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Abstract: An encoder–decoder with attention has become a popular method to achieve sequence-to-
sequence (Seq2Seq) acoustic modeling for speech synthesis. To improve the robustness of the attention
mechanism, methods utilizing the monotonic alignment between phone sequences and acoustic
feature sequences have been proposed, such as stepwise monotonic attention (SMA). However, the
phone sequences derived by grapheme-to-phoneme (G2P) conversion may not contain the pauses at
the phrase boundaries in utterances, which challenges the assumption of strictly stepwise alignment
in SMA. Therefore, this paper proposes to insert hidden states into phone sequences to deal with the
situation that pauses are not provided explicitly, and designs a semi-stepwise monotonic attention
(SSMA) to model these inserted hidden states. In this method, hidden states are introduced that
absorb the pause segments in utterances in an unsupervised way. Thus, the attention at each decoding
frame has three options, moving forward to the next phone, staying at the same phone, or jumping
to a hidden state. Experimental results show that SSMA can achieve better naturalness of synthetic
speech than SMA when phrase boundaries are not available. Moreover, the pause positions derived
from the alignment paths of SSMA matched the manually labeled phrase boundaries quite well.

Keywords: speech synthesis; sequence-to-sequence; attention; phrase boundary

1. Introduction

Statistical parametric speech synthesis (SPSS) [1] is a mainstream approach to speech
synthesis currently. It consists of three main components: text analysis, acoustic mod-
eling, and waveform reconstruction. Text analysis [2] extracts linguistic features, such
as phone transcriptions and prosodic structures, from input texts. Acoustic modeling
aims to represent the mapping relationship between linguistic and acoustic features us-
ing statistical models [3]. Vocoders [4,5] are utilized to reconstruct speech waveforms
from the predicted acoustic features at the synthesis time. Recently, neural-network-based
sequence-to-sequence (Seq2Seq) acoustic models such as Tacotron [6] and Tacotron2 [7], and
neural vocoders such as WaveNet [5] have been proposed and improved the naturalness of
SPSS significantly.

The attention mechanism imitates the human brain. For example, human vision can
quickly scan the image to obtain the target area that needs to be focused on, and then
put more attention on this area to obtain more detailed information about the target. The
Seq2Seq acoustic models also uses an attention mechanism to bridge the encoder and
decoder, then the decoder pays attention to different parts of the input text to generate
the corresponding acoustic features of each frame. One issue with the original Tacotron is
that its attention mechanism is not robust enough, which may lead to errors in predicted
acoustic features, such as repeating, skipping, and attention collapse. Repeating refers to
the fact that too much attention stays on a certain input, resulting in a stuttering feeling in
the synthetic speech. Skipping refers to the fact that too little attention stays on a certain
input, resulting in missing words in the synthetic speech. Attention collapse refers to the

Appl. Sci. 2021, 11, 10475. https://doi.org/10.3390/app112110475 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5263-365X
https://doi.org/10.3390/app112110475
https://doi.org/10.3390/app112110475
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110475
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110475?type=check_update&version=1


Appl. Sci. 2021, 11, 10475 2 of 9

fact that the attention mechanism does not know which part in the text to pay attention to,
resulting in unintelligible synthetic speech. One approach to alleviate this issue is to modify
the attention mechanism utilizing the monotonic property of the alignment between phone
sequences and acoustic feature sequences. Some improved attention techniques, such as
forward attention [8] and stepwise monotonic attention (SMA) [9], have been proposed.
In SMA, alignment paths were constrained to be strictly stepwise and monotonic, which
meant that the attention at each decoding step can only choose staying at the same phone
or to moving forward to the next phone, without moving backward and skipping. This
strategy improved the robustness of Seq2Seq speech synthesis effectively.

On the other hand, phrase boundaries [10] are important prosodic labels for speech
synthesis and they are usually indicated by pauses in continuous speech. Figure 1 shows
the waveform and the aligned transcription for an example sentence. We can see that
each phrase boundary (<pb>) corresponds to a short pause (sp) in this sentence. However,
the phone sequences derived by grapheme-to-phoneme (G2P) conversion [11] may not
contain the pauses at the phrase boundaries in utterances, considering the costs of labeling
phrase boundaries at the training stage and predicting them at the synthesis time, especially
for low-resource languages. The lack of explicit pause positions challenges the assumption
of strictly stepwise alignment in SMA and may degrade the quality of synthetic speech
when phrase boundaries are not available.

薄 弱 校 <pb>经 费 少 <pb>条 件 差 <pb>待 遇 低 <pb>人 才 留 不 住 <pb> 有 的 中 学 <pb>竟 连 语 文 数 学 课 <pb> 都 需 <pb>外 聘 教 师

sp sp sp sp sp sp sp sp

Figure 1. The waveform and aligned transcription for an example sentence, where <pb> means
phrase boundary. The pink segments indicate the positions of short pauses (sp) in the waveforms.
The English translation of this sentence is “The weak schools with low funding, poor conditions
and low salaries are unable to retain talents. Some middle schools even need external teachers for
Chinese and mathematics classes”.

Therefore, this paper proposes to insert hidden states into phone sequences to deal
with the situation that pauses are not provided explicitly, and designs a semi-stepwise
monotonic attention (SSMA) to model these inserted hidden states as the standard SMA
cannot handle these states very well. In this method, hidden states are employed to
absorb the pause segments in utterances using an unsupervised way. In comparison with
SMA, the attention of SSMA at each decoding frame has three options for the next frame,
including moving forward to the next phone, staying at the same phone, or jumping to the
hidden state. Experimental results show that SSMA outperformed SMA in both objective
and subjective evaluations when phrase boundaries are not given. Furthermore, the F1
score between the pause positions derived from the alignment paths of SSMA and the
manually labeled phrase boundaries was 56.22%, which demonstrated the ability of SSMA
on learning phrase boundaries without supervision.

The paper is organized as follows. Section 2 briefly review the existing stepwise mono-
tonic attention mechanism. Section 3 introduces our proposed method. Sections 4 and 5
are experimental results and conclusions.

2. Related Work

The Tacotron [6] model unified acoustic modeling and duration modeling in a single
model, and adopted a simple additive attention mechanism [12] to calculate the attention
weights by query and keys. Further, Tacotron2 [7] used a location-sensitive attention
mechanism [13], but there were still alignment errors, especially for out-of-domain texts.
The alignment errors led to robustness problems in the predicted acoustic features, such
as repeating, skipping, and failing to stop. To alleviate these problems, a number of
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methods have been proposed, including non-autoregressive acoustic models with explicit
phone duration modeling [14,15] and improved attention mechanisms, such as forward
attention [8], stepwise monotonic attention (SMA) [9] and location-relative attention [16].

Among them, SMA [9] applied strictly stepwise and monotonic constraints to align-
ment paths. Its mechanism is described in Algorithm 1, where W , V , U, v and b are
trainable weights, G denotes weights of convolution kernels, σ is sigmoid function, θ is
the Heaviside step function, and γ is a trainable weight to control the strength of Gaus-
sian noise.

Algorithm 1: Stepwise Monotonic Attention (SMA).

Input: query vector qt, key vectors K = {k1, k2, . . . , kN}, previous attention
weights at−1, mode ∈ {hard, so f t}

Output: attention weights at = {at1, at2, . . . , atN}, context vector ct
if t = 1 then

at1 ← 1; {at2, at3, . . . , atN} ← 0;
else

F={ f 1, f 2, . . . , f N} ← G ∗ ai−1;
// ∗ means convolution operation.
for n← 1 to N do

et,n ← v>tanh(Wqt + Vkn + U f n) + b;
if mode = soft then

pt,n ← σ(et,n + γN (0, 1));
else if mode = hard then

pt,n ← θ(et,n);
end

end

at ← at−1 · pt +
[
0; at−1,1:N−1 · (1− pt,1:N−1)

]
;

// · means element-wise product.
// 1 : N − 1 means the index range.
// at are normalized.

end
ct ← ∑N

n=1 at,n kn;
return at, ct;

At the first decoding step, the attention weights are manually set as one for the first
phone, and zero for the rest phones considering the phone sequence is monotonically
aligned with the acoustic feature sequence. Starting from the second decoding step, the at-
tention weights are calculated recursively. The SMA calculates energy value et,n based on
query value qt in the decoder, key values K = {k1, k2, . . . , kN} in the encoder outputs and
location features F. Then “selection probability” pt,n based on energy value is computed
by a sigmoid function. To sharpen the probability of the output, SMA adds Gaussian noise
to energy values before feeding them into the sigmoid function. In order to achieve a
monotonic and non-skipping attention mechanism, the attention weights at are calculated
based on the previous attention weights at−1 and “selection probability” pt as shown in
Algorithm 1. SMA adopted probability-based soft alignment at the training stage, and can
choose between soft and hard alignments at the synthesis stage.

3. Proposed Methods

We propose to insert a hidden state between every two adjacent phones. To deal with
these inserted hidden states, we propose a semi-stepwise monotonic attention (SSMA),
as shown in Figure 2. The SSMA mechanism is a modification of the SMA mechanism,
that can deal with the situation that there are missing pause labels in phone sequences due
to the lack of explicit phrase boundaries. These hidden states are expected to absorb the
decoding frames that correspond to pauses. We name it “semi-stepwise” because these
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hidden states are skippable if there is no pause between two adjacent phones, thus the
alignment paths are not strictly stepwise.

t = 1 t = 2 t = 3
a11

a13

a22a12

a21

a23

a31

a32

a33

pc→c21

p c→h21

pc→c22

p c→
n

21
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1 − p h→h3
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n
32
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1 − p h→h2

l11

l12

Figure 2. Schematic diagram of SSMA with t ∈ {1, 2, 3} and n ∈ {1, 2}. The dashed circles denote
hidden states at each decoding step. The definitions of the symbols in this figure can be found in
Section 3.

At the t-th decoding step, atn denotes the attention weight of the n-th phone, and ltn de-
notes the attention weight of the hidden state after the n-th phone. We have ∑n(atn + ltn) = 1.
As shown in Figure 2, the attention at the n-th phone of the (t− 1)-th decoding step has
three choices to derive the attention of the t-th decoding step, staying at current phone,
jumping forward to the next phone, or jumping to the hidden state after current phone. Let
pc→c

t,n ,pc→n
t,n and pc→h

t,n denote the probability of these three choices, respectively, and their
sum should be 1. Moreover, the attention at a hidden state of the (t− 1)-th decoding step
has two choices to derive the attention of the t-th decoding step, staying at current hidden
state or jumping to the next phone. Let ph→h

t and 1− ph→h
t denote the probability of these

two choices, respectively.
Similar to Algorithm 1 for SMA, the attention weights at = {at1, at2, . . . , atN} and

lt = {lt1, lt2, . . . , lt,N−1} are calculated in a recursive way. The detailed pseudo-code is
shown in Algorithm 2, where W , V , v, b, W l , V l , vl , bl , U, V ′ and b′ are trainable weights.

When t = 1, the attention weights are manually set as one for the first phone, and zero
for the rest phones and hidden states. Considering that a phone at the t-th decoding step
has three options to choose the attention for the next decoding step, a two-level prediction
strategy based on location-sensitive attention [13] is adopted to calculate the probabilities
of these options. Specifically, we first predict the staying probability pc→c

t and then predict
the proportion of pc→n

t ./(pc→n
t + pc→h

t ), where ./ denotes element-wise division. In order
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to enhance the query effectiveness, a query matrix q′t is calculated using a deep neural
network (DNN). The DNN model accepts three inputs, i.e., the query qt, the keys K and
the location vectors F. The probability pc→c

t,n is calculated by DNN using q′t,n and kn. The
probability pc→n

t,n /(pc→n
t,n + pc→h

t,n ) is calculated by the DNN using q′t,n and kn+1. An end-
of-sentence (EOS) embedding vector is taught to replace kn+1 when n is index of the last
phone. Then, pc→n

t and pc→h
t can be derived from pc→c

t and pc→n
t ./(pc→n

t + pc→h
t ). In

our preliminary experiments, we found that this strategy can obtain higher naturalness of
synthetic speech than using Gumbel-Softmax [17]. To calculate the staying probability on
hidden states ph→h

t , we simply use a DNN. The DNN model accepts two inputs, i.e., the
query vector qt and the hidden state embedding kl . The DNN first predicts el

t, and then the
trick of adding-noise and a sigmoid function are applied again to calculate ph→h

t . Finally,
the attention weights at and lt are calculated recursively and the context vector ct is
updated accordingly.

Algorithm 2: Semi-Stepwise Monotonic Attention.

Input: query vector qt, key vectors K={k1, k2, . . . , kN}, hidden state embedding
vector kl , previous attention weights at−1 and lt−1, mode ∈ {hard, so f t}

Output: attention weights at = {at1, at2, . . . , atN} and lt = {lt1, lt2, . . . , lt,N−1},
context vector ct

if t = 1 then
at1 ← 1; {lt1, at2, lt2, . . . , atN} ← 0;

else
F={ f 1, f 2, . . . , f N} ← G ∗ ai−1;

el
t ← (vl)>tanh

(
W lqt + V lkl

)
+ bl ;

for n← 1 to N do
q′t,n = V ′>tanh(Wqt + Vkn + U f n) + b′;

es
t,n ← v>tanh

(
q′t,n + Vkn

)
+ b;

ej
t,n ← v>tanh

(
q′t,n + Vkn+1

)
+ b;

if mode = soft then
pc→c

t,n ← σ(es
t,n + γN (0, 1));

pc→n
t,n ← (1− pc→c

t,n )σ(ej
t,n + γN (0, 1));

pc→h
t,n ← (1− pc→c

t,n )(1− σ(ej
t,n + γN (0, 1)));

ph→h
t ← σ(el

t + γN (0, 1));
else if mode = hard then

pc→c
t,n ← σ(es

t,n);

pc→n
t,n ← (1− pc→c

t,n )σ(ej
t,n);

pc→h
t,n ← (1− pc→c

t,n )(1− σ(ej
t,n));

{pc→c
t,n , pc→n

t,n , pc→h
t,n } ← binary(pc→c

t,n , pc→n
t,n , pc→h

t,n );
ph→h

t ← θ(el
t);

end
end

at ← at−1 · pc→c
t +

[
0; at−1,1:N−1 · pc→n

t,1:N−1

]
+
[
0; (1− ph→h

t )lt−1

]
;

lt ← ph→h
t lt−1 + at−1,1:N−1 · pc→h

t,1:N−1;
// {at; lt} are normalized.

end
ct ← ∑N

n=1 at,nkn + kl ∑N−1
n=1 lt,n;

return at, lt, ct;

At the training stage, pc→c
t,n , pc→n

t,n , pc→h
t,n and ph→h

t are computed in the probability-
based soft mode. In the inference stage, the hard mode is adopted. In the hard mode, the
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maximum value among pc→c
t,n , pc→n

t,n and pc→h
t,n is set to 1 and the other two values are set to

0, as indicated by the binary function in Algorithm 2. ph→h
t also becomes 0 or 1.

4. Experiments
4.1. Experimental Setup

A Chinese corpus pronounced by a female speaker was used in our experiments.
The scripts were selected from newspapers, and the recordings were sampled at 16 kHz
with 16 bits resolution. The total 12,319 utterances (≈17.51 h) were split into a training
set of 11,608 utterances, a validation set of 611 utterances and a test set of 100 sentences.
The training set was used to train acoustic models and the validation set was used to
tune hyperparameters.

A publicly available implementation of Tacotron2 (https://github.com/NVIDIA/
tacotron2, accessed on 12 June 2020) was utilized as the basis of our implementation.
When training the model, 80-band mel-spectrograms were used as the acoustic features.
The frame length was 64 ms and the frame shift was 15 ms. Phone sequences were
adopted as model input and the initials and finals of Mandarin Chinese were treated as
phones for simplification. A phone embedding vector, a tone embedding vector and a
prosodic position embedding vector were concatenated to represent each phone. The Adam
optimizer [18] was used, the training epochs were 200 and the training batch size was 80.
The initial learning rate was 1 × 10−3, and then the learning rate exponential decayed
by 0.9 times every 10 epochs. A WaveNet vocoder was built to reconstruct waveforms in
our experiments.

Finally, three Tacotron2-based acoustic models were built for comparison. (Audio sam-
ples are available at https://xiaozhah.github.io/SSMA_demos, accessed on 17 April 2021).

SMA-PB The attention mechanism was stepwise monotonic attention (SMA) [9]. In both
training and synthesis stages, the phrase boundaries of texts were not available.
The initial bias b was 3.5 and the noise scale γ was 2.0. The soft mode was used
at the training stage, while the hard mode was used at the synthesis stage.

SSMA-PB This model adopted SSMA instead of SMA and other model structure and
hyperparameters were the same as SMA-PB. In both training or synthesis stage,
this model used the same data as SMA-PB. The initial bias b and bl was 3.5,
and the noise scale γ was 2.0. The soft mode was used at the training stage,
while the hard mode was used at the synthesis stage.

SMA+PB This model had the same structure and hyperparameters as SMA. In both
training and synthesis stages, this model used the texts with manually labeled
phrase boundaries.

4.2. Objective Evaluation

The objective performance of SMA-PB, SSMA-PB, and SMA+PB on predicting the
acoustic features of test sentences was evaluated. The metrics included mel-cepstral
distortion (MCD), F0 root mean square error (RMSE), F0 correlation (CORR), and un-
voiced/voiced (UV) error percentage. The frame-level MCD was calculated as:

MCD =
10

log 10

√√√√2
M

∑
m=1

(cr(m)− cs(m))2, (1)

where cr and cs are mel-cepstral coefficients (MCCs) from natural and synthetic speech,
respectively, and M is their order. The frame-level F0 RMSE was calculated as:

RMSE = 1200
√
(log2(Fr)− log2(Fs))

2, (2)

where Fr and Fs represents F0 values extracted from natural and synthetic speech, respec-
tively. The F0 CORR was defined as the F0 values correlation coefficient between synthetic

https://github.com/NVIDIA/tacotron2
https://github.com/NVIDIA/tacotron2
https://xiaozhah.github.io/SSMA_demos
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speech and natural speech in the voiced segment. The UV error percentage was the ratio
of the number of unmatched U/V frames between natural and synthetic speech to the
total number of frames. For calculating the four metrics, twelve-dimensional MCCs, and
F0 values were extracted from synthetic speech at 5 ms frame shift by STRAIGHT [19]
analysis. The FastDTW algorithm [20] based on MCCs was adopted to align predicted
acoustic features toward reference ones for calculating the four metrics. The results are
shown in Table 1.

Table 1. Objective performance of SMA-PB, SSMA-PB, and SMA+PB on predicting the acoustic
features of test sentences, where MCD, RMSE, CORR, and UV denote the mel-cepstral distortion,
F0 root mean square error, F0 correlation, and UV error percentage, respectively.

MCD (dB) RMSE (Hz) CORR UV (%)

SMA-PB 3.73 46.49 0.83 7.77
SSMA-PB 3.65 46.13 0.83 7.78
SMA+PB 3.53 41.95 0.88 7.00

From this figure, we can see that SMA+PB achieved the best accuracy of acoustic fea-
ture prediction. This is reasonable since it utilized manually labeled phrase boundaries in
both training and synthesis stages. Comparing SMA-PB with SMA+PB, it can be found that
the objective performance of SMA degraded significantly when phrase boundaries were
not available. Comparing SMA-PB, SSMA-PB achieved smaller MCD and comparable F0
distortion, which may be that the MCD was more related to pause segments in utterances.

4.3. Subjective Evaluation

Twenty sentences with at least one phrase boundary were randomly selected from the
test set. These phrase boundaries were not used when synthesizing them with SMA-PB
and SSMA-PB. The utterances synthesized using the SMA-PB, SSMA-PB, and SMA+PB
systems were compared by two groups of AB preference tests on their naturalness. In each
test, the synthetic utterances of two systems were evaluated in random order by 11 native
listeners. The listeners were asked to judge which sentence in each pair sounded more
natural or there was no preference. The average preference scores are shown in Table 2.
Each row in the Table 2 compares whether there are significant differences in different
systems. The percentage of the better system is shown in bold format.

Table 2. Subjective preference scores (%) among SMA-PB, SSMA-PB, and SMA+PB systems on the
test set, where N/P denotes “No Preference” and p means the p-value of t-test between two systems.

SMA-PB SSMA-PB SMA+PB N/P p

21.36 54.55 - 24.09 <0.001
- 26.36 45.91 27.73 <0.001

From this table, we can see that the SSMA-PB system outperformed the SMA-PB
system significantly with p < 0.001. This result indicates that using SSMA helped Tacotron2
to synthesize speech with better naturalness when phrase boundaries were not given in
both training and synthesis stages. On the other hand, the subjective performance of SSMA-
PB was still not as good as SMA+PB which utilized manually labeled phrase boundaries
(p < 0.001).

4.4. Discussions

To explore the interpretability of our proposed SSMA method, two experiments were
conducted to evaluate the consistency between the pause positions derived from SSMA-
based alignment and manually labeled phrase boundaries.
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4.4.1. Predicting Phrase Boundaries from Texts

This experiment evaluated the accuracy of predicting phrase boundaries from texts
using the pause positions determined by SSMA at the inference stage. The sentences in
the test set were synthesized by SSMA-PB with hard mode. If the hidden state between
two adjacent phones was assigned more than one frame at the decoding time, a phrase
boundary was predicted between these two phones. The hidden states adjacent to silence
phones were not considered. Evaluation metrics included the precision, recall, and F1 score
of predicting phrase boundaries. The results are shown in the first row of Table 3. We can see
that SSMA-PB achieved a recall of 73.61%, which means that most true phrase boundaries
can be found by SSMA-based decoding. However, its precision was much lower. One
possible reason is that there were short pauses determined by SSMA, which may not
correspond to true phrase boundaries. It should be noticed that SSMA-PB predicted phrase
boundaries in an unsupervised way, i.e., no phrase boundary annotations were utilized at
the training stage.

Table 3. Precision (%), Recall (%), and F1 score (%) of the SSMA-PB system on predicting phrase
boundaries from texts and annotating phrase boundaries by forced-alignment.

Precision Recall F1 Score

Prediction 32.72 73.61 45.31
Annotation 43.67 78.89 56.22

4.4.2. Annotation Phrase Boundaries by Forced Alignment

This experiment evaluated the accuracy of annotating phrase boundaries by SSMA-
based forced alignment when both texts and recordings were given. In this case, the de-
coder was conducted in a teacher-forcing way, which means that the true history of the
mel-spectrogram was used as input at each decoding step. After alignment paths were
calculated, the phrase boundaries were annotated following the conditions used in pre-
vious experiment. The results of phrase boundary annotation are shown in the second
row of Table 3, where the same metrics used in previous experiment were employed. We
can see that SSMA-based phrase boundary annotation achieved higher precision, recall,
and F1 score than SSMA-based phrase boundary prediction. This is reasonable because
the former utilized both textual and acoustic information. The F1 score of SSMA-PB on
annotating phrase boundaries was 56.22%, which shows that without supervision those
taught hidden state positions in SSMA did have a strong correlation with manually labeled
phrase boundaries.

5. Conclusions

This paper has proposed a semi-stepwise monotonic attention (SSMA) method to
improve the performance of sequence-to-sequence (Seq2Seq) speech synthesis when phrase
boundaries are not available in both training and synthesis stages. In this method, hidden
states are added between adjacent phones to model the possible pauses between them.
Thus, the attention to a phone at each decoding step has three options for the next decoding
step, moving forward to the next phone, staying at the same phone, or jumping to a
hidden state. Then, an algorithm was designed to calculate the attention weights of SSMA
in a recursive way. Experimental results show that SSMA achieved better subjective
performance than SMA when phrase boundaries are not available, which is quite suitable
for low-resource languages that lack phrase boundaries. To improve the accuracy of SSMA-
based unsupervised phrase boundary annotation and to evaluate our proposed method
using the datasets of more languages will be the tasks of our future work.
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