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Abstract: Static corrective controllers are more efficient than dynamic ones since they consist of
only logic elements, whereas their existence conditions are more restrictive. In this paper, we
present a static corrective control scheme for fault diagnosis and fault tolerant control of input/state
asynchronous sequential machines (ASMs) vulnerable to transient faults. The design flexibility of
static controllers is enlarged by virtue of using a diagnoser and state bursts. Necessary and sufficient
conditions for the existence of a diagnoser and static fault tolerant controller are presented, and the
process of controller synthesis is addressed based on the derived condition. Illustrative examples on
practical ASMs are provided to show the applicability of the proposed scheme.

Keywords: asynchronous sequential machines (ASMs); static corrective control; fault tolerant control;
diagnoser; state bursts

1. Introduction

Aiming at compensating for the stable-state behavior of asynchronous sequential ma-
chines (ASMs), corrective control theory has been extensively studied in both theoretical [1–5]
and experimental studies [6–8]. While the performance of corrective control is remarkable,
especially in fault tolerant control against various kinds of faults [9–11], most of the de-
veloped controllers are dynamic ones having the form of ASMs with states, which need
significant resource usage [7,8].

Static corrective controllers [12,13] are a promising alternative to dynamic ones. Con-
sisting of only combinational logic with no states, static controllers are superior to dynamic
ones in terms of not only resource usage, but also robustness against exogenous dis-
turbances, as memory elements representing system states are frequently offended by
faults [14,15]. On the other hand, they have a drawback in that their existence conditions
are more restrictive than dynamic ones, due to the absence of the controller’s states. In this
paper, a novel methodology of static fault tolerant control is proposed for ASMs subject to
transient faults causing unauthorized state transitions. We address the existence condition
and synthesis procedure for a static controller that realizes immediate fault recovery.

Compared with the prior work [12,13], this study has the following contributions.
First, we show that static corrective control can be adopted to solve various control prob-
lems for ASMs. The objective in [12,13] was model matching, namely, refining the stable-
state behavior of the closed-loop system to that of a reference model. The present work
extends that of [12,13] so as to achieve fault diagnosis and fault tolerance. Next, the condi-
tion for designing a static controller is much improved. In [12,13], the flexibility of the static
controller is restrictive since the control input is determined only by the external input and
state feedback. To alleviate this harshness, we use a diagnoser that detects and isolates
every fault occurrence and provides the fault information by switching an indicator signal.
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With this additional argument, the static controller is given greater easiness in generating
the control input. The reachability condition required for the proposed controller is the
same as that for dynamic ones. To facilitate the design of a diagnoser and controller, we
utilize the state burst, or the fast sequence of transient states traversed by the machine
during transitions.

As a similar subject to the present study, the diagnosability of discrete event systems
(DESs) is much investigated in supervisory control of DESs [16–20]. The proposed diag-
noser differs from these results in that while the diagnosers in supervisory control receive
traces of inputs (events), the proposed diagnoser utilizes stable bursts traversed by the
ASM. Moreover, the diagnosers in supervisory control cannot be applied to corrective
control since they do not discriminate between stable and transient states, nor do they
comply with fundamental mode operations.

Here, transient faults are referred to as short-lived violation of the system’s normal
behavior, each fault showing no correlation with one another. Typical examples of transient
faults include radiation particles, surging voltage, etc. Though not considered in this paper,
there are other types of faults—permanent faults and intermittent ones. If the adverse
effect of a fault persists indefinitely, it is classified as a permanent fault. Occurrences of
permanent faults are mainly attributed to a physical defect or an inadequacy in the design
of the system. On the other hand, an intermittent fault is a malfunction of a device or
system that occurs at intervals. It may be caused by unstable or marginally stable hardware
or inadequacy in the design, for example, by loose wires [21].

The outcome of transient faults caused by the adversarial input bears a strong resem-
blance to intelligent attacks in cyber–physical systems, where attackers may change the
enablement of actuators commanded by a supervisor or sensor readings of the controlled
system [22–24]. However, the adversarial input addressed in this study does not come from
an intelligent entity; it is regarded as a randomly generated outer disturbance, e.g., single
event upset (SEU) faults in radiation environments [14,15], or intrinsic faults occurring to
the actuator [25–27]. Still, the considered fault situation is severe since the transient fault
may occur at arbitrary moments.

Fault diagnosis and fault tolerant control is an area of active research not only in
event-driven systems, but also in continuous-time dynamic systems. Notable among the
recent results is [28] that addresses adverse effects on time delay between fault occurrence
and fault accommodation in T–S fuzzy systems. Further, references [29,30] present active
fault tolerant control for overcoming un-modeled actuator faults while considering time
delay attributed to fault diagnosis. Transient faults in our study are conceptually similar to
actuator faults, although the results of [25–27,29,30] are not applicable to controlling ASMs.

The remainder of this paper is organized as follows. In Section 2, we first address
the mathematical formulation of input/state ASMs with transient faults and the overall
structure of static fault tolerant control with a diagnoser. In Section 3, we present the
operation of a diagnoser that can detect and isolate unauthorized transitions. Based on the
fault indicator signal generated by the diagnoser, we elucidate in Section 4 the necessary
and sufficient condition and synthesis procedure for a static corrective controller that
realizes immediate fault recovery against every transient fault. Two illustrative examples
are provided in Section 5 to demonstrate the design procedure of the proposed static
controller. Finally, some conclusions are drawn in Section 6.

2. Preliminaries

For a finite set D, |D| is the cardinality of D, and D` is the set of non-empty strings
made of characters in D. For p, q P D`, |p| P N is the length of p, p is a strict prefix of q if
q “ pr with r P D`. sppqq Ă D` denotes the set of all strict prefixes of q. We also denote
N0 :“ t0, 1, . . . , nu for some n P N. Table 1 summarizes the notations used in this paper.
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Table 1. Nomenclature.

Symbol Definition

Σ, Σ1 Input/state ASM
C Static corrective controller
G Diagnoser
A Input set

An, Ad Ă A Normal and adversarial input set
X State set

Upxq Ă A Set of inputs making stable pairs with x P X
Tpxq Ă A Set of inputs making transient pairs with x P X

f State transition function of Σ
s, s1 Stable recursion function of Σ and Σ1

αpx, uq P X` State burst with respect to x P X and u P A
z f , zl P X First and last element of state burst z P X`

Wpxq Ă Ad Set of adversarial inputs that occur at x P X
Γpxq Ă X Set of states reached as a result of Wpxq

ASMs are classified as input/state machines in which the current state is given as the
output, and input/output ones that generate the output different from the state. In this
study, we focus our concern on input/state ASMs. An input/state ASM Σ is modeled by a
quadruple as follows:

Σ “ pA, X, x̄, f q,

where A is the input set, X “ tx1, . . . , xnu with |X| “ n is the state set, x̄ P X is the initial
state, and f : Xˆ A Ñ X is the state transition function partially defined on Xˆ A. A is
divided into A “ An 9YAd where An and Ad are the set of normal and adversarial inputs,
respectively. px, vq P X ˆ A is valid if f px, vq is defined. A valid pair px, vq is stable if
f px, vq “ x, and transient if f px, vq ‰ x. Let

Upxq :“ tv P A| f px, vq “ xu and

Tpxq :“ tv P A| f px, vq ‰ xu

denote the set of inputs that make stable and transient pairs with x, respectively.
Owing to the absence of a synchronizing clock, Σ responds only to the input change.

It rests in a stable pair px0, a1qwith a1 P Upx0q indefinitely as long as a1 remains fixed. If a1

changes to another value a P Tpx0q, Σ engages in a chain of transient transitions as follows:

f px0, aq “ x1, f px1, aq “ x2, . . . , (1)

while a remains fixed. Provided that Σ possesses no infinite cycles, Σ reaches the next
stable state as follows:

f pxk, aq “ f pxk´1, aq “ xk (2)

after k steps, where 1 ď k ď n´ 1. As transient states are traversed instantaneously, it
is convenient to describe this chain of transitions only in terms of stable states, omitting
instantaneous transient transitions. To this end, the stable recursion function s [1,9] is
defined on every valid pair as follows:

s : Xˆ A Ñ X, spx, vq :“ x1,



Appl. Sci. 2021, 11, 9790 4 of 15

where x1 is the next stable state of px, vq. If px, vq is a stable pair, spx, vq :“ x. The chain of
transient transitions characterized by s is termed a stable transition. In this study, spx, vq “ x1

is alternatively described as follows:

px, v, x1q P s ô spx, vq “ x1.

The domain of s is often extended to Xˆ A`n through the following relation:

spx, v1v2 ¨ ¨ ¨ vkq :“ spspx, v1q, v2 ¨ ¨ ¨ vkq, v1v2 ¨ ¨ ¨ vk P A`n .

where x1 is said to be stably reachable from x if spx, tq “ x1 for some t P A`n [1,9]. With |X| “ n,
every state of Σ is stably reachable in at most n´ 1 steps of stable transitions. Thus, the
length of t is bounded by 1 ď |t| ď n´ 1.

When Σ goes through a stable transition, it generates a state burst [31], or a fast state
sequence consisting of underlying transient states and next stable state. If each generated
state is separately delivered to the controller, the resultant configuration has the state
feedback control mechanism. If, on the other hand, the controller has access to the state
burst, the closed-loop system is endowed with burst-feedback control. In this study, we
utilize the burst feedback control scheme, as it gives more flexibility of controller synthesis,
albeit needing an additional resource to record the state burst.

The state burst of a valid state–input pair is described as the following mapping:

α : Xˆ A Ñ X`.

αpx, uq P X` denotes the state burst with respect to a valid pair px, uq P X ˆ A, namely,
αpx, uq is generated when Σ takes the stable transition from px, uq. For instance, px0, aq
addressed in (1) and (2) leads to the following state burst:

αpx0, aq “ x0x1 ¨ ¨ ¨ xk.

For a state burst z P X`, let z f P X and zl P X be its first and last element, respectively.
In terms of the foregoing notations, α f px0, aq “ x0 and αlpx0, aq “ xk.

Figure 1 shows the proposed static fault tolerant corrective control system, where C
is the static corrective controller, G is the diagnoser, v P An is the external input, u P An
is the control input provided by C, w P Ad is the adversarial input, z P X` is the state
burst, and x P X and m P N0 are respectively the state feedback and the fault indicator
signal generated by G. Σc denotes the closed-loop system consisting of Σ, C, and G.
When w enters Σc, it overrides u and causes a transient fault, forcing Σ to undergo an
unauthorized state transition whenever it is valid with respect to the current state. w
represents an external disturbance that infiltrates into Σc through the control input channel.
As addressed before, a typical instance of w is an SEU fault [14,15] that upsets the logic
value of memory bits expressing the control input. Inherent mechanical or electrical faults
to the actuator can be also modeled by w.

C Σ
v u z

Σc

w

G

(x,m)

Figure 1. Static corrective control system with a diagnoser.
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For x P X, let

Wpxq :“ Tpxq X Ad

be the set of adversarial inputs that cause unauthorized transitions to Σ when it stays at
the stable state x, and let

Γpxq :“ tspx, wq|w P Wpxqu

be the set of states Σ reaches as a result of a transient fault occurring at x. Note that w is
unobservable from both C and G, which fits into the characteristics of adversarial entities.

G provides C with the next stable state x P X and the fault indicator signal m P N0
based on the state burst z and the control input u. Thus G has the following mapping:

G : X` ˆ An Ñ Xˆ N0.

With the state notation X “ tx1, . . . , xnu, m “ 0 indicates that Σ has undergone a
nominal stable transition. On the other hand, m “ i ‰ 0 implies that Σ has undergone an
unauthorized transition from xi caused by an unspecified adversarial input w P Wpxiq.

Referring to Figure 1, C receives the input triplet px, v, mq and generates the control
input u as the output. Being a static controller, C is represented by the following function:

C : Xˆ An ˆ N0 Ñ An.

During the normal behavior of Σ, C just relays the external input to Σ without modifi-
cation. When a transient fault is diagnosed, C provides appropriate control input sequences.
The control objective is to achieve immediate fault recovery, namely, to take Σ from the
faulty state to the original state at which the fault occurs before further change in the exter-
nal input. Since neither C nor G is governed by a synchronizing clock, their operations are
also conducted instantaneously under asynchrony. Hence the procedure of fault diagnosis
and fault tolerant control can be completed before the external input changes to the next
value, rendering Σc to show the normal input/state behavior as if no fault has happened.

Σc is assumed to preserve fundamental mode operations [32], wherein no two vari-
ables change simultaneously. Under the fundamental mode, w is supposed to occur to Σ
only when Σ stays at a stable state. This is not a burdensome constraint since the speed of
transient transitions is so fast that the possibility of fault occurrences during the transitions
is negligible. Hence the stable state at which the fault occurs serves as the goal state for
the corresponding fault tolerant control. In a similar sense, it is also supposed that v is not
altered during the correction procedure.

Remark 1. Whereas the present study focuses on transient faults of which influence on the machine
vanishes right after its occurrence, there exist other kinds of faults differing in the durability of their
influences. If the adverse effect persists for a finite time after initial occurrence, the fault is termed
an intermittent fault [33]; if the effect remains indefinitely (or irreversible), it is termed a permanent
fault [34]. For input/state ASMs, fault recovery is impossible for either intermittent or permanent
faults since immediate return to the original state cannot be implemented. The latter problem can be
tackled for input/output ASMs, where the output differs from the present state [35], or switched
ASMs that possess redundant states which may substitute faulty states [8].

Remark 2. In the field of DESs, the stability and stabilizability of the system under static feedback
control means that starting from any arbitrary initial state, the system can (or can be controlled to)
go to a “legal state” and stay there after a finite number of transitions [36]. In our problem setting,
the original state at which a fault occurs can be regarded as a legal state. With no infinite cycles,
further, fault recovery implies that Σ must be controlled to the original state in finite steps of stable
transitions. In this sense, the fault tolerant controllability of Σ is equivalent to the stabilizability of
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DESs in supervisory control. Note that a stable pair px, vq P Xˆ A just implies that x is a fixed
point of f , irrelevant to the stability of Σ.

3. Diagnoser

For G to determine whether or not a transient fault occurs, z f and zl of the current
state burst z are investigated with respect to u P An. Assume first that pz f , u, zlq P s. This

implies that Σ undergoes a nominal stable transition z f
u
ÝÑ zl . To signify this, we assign the

fault indicator signal m :“ 0. Accordingly, G is set to be Gpz, uq :“ pzl , 0q if pz f , u, zlq P s.
On the other hand, assume that pz f , u, zlq R s. This elucidates that the latest stable

transition is caused not by u, but by w P Wpz f q such that spz f , wq “ zl and zl P Γpz f q. In this
case, we assign m :“ i P N0zt0u, where i is the index of the state at which the fault occurs,
i.e., z f “ xi. Hence Gpz, uq :“ pzl , iq if pz f , u, zlq R s and z f “ xi.

Once a transient fault is diagnosed, Σ is controlled to return to the original state xi
via a chain of stable transitions. This means that after diagnosing a transient fault, G
receives a sequence of pairs of state bursts and control inputs characterizing nominal
stable transitions. Since the procedure of fault recovery persists until Σ reaches xi, G
must continue to give the same fault indicator signal m “ i unless the state feedback xi is
received. Thus m of Gpz, uq is set to be unchanged if pz f , u, zlq P s, mo “ i ‰ 0, and zl ‰ xi,
where mo is the previous value of m.

Finally, assume that fault recovery is accomplished as Σ reaches xi. Upon receiving the
state feedback xi, G must signify the end of the recovery procedure. Hence G is designed
to generate m “ 0 at this phase, or Gpz, uq :“ pzl , 0q if pz f , u, zlq P s, mo “ i, and zl “ xi.

Combining the above discussions, we encapsulate the algorithm of fault detection and
isolation by G.

Proposition 1. Algorithm 1 is correct, i.e., fault detection and isolation is characterized by m.

Algorithm 1: Fault detection and isolation by G with X “ tx1, . . . , xnu and
mo P N0 (the previous value of m):

1. Receive z and u, and extract z f and zl from z.
2. If mo “ 0, check pz f , u, zlq:

a. If pz f , u, zlq R s, set m :“ i where z f “ xi.
b. Else if pz f , u, zlq P s, maintain m “ 0.

3. Else if mo “ i ‰ 0, check zl :
a. If zl ‰ xi, maintain m “ i.
b. Else if zl “ xi, set m :“ 0.

4. If m “ i, a transient fault has occurred at xi; else if m “ 0, no fault has occurred
yet or the normal input/state behavior of Σ is recovered.

Proof. In Algorithm 1, the value of m is 0 at either Step 2.b or Step 3.b. The algorithm
goes to Step 2.b when pz f , u, zlq P s. As this indicates the execution of the nominal stable

transition z f
u
ÝÑ zl , no transient fault occurs. Step 3.b implies that after a transient fault at

xi (mo “ i), Σ recovers the normal behavior by reaching xi. Hence m “ 0 corresponds to no
fault occurrence or fault recovery. On the other hand, m is assigned a non-zero index at
either Step 2.a or Step 3.a. Since both steps represent an unauthorized transition from xi or
failure of returning to xi, m “ i serves as the indicator for fault detection and isolation.
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A formal definition of G is constructed from the above algorithm as follows:

Gpz, uq :“

$

’

&

’

%

pzl , iq pz f , u, zlq R s, u P Upz f q, and z f “ xi

pzl , -q pz f , u, zlq P s, mo “ i, and zl ‰ xi

pzl , 0q otherwise

(3)

where ‘-’ in the second line implies ‘unchanged’.
To comply with fundamental mode, G should provide C with px, mq only when Σ

stays at a stable state. To this end, the end of every stable transition must be identified.
In the nominal transitions, it is easily done by referring to z and u since the current stable
transition will end at zl “ spz f , uq. In the case of unauthorized transitions, however, one
must determine it only by referring to z, as w is unobservable. The latter property is termed
fault detectability [31]. The condition for fault detectability with respect to the state burst
is that any state burst generated during the unauthorized transition is not a strict prefix
of another one (Theorem 3.7 of [31]). The underlying reason is obvious as elicited in the
following.

Proposition 2. For x P X with Wpxq ‰ H, Σ is fault detectable at x if and only if αpx, wq R
sppαpx, w1qq, @w, w1 P Wpxq with αpx, wq ‰ αpx, w1q.

Proof. (Only if) Assume that Σ is fault detectable at x but αpx, w1q P sppαpx, w2qq for some
tw1, w2u Ă Wpxq. Assume further that while u remains unchanged, G receives the changed
state burst αpx, w1q. Then, one cannot determine whether w1 occurs so that Σ reaches the
faulty state αlpx, w1q P Γpxq, or w2 occurs so that Σ is on its way to the corresponding
faulty state αlpx, w2q P Γpxq, passing through the intermediate transient state αlpx, w1q. This
contradicts the assumption of fault detectability at x.

(If) Suppose that G receives z “ αpx, wq (w is unknown) such that pz f , u, zlq R s. Since
αpx, wq R sppαpx, w1qq for all w1 P Wpxqwith αpx, wq ‰ αpx, w1q, one can identify the end of
the unauthorized transition merely by referring to z. Hence Σ is fault detectable at x.

4. Controller Synthesis

A necessary condition for taking Σ from a beginning state to a goal state via corrective
control is that the goal state is stably reachable from the beginning state, namely, an input
string exists with which Σ stably reaches the goal state [9]. Such input strings are utilized
by the controller in building feedback paths. For static controllers, another significant
condition must be satisfied with respect to the set of utilized input sequences. Slightly
relaxing the notion presented in [12,13], we define the implementability of static corrective
controllers.

Definition 1. A static corrective controller is said to be implementable with respect to a set of
control input sequences S Ă A` if by utilizing S, the controller’s output is uniquely determined by
each input combination of the controller.

Implementability is necessary for the integrity of the static controller since having
no states, the static controller must always generate a unique output with respect to each
input combination.

The constraint on implementability makes it impossible to apply the previous static
controller [12,13] to fault recovery. To validate the latter assertion, assume that Σ undergoes
an unauthorized transition from x to x1 by w P Wpxq (spx, wq “ x1) during which both
external and control inputs remain a P An. Assume further that x is stably reachable from
x1, e.g., spx1, bcdq “ x for bcd P A`n . If we use the previous static controller

Cp : Xˆ An Ñ An (4)
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with no indicator signal as its argument, we must assign the output b to the input combina-
tion px1, aq to start the correction procedure, that is, Cppx1, aq “ b. However, px1, aqmay be
a valid pair of Σ, e.g., a P Tpx1q. Then, in the normal behavior of Σ, Cp must provide a as
the control input without modification, i.e., one must design Cp such that Cppx1, aq “ a to
maintain the nominal stable transition from px1, aq. Since this conflicts with the foregoing
assignment Cppx1, aq “ b, the previous static corrective controller cannot be applied to the
present problem.

The use of G and the addition of the related argument m to C resolve the afore-
mentioned predicament. m is retained as i throughout the recovery procedure for the
unauthorized transition from xi. Further, G gives C only the next stable state, discard-
ing the underlying transient states. Hence the proposed static controller achieving fault
recovery against Wpxiq can be designed if and only if xi is stably reachable from every
xj P Γpxiq, which equals the following condition for the existence of a corresponding
dynamic controller.

Lemma 1 ([31]). Given Σ with Wpxiq ‰ H for xi P X, a dynamic corrective controller exists that
achieves fault recovery against Wpxiq if and only if the following holds:

@xj P Γpxiq, Dtj,i P A`n : spxj, tj,iq “ xi. (5)

Provided that the above condition is valid, we design the proposed static controller
C : Xˆ An ˆ N0 Ñ An. First, if m “ 0, C just relays the external input to the control input
channel, as no transient fault occurs. For this purpose, we set the following:

Cpx, v, 0q :“ v, @px, vq P Xˆ An. (6)

To design the operation of fault recovery, take an arbitrary faulty state xj P Γpxiq and
denote a proper input string by tj,i :“ t “ u1 ¨ ¨ ¨ u|t| with spxj, tq “ xi. Denote further by
x1, . . . , x|t| P X the intermediate stable states Σ traverses when it undertakes the chain of
stable transitions in response to t, i.e., the following:

spxj, u1 ¨ ¨ ¨ uhq “ xh

spxh´1, uhq “ xh, h “ 1, . . . , |t|,

where x0 “ xj and x|t| “ xi. Suppose that Σ is staying at a stable pair pxi, aqwhen w P Wpxiq

infiltrates into Σ such that spxi, wq “ xj. The input pair of G changes to pαpxi, wq, aq at this
time, where α f pxi, wq “ xi and αlpxi, wq “ xj. Since pxi, a, xjq R s, G generates m “ i
according to (3). Receiving pxj, iq at the instant of the fault occurrence, C commences
the correction procedure by generating u1 until Σ reaches spxj, u1q “ x1. Transient states
underlying between xj and x1 need not be considered since they are discarded by G. Hence
we set C as follows:

Cpxj, a, iq :“ u1. (7)

As soon as the state feedback changes to x1, C provides u2, which takes Σ toward
spxj, u1u2q “ x2, and so on. The following assignment materializes these recursive opera-
tions of C.

Cpxh´1, a, iq :“ uh, h “ 2, . . . , |t|. (8)

Fault recovery is accomplished when Σ reaches xi in response to u|t|. m is reset to 0 at
this time. Since m “ 0, C generates a again as the control input according to (6).

By Definition 1, the control input sequences should be selected in such a way that
C is implementable. We assert that if the reachability condition for a dynamic corrective
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controller is valid for every xi with Wpxiq ‰ H, one can find a set of input sequences for
which C is implementable.

Proposition 3. If Lemma 1 is valid for every xi with Wpxiq ‰ H, a set of control input sequences
exists such that C designed according to (6)–(8) is implementable.

Proof. If |Wpxiq| “ 1, the implementability of C with respect to xi is ensured trivially since
only one input string is used as the control input sequence for the transient fault. Else if
|Wpxiq| ą 1, consider w, w1 P Wpxiq with spxi, wq :“ xj ‰ spxi, w1q :“ xk. By assumption,
t :“ u1 ¨ ¨ ¨ u|t| and r :“ u11 ¨ ¨ ¨ u

1
|r| exist such that spxj, tq “ spxk, rq “ xi. Let Xj,i and Xk,i

be the set of intermediate stable states Σ traverses when Σ undertakes the chain of stable
transitions from xj to xi and from xk to xi, respectively. Then, we have the following:

Xj,i “ txj, spxj, u1q, . . . , spxj, u1 ¨ ¨ ¨ u|t|´1qu

Xk,i “ txk, spxk, u11q, . . . , spxk, u11 ¨ ¨ ¨ u
1
|r|´1qu. (9)

If Xj,i X Xk,i “ H, the use of t and r satisfies the implementability of C since each feedback
path contains no common state. Otherwise, Σ passes through a common state xl P Xj,iXXk,i
when it is driven by C along two state trajectories xj Ñ xi and xk Ñ xi. Specifically, assume
the following:

spxj, u1 ¨ ¨ ¨ upq “ spxk, u11 ¨ ¨ ¨ u
1
qq “ xl

where 0 ď p ă |t| and 0 ď q ă |r| (spxj, u0q :“ xj and spxk, u10q :“ xk). If up`1 “ u1q`1,
the implementability of C is still valid with respect to xl since C will generate the same
output up`1 (“ u1q`1) in response to xl . Else if up`1 ‰ u1q`1, we adjust one of t and
r as follows to satisfy the implementability. First, the suffix lengths |t| ´ p and |r| ´ q
are compared. Suppose that |t| ´ p ą |r| ´ q. Next, the suffix of t is substituted by the
corresponding part of r, i.e., we induce an alternative input string t1 from t and r as follows:

t1 :“ u1 ¨ ¨ ¨ upu1q`1 ¨ ¨ ¨ u
1
|r|.

Since spxj, t1q “ xi by the definition of t and r, t1 can be used instead of t for fault recovery
from xj to xi. It is clear that C is implementable with respect to the derived input sequence.
Since m is distinctive with respect to xi, the latter implies the implementability of C.

In the above proof, the suffix of the previous input sequence with a longer length
(|t| ´ p) is replaced by the shorter one (|r| ´ q). This is intended to reduce the computational
load of the controller by taking a shorter feedback path.

Theorem 1. Given the configuration of Figure 1, assume that Wpxiq ‰ H for all xi P X̂ Ă X
of Σ. Then, C achieving fault recovery against transient faults by Ad exists if and only if every
unauthorized transition is fault detectable and @xi P X̂, @xj P Γpxiq, xi is stably reachable from xj.

Proof. (If) Since every unauthorized transition is fault detectable, we can design G by ap-
plying (3). In addition, since xi is stably reachable from every state of Γpxiq, by Proposition 3
we can find a set of control input sequences with which C is implementable and can design
C by referring to (6)–(8). According to the foregoing discussions, Σc is immune against any
unauthorized transitions by Ad.

(Only if) In view of Figure 1, the existence of C implies that the next stable state
of every stable transition is identified solely by observing z. Hence every unauthorized
transition is fault detectable by Proposition 2. Since C has access to Σ only by changing u,
fault recovery ensures that for all xi with Wpxiq ‰ H and for all xj P Γpxiq, tj,i P A`n exists
which takes Σ from xj to xi via a chain of stable transitions.
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Figure 2 illustrates the flowchart elucidating the execution of the proposed static
corrective controller for achieving fault tolerance. Compared with dynamic controllers [31],
the improvement of computational load in controller synthesis is obvious. The dynamic
controller needs to define maximum n ` 1 states for the correction procedure of each
unauthorized transition. Since there may be maximally npn´ 1q unauthorized transitions,
the size (or number of states) of the overall controller has the complexity of Opn3q. On the
other hand, the proposed static controller is much more efficient, as it needs no states.
Of course, G requires memory elements as the state burst and the previous output mo must
be recorded. Since the maximum length of the state burst is n´ 1, the construction of G is
computed in Opnq, which is a mild degradation of resource usage. Note that a symbolic
computation algorithm for inducing feasible control input sequences addressed in (5) is
presented in the prior work [1,2]. Further, numerical algorithms avoiding tedious symbolic
computations are found in the recent results [37,38].

Σ��xi

v := a∈U(xi)

C: u = a

m = i 

(≠0)

Σ: xj� xi

C: t = u1u2�u|t|

Start

End

Yes

No

Diagnoser

Static Controller

Fault tolerant control

G
m

Figure 2. Flowchart of the proposed static corrective control scheme.

5. Illustrative Examples
5.1. Home Security System

Consider Σ1 “ pA, X, x̄, f q whose state flow diagram is shown in Figure 3, where
An “ ta, b, c, du, Ad “ tw1, w2u, and x̄ “ x1. Σ1 represents a home security system [12],
where x1 is the initial state and x2–x4 are three alarm states that are reached by break-in
events d, a, and b, respectively. c is the reset signal that is activated only at x3.



Appl. Sci. 2021, 11, 9790 11 of 15

c,d,w1

d

x2 x3

x1 x4
b,w2

c
b,c

c
ba,w1

a

d,w1
a,w2

w2

Figure 3. State flow diagram of a home security system Σ1.

As an example instance, let us take the case of x1 with Upx1q “ tcu and Wpx1q “

tw1, w2u. To check the fault detectability, derive the state bursts caused by the elements
of Wpx1q as αpx1, w1q “ x1x3x2 and αpx1, w2q “ x1x4x3. Since αpx1, w1q R sppαpx1, w2qq and
vice versa, Σ1 is fault detectable at x1 by Proposition 2.

Following (3), we design G as follows:

Gpx1x3x2, cq “ px2, 1q

Gpx1x4x3, cq “ px3, 1q

Gpz, uq “ pzl , -q, pz f , u, zlq P s, mo “ 1, zl ‰ x1

Gpz, uq “ pzl , 0q, otherwise.

If G receives x1x3x2 or x1x4x3 while u is equal to c, the unauthorized transition by w1
or w2 is diagnosed with certainty since px1, c, x2q R s and px1, c, x3q R s.

Referring to Figure 3, x1 is stably reachable from every state of Γpx1q “ tx2, x3u,
e.g., spx2, acq “ x1 and spx3, cq “ x1. By Theorem 1, C exists which achieves fault recovery
against Wpx1q. To check the implementability of C associated with ac and c, X2,1 and X3,1
defined in (9) are derived as X2,1 “ tx2, x3u and X3,1 “ tx3u. Although X2,1 X X3,1 “ tx3u

is non-empty, both ac and c have the common input c for x3. Hence they can be used as the
control input sequences while guaranteeing the implementability of C.

The design procedure of C is straightforward. Since spx2, aq “ x3 and spx3, cq “ x1,
the control inputs with respect to m “ 1 are assigned in line with (7) and (8) as follows:

Cpx2, c, 1q “ a (10)

Cpx3, c, 1q “ c.

When an unauthorized transition occurs so that m changes to 1 and the state feedback
to x2 or x3, C activates the recovery procedure by performing the above operations. When
Σ1 reaches x1, m is reset to 0, and upon receiving px1, 0q from G, C terminates the recovery
procedure. To this end, set C as follows:

Cpx1, c, 0q “ c.

Since the fault detectability condition in Proposition 2 and the reachability condition
(5) are valid for the other states as well, the design of G and C for the rest of states and
inputs can be similarly conducted.

As a comparative study, let us try to achieve the above fault tolerant control by the
previous static controller Cp receiving no fault indicator signal (see (4)). Assume that w2
occurs when Σ1 has been staying at px1, cq so that Σ1 is forced to reach x2. In a similar
way to (10), Cp must generate a to initiate the correction procedure, namely, Cppx2, cq “ a.
However, since spx2, cq “ c in Figure 3, Cp already has the assignment Cppx2, cq “ c for
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ensuring the nominal transition. As this contradicts the foregoing operation, one cannot
design Cp that accomplishes fault tolerant control for Σ1.

5.2. Asynchronous Error Counter

As the second example, we apply the proposed scheme to fault tolerant control for
asynchronous error counters embedded in the satellite computers [39]. Since SEU faults
caused by cosmic rays in space corrupt logic values of memory elements in the computers,
periodic memory scrubbing is needed based on the amount of accumulated errors. Error
counters play the role of detecting and recording the error occurrences by transferring to
specific states that characterize the degree of error occurrences.

Consider an asynchronous 6-error counter Σ2 “ pA, X, x̄, f q whose state flow diagram
is shown in Figure 4, where An “ tai, bi|1 ď i ď 6u, Ad “ tnj, f j|0 ď j ď 2u, and x̄ “ x1.
Σ2 receives two kinds of error signals: ai with one-step resolution and bi with two-step
resolution. Typical examples of ai and bi are 1-bit and 2-bit errors that frequently occur in
space-born digital systems [14,15]. It is assumed that every character of An can be generated
for control purposes. In accordance with the meaning of each signal, Σ2 advances one state
in response to ai and two states in response to bi as depicted in Figure 4.

x1

x5

x4

x3

x2 x6

a1,b6,
b1

a1,b6

a2,b1,b2

a3,b2,b3 a4,b3,b4

a5,b4,b5

a6,b5,
b6

a2,b1

a3,b2

a4,b3

a5,b4

a6,b5

An

x1

x5

x4

x3

x2 x6

n0,f1

n1,f2

n2,n0

n1,f0

n2,f1

f0,f2

Ad

n0

f0

f2
n2

n1 f1

n2

f2
f0

n0

n1 f1

Figure 4. State flow diagram of an asynchronous 6-error counter Σ2: state transitions with respect to
An are drawn on the left, and those with respect to Ad are on the right.

Σ2 counts maximally six occurrences of ai’s and three occurrences of bi’s, after which
Σ2 is reset to x1. Supposing that Σ2 is implemented as a digital circuit, we assign a three-bit
binary number c2c1c0 to each state as follows: x1 “ 000, x2 “ 001, x3 “ 011, x4 “ 111,
x5 “ 110, and x6 “ 100.

Working in space, all the memory elements corresponding to c2c1c0 are also exposed
to SEU faults. In Ad, nj and f j represent an SEU fault that upsets the logic value of cj from
0 to 1 and from 1 to 0, respectively, j “ 0, 1, 2. The control goal is to design G and C, if any,
that accomplish fault diagnosis and fault recovery against any adversarial input of Ad.

By observing Figure 4, we can derive each Wpxiq and Γpxiq, e.g., for x1,

Wpx1q “ tn0, n2u, Γpx1q “ tx2, x6u.

It is found that Wpxiq ‰ H, @xi P X. Let us investigate fault detectability for the
existence of G. For instance, consider the case of x1. The state bursts produced by Wpx1q

are αpx1, n0q “ x1x2 and αpx1, n2q “ x1x6. Since αpx1, n0q R sppαpx1, n2qq and vice versa,
any unauthorized transitions occurring at x1 are fault detectable by Proposition 2. In fact,
fault detectability is ensured for the rest of the states and thus G can be designed.
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To construct G, we continue to concern the case of x1. A fault occurrence at x1
is diagnosed when the state burst is observed to change to either x1x2 or x1x6, while
the control input remains unchanged. According to the first line of (3), G is set to be
(Upx1q X An “ ta6, b5u) as follows:

Gpx1x2, uq “ px2, 1q, @u P ta6, b5u

Gpx1x6, uq “ px6, 1q, @u P ta6, b5u.

When Σ2 is under the procedure of fault recovery, G must not change m as defined in
the second line of (3). For the case of x1, the latter operation is materialized by setting the
following:

Gpz, uq “ pzl , -q, pz f , u, zlq P s, mo “ 1, zl ‰ x1.

Finally, when Σ2 reaches the original state x1, m is reset to 0 as defined in the third line
of (3). The operation of G at the other states is designed in a similar manner.

To determine the existence of C, we now investigate stable reachability between xi and
Γpxiq. An examination of Figure 4 shows that for all i “ 1, . . . , 6, xi is stably reachable from
every state of Γpxiq. For instance, x1 is stably reachable from x2 via an input string b2b4a6
(spx2, b2b4a6q “ x1), and from x6 via an input string a6 (spx6, a6q “ x1). By Theorem 1,
therefore, C exists which achieves fault recovery against transient faults by Ad.

C is constructed in line with (6)–(8). Let us keep focusing on the fault recovery to x1.
As addressed above, we employ b2b4a6 and a6 in activating the correction procedure from
x2 and x6, respectively. Upon receiving b2b4a6, Σ2 traverses two intermediate stable states
spx1, b2q “ x4 and spx4, b4q “ x6. With m fixed to 1, C is designed with respect to x2 and
b2b4a6 as follows:

Cpx2, u, 1q “ b2, @u P ta6, b5u

Cpx4, u, 1q “ b4, @u P ta6, b5u (11)

Cpx6, u, 1q “ a6, @u P ta6, b5u.

On the other hand, Σ2 transfers from x6 directly to x1 in response to a6, so C is designed
as Cpx6, u, 1q “ a6, @u P ta6, b5u. As (11) already contains this operation, it serves as the
correction procedure realizing fault recovery to x1.

When Σ2 reaches x1, m is reset to 0. Upon receiving px1, 0q from G, C terminates the
recovery procedure. To this end, set C as follows:

Cpx1, u, 0q “ u, @u P ta6, b5u. (12)

It is clear from (11) and (12) that the selected control input sequences preserve the im-
plementability. The operation of C for the other states is attained by adopting (11) and (12).
Since all the interactions between C, G, and Σ2 are conducted in an asynchronous mecha-
nism, the correction procedure can be accomplished instantaneously before further change
of the external input.

6. Conclusions and Challenges

We have shown that static corrective controllers can solve the problem of fault diag-
nosis and fault tolerant control for input/state ASMs subject to transient faults. The state
burst is used as feedback to design a diagnoser that detects and isolates any transient
fault. Since the static controller receives only the stable state and fault indicator signal from
the diagnoser, the reachability condition for designing the controller is greatly enhanced
compared with the previous result. We have addressed the existence conditions for the
diagnoser and static controller and formal algorithms for their synthesis in the framework
of corrective control. The case studies on the home security system and the asynchronous
error counter validate the applicability of the proposed control scheme.
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Since the closed-loop system with the proposed static corrective controller preserves
fundamental mode operations, we can code the system in very high speed integrated
circuit hardware description language (VHDL) so as to implement it on configurable
semiconductor devices such as field-programmable gate arrays (FPGAs); refer to [6–8] for
the relevant prior work. We expect that the implementation of the closed-loop system will
take significantly fewer resources than the case of dynamic corrective controllers, albeit
the addition of the diagnoser G. The design and implementation of the proposed static
corrective control scheme on digital systems will be conducted as a further study.

While the ASM in this study has the form of an input/state machine, many practical
ASMs are modeled by input/output machines. Hence establishing a static corrective
control scheme for input/output ASMs is an important future research topic. Further,
although only transients faults were considered in this paper, fault tolerant control for other
types of faults, e.g., permanent faults and intermittent ones, may be solved in input/output
ASMs as addressed in Remark 1. Hence applying the proposed static control methodology
to overcoming such faults in input/output ASMs is also an interesting future research topic.
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