Shekelle, P.G.; Rubenstein, L.Z. Will my patient fall? Jama 2007, 297, 77–86. [CrossRef] [PubMed]

http://doi.org/10.1136/bmj.n71
http://doi.org/10.37766/inplasy2021.4.0054
http://doi.org/10.1186/s13643-016-0384-4
http://doi.org/10.1136/jech.52.6.377
http://doi.org/10.2147/IJGM.S194883
http://doi.org/10.3129/i08-001
http://doi.org/10.1136/bmj.d5928
http://www.ncbi.nlm.nih.gov/pubmed/22008217
http://doi.org/10.3389/fpsyg.2013.00863
http://doi.org/10.1093/geroni/igz036
http://www.ncbi.nlm.nih.gov/pubmed/31528719
http://doi.org/10.1002/9780470743386.ch4
http://doi.org/10.1136/bmj.327.7414.557
http://doi.org/10.1016/0197-2456(86)90046-2
http://doi.org/10.1136/bjsports-2019-100983
http://www.ncbi.nlm.nih.gov/pubmed/32299793
http://doi.org/10.3390/ijerph18179324
http://www.ncbi.nlm.nih.gov/pubmed/30839303
http://doi.org/10.3233/BMR-191657
http://doi.org/10.1089/rej.2017.2041
http://doi.org/10.1089/g4h.2020.0223
http://doi.org/10.1503/cmaj.131330
http://doi.org/10.1186/1471-2318-14-107
http://www.ncbi.nlm.nih.gov/pubmed/25240384
http://doi.org/10.1186/2197-1714-1-5
http://doi.org/10.1111/j.1466-7657.2007.00505.x
http://www.ncbi.nlm.nih.gov/pubmed/17492994
http://doi.org/10.1001/jama.297.1.77
http://www.ncbi.nlm.nih.gov/pubmed/17200478


Appl. Sci. 2021, 11, 10325 19 of 19

117. Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia as a risk factor for
falls in elderly individuals: Results from the ilSIRENTE study. Clin. Nutr. 2012, 31, 652–658. [CrossRef]

118. Szulc, P.; Beck, T.J.; Marchand, F.; Delmas, P.D. Low skeletal muscle mass is associated with poor structural parameters of bone
and impaired balance in elderly men—The MINOS study. J. Bone Miner. Res. 2005, 20, 721–729. [CrossRef]
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