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Abstract: Virtual pruning of simulated fruit tree models is a useful functionality provided by soft-
ware tools for computer-aided horticultural education and research. It also enables algorithmic
pruning optimization with respect to a set of quantitative objectives, which is important for analytical
purposes and potential applications in automated pruning. However, the existing studies in pruning
optimization focus on a single type of objective, such as light distribution within the crown. In this
paper, we propose the use of heterogeneous objectives for discrete multi-objective optimization of
simulated tree pruning. In particular, the average light intake, crown shape, and tree balance are
used to observe the emergence of different pruning patterns in the non-dominated solution sets. We
also propose the use of independent constraint objectives as a new mechanism to confine overfitting
of solutions to individual pruning criteria. Finally, we perform the comparison of NSGA-II, SPEA2,
and MOEA/D-EAM on this task. The results demonstrate that SPEA2 and MOEA/D-EAM, which
use external solution archives, can produce better sets of non-dominated solutions than NSGA-II.

Keywords: multi-objective optimization; virtual tree pruning; heterogeneous objectives; constraint
objectives; NSGA-II; SPEA2; MOEA/D-EAM

1. Introduction

Pruning is one of the most important horticultural intervention techniques with which the
vegetative and reproductive growth of fruit trees can be balanced. This balance is important
for producing a stable and high quality product in consecutive yield seasons [1,2]. Proper
tree pruning also helps to prevent tree degradation, and reduces the chance of disease
by providing sufficient light and air flow through the tree canopy [3]. The knowledge of
tree pruning is, thus, an essential skill for both professional and amateur fruit growers. In
recent years, a number of software tools have emerged for computer-aided horticultural
education [4–7]. They complement the field training by allowing the user to perform
various actions on simulated tree models within a 3D virtual environment. The effects of
such interactive tree manipulation on its growth are simulated to provide an informative
feedback to the user. The use of software tools can be extended beyond education, since
they allow analysis and comparison of various tree training techniques.

Another functionality enabled by software is algorithmic determination and evalua-
tion of pruning performed on virtual trees with respect to specific goals. Existing research
in this direction includes goal-oriented assessment of pruning effects [8], selection of prun-
ing points in 3D tree reconstructions from images or point clouds as part of automated
pruning [9–11], and algorithmic pruning optimization for support in computer-aided edu-
cation [12]. In a previous study, the immediate and delayed effects of selective pruning
on fruit tree development were assessed using the estimated amount of light received by
the flower buds in the current and the next season [13]. In this case, the light intake was
a proxy measure for the achieved ratio of vegetative and reproductive growth resulting
from pruning, which was the object of optimization. It was shown that pre-growth and

Appl. Sci. 2021, 11, 10781. https://doi.org/10.3390/app112210781 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6210-0889
https://doi.org/10.3390/app112210781
https://doi.org/10.3390/app112210781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112210781
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112210781?type=check_update&version=1


Appl. Sci. 2021, 11, 10781 2 of 18

post-growth evaluation of a single metric can result in a complex bi-objective optimization
problem with conflicting goals.

The limitation of existing approaches to tree pruning optimization is that they are
focused on a single pruning objective, which is the improvement of lighting conditions in
the crown. Only Westling et al. [11] used the crown volume as an additional component in
the calculation of the pruned tree’s final score. The problem of light intake maximization
was approached from the perspective of both single-objective [12] and multi-objective
optimization [13]. However, in the latter case, the objectives were homogeneous and
their values were computed by the same function in different value spaces (after pruning
and after regrowth). In practice, however, the objectives of pruning can reflect various
additional goals, such as maintaining a desirable tree shape, volume, or balance [14]. In
this paper, we propose and evaluate the multi-objective pruning optimization with such
heterogeneous criteria, which are evaluated on the same pruned model. This extends to
the existing methodology by including diverse goals considered in manual pruning, and
provides new educational and analytical functionality for the optimization framework,
which is implemented within the EduAPPLE virtual tree simulation tool [15].

Multi-objective optimization (MO) problems arise in many real-life and scientific tasks.
Research of MO methods has produced a large number of efficient algorithms, which were
used to solve practical problems ranging from groundwater remediation [16] to workload
balancing [17]. Multi-objective problems can be approached using scalarization, Pareto-
based algorithms, or hybrid approaches [18]. Scalarization to single-objective problems
can employ mature and competitive optimization methods for specialized tasks [19]. How-
ever, state-of-the art results in multi-objective optimization problems were achieved by
Pareto-based algorithms, which construct an approximation of a Pareto-optimal set of
solutions [20]. Improved versions of baseline algorithms address the problems of poor so-
lution diversity and premature convergence using crowding mechanisms [21,22], dynamic
archives [23], or local exploration techniques [24].

In the paper, we analyze and compare the performance of the NSGA-II [25], the
SPEA2 [26], and the MOEA/D-EAM [27] methods for pruning optimization in a 3D
objective space. The objectives reflect the immediate effects of selective limb removal on
light intake, crown symmetry, and the balance of a tree. We additionally propose the use of
constraint objectives as a new regulative mechanism for reducing the overfitting of pruning
solutions to individual objectives. The main contributions of this paper are:

1. Integration of multiple heterogeneous objectives into a multi-objective tree pruning
optimization framework.

2. Introduction of secondary objectives, which are not the targets of optimization, but
serve as constraints in the objective space of pruning solutions.

3. Comparison and analysis of Pareto front approximations obtained with three popular
advanced MO methods, namely NSGA-II, SPEA2, and MOEA/D-EAM.

2. Materials and Methods

In this section, we briefly review the tree growth simulation model, and describe the
way pruning is formulated as an MO problem. We then define the new set of heterogeneous
quantitative objectives for the pruning optimization problem, and describe the proposed
constrained MO procedure.

2.1. EduAPPLE Tree Growth Simulator

Tree growth simulator EduAPPLE [7,15] was developed as a software tool that allows
the user to observe the effects of various tree training techniques, such as pruning, weighing,
and spreading, on the formation of an apple tree crown. To this end, EduAPPLE implements
a parameterized development model that allows simulation of different growth behaviors
of apple trees. EduAPPLE uses a simplified tree structure representation, where the tree
skeleton is composed of short linear segments called metamers, which are linked to form
branches. Metamers also present the basic unit of increment in growth simulation. Each
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metamer consists of an internode and two buds, a terminal and a lateral one, which are
used to extend or fork new branches upon growth. Internodes have assigned unique
identifiers, which are used to indicate the cut locations for pruning. Figure 1 shows an
example of a simple tree structure with depth-order internode labeling.
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Figure 1. Elements of tree model representation: internodes (brown), terminal buds (dark green),
and lateral buds (light green). Depth-first ordering is used to assign unique identifiers to internodes.

Simulation of tree growth in EduAPPLE is based on a source-sink model, and per-
formed in discrete seasonal steps. The yearly increments are determined by first calculating
the growth resources accumulated by a tree, and then redistributing them to different parts
of the tree. The growth is realized by replacing the shooting buds with new metamers. The
main sources of growth material are the tree’s own food reserves and photosynthesis. The
amount of food reserve is modeled in EduAPPLE as a linear dependency on tree age A,
while the quantity of photosynthetic product is estimated from total bud illuminance qi:

R = C1 min{A, 12}+
(

C2 tanh
(

0.2
A

)
+ 2

)
∑
i∈B

qi. (1)

Here, B denotes the set of all buds, while C1 and C2 are adjustable model parameters.
The hyperbolic tangent non-linearity is used to limit the tree growth with age. Bud
illuminance is computed by estimating the amount of shadow the bud receives from other
tree elements. The details of this calculation can be found in the original EduAPPLE
paper [15].

Following the allocation theory [28], the accumulated resources R are split into two
exclusive portions, which are dedicated separately to vegetative and reproductive growth.
The estimated reproductive requirements of a tree are calculated using the number N f of
flower buds as [13]:

rf = Nf(C3 − C4 × A). (2)

Here, C3 and C4 are the allocation model parameters that can be adjusted to obtain
specific behavior. The rest of the resources are allocated to vegetative growth. The repro-
ductive pressure on resources can be reduced by pruning, which controls the balance of
reproductive and vegetative growth across seasons.

Once determined, the vegetative growth resources are redistributed back to the buds in
proportion to their light exposure, orientation, and distance from the roots. The probability
of shooting is higher for well lit and vertically oriented buds, but reduced for older buds.
Given the final amount ri of growth resources, bud i can sprout a sequence of bric new
metamers. Upon creation, new buds are differentiated into vegetative and flowering ones,
where the probability p f of a bud becoming a flowering one is another model parameter.

2.2. Pruning as an Optimization Problem

Algorithmic pruning optimization was introduced as an analytic tool by Strnad and
Kohek [12]. In this context, a pruning is represented as a vector x = 〈x1, x2, . . . , xn〉 of
cut locations, which correspond to individual internode identifiers. An example of this
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is shown in Figure 2, which illustrates the realization of a pruning vector for a given tree
model. Figure 2 also shows that a cut can have no effect if another cut is present higher up
in the tree hierarchy. This behavior is actually helpful during optimization, where changes
to the pruning vector can activate and deactivate individual cuts.
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Figure 2. Realization of a pruning vector (i.e., genotype) x = 〈3, 5, 8〉 is a pruned tree model
(i.e., phenotype). In this example, the cut on internode 5 is deactivated by the cut on internode 3 up
the tree hierarchy.

The task of pruning optimization is to find a pruning solution that maximizes the
values of selected quantitative objectives. Maximization of one objective, however, may
result in a reduction of another objective. For instance, optimizing the crown shape towards
some desired form may reduce the total resource accumulation of the tree, which affects
the balance of vegetative and reproductive growth. Such conflict of goals is at the heart of
multi-objective optimization proposed in this paper.

Let us formalize the pruning optimization problem with respect to a given set of
objective functions f = ( f1, . . . , fm). The objective value of a pruning solution vector
x is, in this case, given by f (x) = ( f1(x), . . . , fm(x)). A solution vector xi is said to be
dominated by another solution vector xj, which is denoted by xj � xi, if the following
conditions hold:

1. ∀k ∈ [1, m] : fk(xj) ≥ fk(xi);
2. ∃k ∈ [1, m] : fk(xj) > fk(xi).

In other words, pruning xj dominates pruning xi if it is not worse in any objective, and
is strictly better in at least one. Note that the above formulation of dominance corresponds
to the case of objective maximization used in this paper. For the minimization case, one
needs to invert the inequalities.

The goal of MO is to construct a set X = (x1, x2, . . . , xq) of non-dominated pruning
solutions, known as the Pareto front. Only an approximation of the Pareto front can usually
be obtained in practical problems. For this task, one can choose between several MO algo-
rithms [29]. In this paper, the adaptations of three popular and efficient evolutionary MO
methods were employed, known as NSGA-II [25], SPEA2 [26], and MOEA/D-EAM [27].
The latter is an extension of the original MOEA/D [30] method with a modified selection
scheme that uses an external archive. In the terminology of evolutionary algorithms, the
pruning solution vectors correspond to the genotypes, and their realizations on a tree model
correspond to phenotypes. During the pruning optimization, the search is conducted in
the genotype space, while the fitness evaluation is performed in the phenotype space.

2.3. Objectives

In a previous study by Strnad et al. [13], the bi-objective value of a pruning solution x
for a given tree model T was defined using the pre-growth objective value fpre and the
post-growth objective value fpost:

f (x) = ( fpre(T/x), fpost(T/x)). (3)
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The quantity f (T/x) is the estimated light intake of a tree T after being pruned
according to x. The pre-growth objective fpre reflects the short-term (i.e., immediate) effects
of pruning, which can be assessed directly on the pruned tree model. On the other hand, the
post-growth objective fpost serves as a proxy measure for long-term (i.e., delayed) pruning
effects. These are estimated by averaging the light intake over the results of multiple
stochastic growth simulations of the pruned tree.

Improving the light conditions within the crown is one of the principal goals of tree
pruning. However, there are other important aspects that practitioners need to consider,
especially when performing the pruning as a corrective measure in neglected or damaged
trees. For example, the amount of removed biomass may need to be constrained in order
to prevent inflicting too much stress on the tree, or the disrupted tree balance needs to be
restored by improving biomass distribution. Such heterogeneous criteria can constitute
conflicting objectives for the pruning optimization task. In this paper, we analyze the results
of such multi-objective optimization by introducing the following pruning objectives:

• The average light exposure of flower buds after pruning, denoted by f1, and calculated as:

f1(x) =
1

N f
∑

i∈Bf(T/x)

q2
i . (4)

Here, Bf(T/x) ⊂ B(T/x) denotes the set of the pruned tree’s flower buds. Note that
this objective promotes aggressive pruning, since the maximum value can be achieved
by a few fully exposed buds.

• Conformance of crown shape to the desired training form, which is denoted by f2. Its
value is estimated using the inverse Hausdorff distance between the convex hull of
the pruned tree and the hull’s bounding volume of target symmetric shape:

f2(x) = h−1(H(T/x), C(T/x)). (5)

The convex hullH of the pruned tree is constructed using its branch tips. Once the hull
is obtained, its bounding volume C with target shape is determined (Figure 3). In our
experiments, a cylindrical target shape was pursued, but other common training forms
can be used (e.g., conical). The Hausdorff distance between two shapes is defined as:

h(X, Y) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}, (6)

where d denotes the standard Euclidean distance between two points.
• Tree balance, denoted by f3, and represented by the inverse horizontal distance dc

between the above ground biomass center of gravity c and the vertical axis going
through the stem origin:

f3(x) =
1

1 + dc
. (7)

The center of gravity location c for a tree T/x with internodes I(T/x) is computed as:

c =

∑
i∈I(T/x)

misi

∑
i∈I(T/x)

mi
. (8)

Here, si is the midpoint of internode i, and mi is its mass. The computation of the
latter is simplified by assuming homogeneous wood density, so the mass of internode
i with radius ri and length li is proportional to its cylindrical volume:

mi = lir2
i . (9)
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• The proportion of remaining tree biomass, denoted by f4 and calculated as:

f4(x) =
m(T/x)

m(T ) . (10)

Here, m(T ) is the above ground biomass of tree T :

m(T ) = ∑
i∈I(T )

mi. (11)

Figure 3. Convex hull H, its bounding cylinder C, and the center of gravity c (yellow sphere) for
a tree.

2.4. Optimization Method

In this paper, pruning optimization is treated as a discrete combinatorial optimization
problem, where the task is to find the set X of non-dominated pruning solution vectors
with respect to a set of objectives f = ( f1, f2, f3). Objective f4, defined in Section 2.3, is
itself not an interesting target of optimization, since it can be maximized trivially by no
pruning at all. Therefore, we propose a special role for objective f4 in order to constrain
the search to certain regions of the solution space. For instance, we may prescribe that no
more than 10% of the tree’s biomass should be removed, which could be imposed by the
constraint f4 > 0.9. This is especially important in order to regulate aggressive pruning
stimulated by objective f1. Adherence to constraint objective bounds is implemented in
a soft manner by marking the violating solutions as dominated. Such approach does not
completely reject borderline solutions, making it possible to use them for the derivation of
better successors. We use only f4 as a constraint objective in this study, but other metrics
could be used. The distinctive property of a constraint objective is that it evaluates the
pruning solution globally, and not with respect to individual cuts. In general, both the
lower and the upper bounds for a constraint objective can be specified by the user.

The use of constraint objectives to specify feasible regions in an auxiliary objective
space is a new addition to the multi-objective pruning optimization framework, which
complements heuristic constraints implemented in a decision space. The latter have been
introduced by Strnad et al. [13] in order to reduce the size of the solution space and make
the search more efficient. This is achieved by two mechanisms:

• By limiting the cut locations to those with certain local properties. In our tests, the
following restrictions were enforced:

– Cutting was limited to the wood at most Amax years old, in order to prevent
pruning of scaffold limbs.

– Pruning was restricted to locations following a branch fork that result in removal
of at least mmin metamers.

• By constraining the dimension of the solution vectors (i.e., the number of cuts) to a
range [dmin, dmax].

The high-level concept of the proposed multi-objective pruning optimization is out-
lined in Figure 4 and Algorithm 1. It is an adaptation of a general evolutionary process
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for the construction of Pareto front approximation. Given a tree model T as input, a list
Icut(T ) ⊂ I(T ) of potential cut locations is first built according to the heuristic constraints
described above. From this list, the initial population P (0) = {x(0)i } of Ps solution vectors
is generated. Each solution vector is obtained by sampling d-times randomly and without
replacement from Icut(T ), where d ∈ [dmin, dmax]. The population size Ps is a method
meta-parameter.

Initialize population
Calculate possible 

cut locations

Update non-dominated 
solution set

MO optimization iteration

Maximum 
number of iterations

 reached

No

Yes

Evaluate 
population

For each 
individual 
candidate

Prune tree

Evaluate 
candidate

Apply evolutionary 
operators

Figure 4. Block diagram of the proposed multi-objective pruning optimization method.

Algorithm 1 Multi-objective pruning optimization.
Input: Tree model T ; heuristic constraints [dmin, dmax], Amax, and mmin; number of objective
evaluations M; objective functions f ; meta-parameters Ps, Cr, Mr, P
Output: non-dominated set of solutions X

1: procedure MO(T , dmin, dmax, Amax, mmin, M, f , Ps, Cr, Mr, P)
2: Icut ← list of possible cut locations in T according to [dmin, dmax], Amax, and mmin

3: P (0) ← initial population of random vectors x(0)i (i = 1, . . . , Ps) sampled from Icut
4: X ← ∅
5: for k = 0 . . . M/Ps do
6: for ∀x(k)i ∈ P (k) do

7: T/x ← prune T according to x(k)i

8: f i(x(k)i )← evaluate f on T/x

9: Y ← non-dominated vectors in P (k)

10: Y ← remove vectors from Y that violate bounds of constraint objective f4
11: update X using Y
12: P (k+1) ← apply evolutionary operators on P (k) using Cr, Mr and P
13: return X

The procedure then enters the optimization loop. The number of iterations N is either
specified directly, or calculated from the maximum number of objective evaluations M as
N = M

Ps . Within the loop, three main steps are performed:

1. The current population P (k) = {x(k)i } is evaluated according to objectives f .
2. The set of non-dominated solutions is updated, using the constraint objective f4 to

demote unsuitable solutions.
3. The next generation of solutions is produced by applying evolutionary operators to

the current population.

Evaluation of individual candidate solution xi is performed by pruning the tree model
according to xi, and computing the values of objectives on the resulting pruned tree. This
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part of the computation is performed by the simulation model, and is independent of the
used optimization algorithm.

The set X of non-dominated pruning solutions is updated next, which is a step that
depends on the evolutionary method used. In NSGA-II, X is updated with non-dominated
solutions from the current population P (k). In SPEA2 and MOEA/D-EAM, the current

archive P (k)
is used to update X in each iteration. In both cases, solutions with objective

value f4 below the prescribed limit are not included in X even if non-dominated.
The last step is the derivation of a new population P (k+1) from the current population

P (k) using a method-dependent procedure. In all of our experiments, the following
problem-specific implementations of evolutionary operators are used:

• Selection of two parent vectors from the population (NSGA-II) or the mating pool
(SPEA2 and MOEA/D-EAM).

• Uniform crossover of parent vectors with probability Cr.
• Mutation of child vectors with change probabilities P = 〈Pmove, Padd, Premove〉 and

mutation rate Mr.

The selection step is method-dependent. In NSGA-II [25] and SPEA2 [26], binary
tournaments are used to select the parents from the population and the mating pool,
respectively. The mating pool is also used by MOEA/D-EAM [27], but its selection scheme
combines random selection with a neighborhood-based one. During crossover, special
consideration is necessary when recombining parent vectors of different sizes. In such
cases, the surplus genes of the longer parent vector are distributed uniformly between
the two child vectors (Figure 5). Mutation of a child vector is performed in two steps.
First, a randomly selected cut is relocated to a different valid position from Icut(T ) with
probability Pmove, removed from pruning with probability Premove, or added to pruning
with probability Padd. Cut addition and removal are possible only if the size of the resulting
pruning vector remains within the range [dmin, dmax]. In the second phase, all of the
other cuts are replaced by randomly selected alternatives with small probability Mr. The
complete implementation of crossover and mutation is shown in Algorithm 2.

15 8 21 4 12 9

11 6 17

15 8 17 12

11 6 21 4 9

Figure 5. During crossover, the child vector components are uniformly sampled from the matching
parts of parent vectors (shown in green), and the extra components of the longer parent (shown in
red) are assigned independently and randomly to the offspring.

The exploration/exploitation behavior of the search is regulated through meta-parameters
Cr, Mr, and P. Sufficient exploration can usually be achieved even with small values of
crossover and mutation rates, because local changes of a genotype (i.e., pruning vector)
can result in significantly different phenotypes (i.e., pruned tree models).
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Algorithm 2 Implementation of crossover and mutation.
Input: parent vectors x1 and x2, crossover rate Cr, mutation rate Mr, change probability
distribution P = 〈Pmove, Padd, Premove〉, vector length constraints dmin and dmax
Output: offspring vector y

1: procedure GENERATE_CHILD(x1, x2, Cr, Mr, P, dmin, dmax)
2: if rand() < Cr then
3: l1 ← length(x1), l2 ← length(x2)
4: for i = 1 . . . min(l1, l2) do

5: y[i]←
{

x1[i] if rand() < 0.5
x2[i] otherwise

6: for i = min(l1, l2) + 1 . . . max(l1, l2) do
7: if rand() < 0.5 then

8: y[length(y) + 1]←
{

x1[i] if l1 > l2
x2[i] otherwise

9: else

10: y←
{

x1 if rand() < 0.5
x2 otherwise

11: l ← length(y)
12: if l = dmin then
13: Premove ← 0
14: else if l = dmax then
15: Padd ← 0
16: re-normalize P, r ← rand(1, l)
17: if r < Premove then
18: remove y[rand(1, l)] from y
19: else if r < Premove + Padd then
20: y[l + 1]← Icut[rand(1, |Icut|)]
21: else
22: j← rand(1, l)
23: y[j]← Icut[rand(1, |Icut|)]
24: for i = 1 . . . l, i 6= j do
25: if rand() < Mr then
26: y[i]← Icut[rand(1, |Icut|)]
27: return y

3. Results

The goals of the experiments presented in this section are to:

1. Determine the properties of Pareto front approximations obtained from pruning opti-
mization with multiple heterogeneous objectives. In particular, we are interested in
the relation of generated pruning solutions to three reference proposals, correspond-
ing to non-pruning, non-selective pruning to cylindrical shape, and distance-based
pruning, where the secondary branches are removed if their distance to the primary
ones is below the threshold.

2. Investigate the pruning patterns produced by MO, and how they reflect the trade-offs
between conflicting pruning goals.

3. Evaluate the effect of the proposed constraint objectives on the resulting Pareto front
approximations and solution characteristics.

4. Compare the performance of NSGA-II, SPEA2, and MOEA/D-EAM on this problem,
which is important from the perspective of future framework development.

In the continuation, we first describe the configuration and workflow of experiments,
and then address the above research questions in order.

The hardware used for the experiments was a desktop computer with Intel i7 CPU,
NVIDIA GeForce GTX 1060 GPU, and 16 GB of RAM. The software environment included
the Linux operating system (kernel version 5.13.11) and the GCC compiler version 11.1.
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The tree models for experiments were generated by using the simulator with growth
parameters C1 = 80, C2 = 40, C3 = 80, C4 = 20, and p f = 0.08. The models are shown in
Figure 6, and present different levels of complexity for pruning optimization. Their main
structural properties and the corresponding combinatorial search space sizes are reported
in Table 1.
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and Mr = 0.03 in combination with Cr = 1 proved to be optimal. The MOEA/D-EAM
uses additional neighborhood size Ns parameter, which was set to the recommended
value Ps/10. A wider neighborhood setting Ns = Ps/5 was also experimented with, but
performed worse than the default.

Figure 6. Tree models used in the experiments.

Table 1. Characteristics of experimental tree models.

Tree Model # of # of Potential Search
Internodes Cut Locations Space Size

Figure 6a 1121 161 1.63× 1029

Figure 6b 1234 145 9.75× 1027

Figure 6c 1919 253 2.54× 1034

Figure 6d 2506 341 5.92× 1037

Figure 6e 2647 354 1.55× 1038

Figure 6f 3740 429 2.18× 1040

Tuning of methods’ meta-parameters was performed with a grid search using the pools
Ps ∈ {20, 30, 50, 100}, Mr ∈ {0.01, 0.03, 0.05, 1.0}, and Cr ∈ {0.7, 0.8, 0.9, 1.0}. The best out
of 5 optimization runs with 5000 objective evaluations was selected for each configuration.
The configurations were ordered using the hypervolume indicator IH [31]. For NSGA-
II and SPEA2, the configuration Ps/Mr/Cr = 50/0.05/0.8 was the configuration with
the highest IH value. Its performance was also stable across a selection of tree models,
and was therefore used in the final experiments. For MOEA/D-EAM, a smaller Ps = 30
and Mr = 0.03 in combination with Cr = 1 proved to be optimal. The MOEA/D-EAM
uses additional neighborhood size Ns parameter, which was set to the recommended
value Ps/10. A wider neighborhood setting Ns = Ps/5 was also experimented with, but
performed worse than the default.

In order to analyze the effects of individual meta-parameters in more detail, we used
the ratio of non-dominated individuals (RNI) [32], which is computed between solution sets
of the selected reference configuration and the modified configurations. The best solutions,
in terms of RNI, were selected out of 5 optimization runs and used for configuration
comparison. The effects of individual meta-parameters are reported in Table 2.
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Table 2. Analysis of meta-parameter effects on quality of non-dominated solution sets, measured by
the RNI metric [32]. For each optimization method, the parameters Ps, Mr and Cr were individually
modified. The RNI for a configuration with specific value of the observed parameter is computed
with respect to other configurations using different values of the same parameter.

Method Configuration Parameter Value /
Ps/Mr/Cr RNI

NSGA-II

Ps 20 30 50 100
Ps/0.05/0.8 0.579 0.667 0.971 0.875

Mr 0.01 0.03 0.05 0.1
50/Mr/0.8 0.636 0.679 0.857 0.676

Cr 0.7 0.8 0.9 1.0
50/0.05/Cr 0.750 0.771 0.692 0.696

SPEA2

Ps 20 30 50 100
Ps/0.05/0.8 0.644 0.806 0.808 0.684

Mr 0.01 0.03 0.05 0.1
50/Mr/0.8 0.689 0.769 0.885 0.812

Cr 0.7 0.8 0.9 1.0
50/0.05/Cr 0.658 0.962 0.880 0.724

MOEA/D-EAM

Ps 20 30 50 100
Ps/0.03/1.0 0.833 0.870 0.750 0.619

Mr 0.01 0.03 0.05 0.1
30/Mr/1.0 0.944 1.000 0.800 0.636

Cr 0.7 0.8 0.9 1.0
30/0.03/Cr 0.720 0.706 0.875 0.879

It can be observed that, for NSGA-II and MOEA/D-EAM, the selection of Cr is less
sensitive than for SPEA2. For NSGA-II, larger population sizes can be used than for the
other two methods, while SPEA2 performs comparatively for population sizes 30 and 50.
Because the canonical NSGA-II does not use an external archive, the initial diversity with a
small population can be exhausted before a large enough pool of feasible non-dominated
solutions can be constructed. MOEA/D-EAM prefers smaller mutation rates than NSGA-
II and SPEA2 because the changes are propagated faster across the population via the
neighborhood mechanism.

The probability mass function for different mutation types was taken from the study
by Strnad et al. [13], where P = 〈Pmove, Padd, Premove〉 = 〈0.3, 0.35, 0.35〉 performed well.
Using equal probabilities for extending and shortening the solution vectors also encourages
searching with mean pruning size. An empirical lower bound value 0.9 was used for the
constraint objective f4, i.e., no more than 10% of the tree’s biomass should be removed by
pruning, which is a pragmatical limit. In order to reduce the search space and prevent
negligible cuts, the same values for heuristic constraints Amax = 4 and mmin = 10 as in [13]
were used. The number of cuts in a pruning solution was also constrained empirically to
the range [5, 25].

The number of objective evaluations in the final experiments was set to M = 10, 000.
The NSGA-II, SPEA2, and MOEA/D-EAM optimization methods were executed q = 11
times for each tree model. Within each method, the obtained q non-dominated sets were
compared in order to determine the number of overall non-dominated solutions in them.
The fronts were then sorted by the decreasing number of non-dominated solutions. The
best, median, and worst run of both optimization methods were finally used in the analysis
of results and method comparison.

Figure 7 shows 3D approximations of Pareto fronts, obtained by the best runs of NSGA-
II and SPEA2 for the tree models from Figure 6. Figure 8 shows the same comparison for
MOEA/D-EAM and SPEA2.
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In order to convey a better sense of shape and relation to reference solutions, the 2D
projections of the Pareto front approximation for the tree in Figure 6a are shown in Figure
9. The situation is similar for other tree models. It can be observed that all of the reference
solutions are dominated by the majority of non-dominated individuals found by MO
methods, because their positions in objective space projections are within the dominated
regions behind the non-dominated fronts. As expected, the non-selective pruning to
cylindrical form improves the value of objectives f2 and f3 with respect to no pruning,
while the rule-based pruning increases the value of objective f1. However, the results of
pruning optimization demonstrate that simultaneous improvement on all objectives is
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cylindrical pruning (green), and rule-based pruning (black).

In order to convey a better sense of shape and relation to reference solutions, the 2D
projections of the Pareto front approximation for the tree in Figure 6a are shown in Figure 9.
The situation is similar for other tree models. It can be observed that all of the reference
solutions are dominated by the majority of non-dominated individuals found by MO
methods, because their positions in objective space projections are within the dominated
regions behind the non-dominated fronts. As expected, the non-selective pruning to
cylindrical form improves the value of objectives f2 and f3 with respect to no pruning,
while the rule-based pruning increases the value of objective f1. However, the results of
pruning optimization demonstrate that simultaneous improvement on all objectives is
possible. In relative terms, the hardest improvements to make are with respect to objective
f1. This can be explained by analyzing the behavior of that objective, which computes the
average light exposure of flower buds. By pruning away branches, the number of buds
that contribute to the objective value is reduced, but at the same time the light conditions
for the remaining ones are improved and the denominator in Equation (4) is lowered. This
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gain vs. loss ratio of light intake can be highly discontinuous even for small changes in the
solution vector, which results in multiple local optima that make optimization difficult.

Figure 9. Two-dimensional projections of non-dominated sets for the tree from Figure 6a.

Figure 10 shows realizations of pruning vectors from different regions of the non-
dominated set on the target tree model. It is informative to compare the pruning solutions
that focus on maximization of individual objectives. For example, the pruning that max-
imizes the light objective tends to remove branches that cast or receive a lot of shadow,
whereas the balance-oriented pruning promotes one-sided removal of wood in order to
restore tree equilibrium. The pruning solution focusing on shape objective f2 advocates
branch removal from multiple sides, but contains elements of the other two prunings in
order to improve on objectives f1 and f 3 as well.

Figure 10. Pruning realizations for solutions from different regions of objective space. Distinguishing
pruning patterns can be observed for solutions that promote light intake (top left), crown shape (top
right), or tree balance (bottom right).

The next question addressed with the experiments was the evaluation of constraint
objective f4 importance for regulating the optimization. To this end, we executed the SPEA2
optimization using a relaxed lower bound 0.8 for f4. The comparison of non-dominated
sets for the best SPEA2 run with tight and relaxed bound is shown in Figure 11a. It is
evident that further numerical improvement of objective values can be achieved by relaxing
the constraint. However, the solutions tend to start overfitting on one or more pruning
objectives through extensive biomass removal (Figure 11b). A proper empirical selection of
bounds is, thus, necessary to confine the solutions to viable regions.
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Figure 11. The effect of relaxing constraint f4 on SPEA2 optimization for the tree from
Figure 6a: a) The SPEA2 non-dominated sets obtained with tight (blue) and loose (orange)
bound. b) An example of excessive pruning that overfits on the balance objective.

Figure 11a shows that the effect of the constraint objective is in bounding the feasible
region of the objective space. By relaxing the constraint, we allow a wider spread of
individual objective values, which increases the possible distance of non-dominated fronts
from the origin. Such indirect specification of feasible regions is in contrast to defining
constraints in terms of optimization objectives themselves, which is more common in MO
[33].

The final goal of experiments is comparison of method performance. Figure 7 suggests
that SPEA2 outperformed NSGA-II consistently in our tests, and also performed better
than MOEA/D-EAM in general. These conclusions are supported by Tables 3 and 4,
where the RNI values and the IH values are reported based on the comparison of best,
median and worst runs of each method. The performance comparison of NSGA-II andR1 A6
MOEA/D-EAM shows that MOEA/D-EAM is always better in terms of RNI, but in some
cases NSGA-II can achieve better results with respect to the hypervolume indicator due
to a better spread of solutions in the objective space. The reason for weak performance
of MOEA/D-EAM in some cases is in the inherited MOEA/D replacement strategy. It
was shown that the employed neighborhood replacement scheme in MOEA/D can result
in poor population diversity and premature convergence [34]. While MOEA/D-EAM
addresses the reproduction step of MEOA/D, it uses the same replacement strategy, so the
problem can persist.

Table 3. The RNI values for non-dominated sets produced by best, median, and worst runs of each
optimization method. The metric is computed across the combined results of all three methods for a
given run.

Run Method Tree model
6a 6b 6c 6d 6e 6f

NSGA-II 0.04 0.05 0.03 0.05 0.06 0.09
best run SPEA2 0.89 0.95 0.99 0.89 0.92 0.87

MOEA/D-EAM 0.54 0.27 0.28 0.68 0.31 0.44

NSGA-II 0.04 0.0 0.0 0.07 0.02 0.05
median run SPEA2 0.98 0.92 0.78 0.83 1.0 0.96

MOEA/D-EAM 0.33 0.33 0.51 0.55 0.15 0.37

NSGA-II 0.0 0.0 0.0 0.0 0.01 0.0
worst run SPEA2 0.95 0.88 0.49 0.97 0.79 0.91

MOEA/D-EAM 0.54 0.89 0.72 0.32 0.70 0.60
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Figure 11. The effect of relaxing constraint f4 on SPEA2 optimization for the tree from Figure 6a:
(a) The SPEA2 non-dominated sets obtained with tight (blue) and loose (orange) bound. (b) An
example of excessive pruning that overfits on the balance objective.

Figure 11a shows that the effect of the constraint objective is in bounding the feasible
region of the objective space. By relaxing the constraint, we allow a wider spread of
individual objective values, which increases the possible distance of non-dominated fronts
from the origin. Such indirect specification of feasible regions is in contrast to defining
constraints in terms of optimization objectives themselves, which is more common in
MO [33].

The final goal of experiments is comparison of method performance. Figure 7 suggests
that SPEA2 outperformed NSGA-II consistently in our tests, and also performed better
than MOEA/D-EAM in general. These conclusions are supported by Tables 3 and 4,
where the RNI values and the IH values are reported based on the comparison of best,
median, and worst runs of each method. The performance comparison of NSGA-II and
MOEA/D-EAM shows that MOEA/D-EAM is always better in terms of RNI, but in some
cases, NSGA-II can achieve better results with respect to the hypervolume indicator due
to a better spread of solutions in the objective space. The reason for weak performance
of MOEA/D-EAM in some cases is in the inherited MOEA/D replacement strategy. It
was shown that the employed neighborhood replacement scheme in MOEA/D can result
in poor population diversity and premature convergence [34]. While MOEA/D-EAM
addresses the reproduction step of MEOA/D, it uses the same replacement strategy, so the
problem can persist.

The common feature of SPEA2 and MOEA/D-EAM, which gives them important
advantage over NSGA-II, is their use of an external archive. This finding is consistent with
recent studies, in which the NSGA-II equipped with external archive was used to improve
optimization results of the canonical version [35,36]. In both SPEA2 and MOEA/D-EAM,
the archive is used to construct the mating pool for recombination. In the case of SPEA2,
the archive is also used to update the current set of non-dominated solutions, while in
MOEA/D-EAM the non-dominated set is the external archive itself. Separating the two
in SPEA2 may be one reason for the slight performance difference between SPEA2 and
MOEA/D-EAM. Another one is that similarity-based selection in MOEA/D-EAM results
in a more locally directed search, which requires more time to escape out of large basins of
similar pruning solutions. It can be concluded that the exploration mechanism of SPEA2 is
better suited to the discrete optimization task at hand, and allows building better Pareto
front approximations within the constrained number of fitness evaluations.
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Table 3. The RNI values for non-dominated sets produced by best, median, and worst runs of each
optimization method. The metric is computed across the combined results of all three methods for a
given run.

Run Method
Tree Model

Figure 6a Figure 6b Figure 6c Figure 6d Figure 6e Figure 6f

NSGA-II 0.04 0.05 0.03 0.05 0.06 0.09
best run SPEA2 0.89 0.95 0.99 0.89 0.92 0.87

MOEA/D-
EAM 0.54 0.27 0.28 0.68 0.31 0.44

NSGA-II 0.04 0.0 0.0 0.07 0.02 0.05
median run SPEA2 0.98 0.92 0.78 0.83 1.0 0.96

MOEA/D-
EAM 0.33 0.33 0.51 0.55 0.15 0.37

NSGA-II 0.0 0.0 0.0 0.0 0.01 0.0
worst run SPEA2 0.95 0.88 0.49 0.97 0.79 0.91

MOEA/D-
EAM 0.54 0.89 0.72 0.32 0.70 0.60

Table 4. The IH values for non-dominated sets produced by best, median, and worst runs of each
optimization method. The metric is computed across the combined results of all three methods for a
given run.

Run Method
Tree Model

Figure 6a Figure 6b Figure 6c Figure 6d Figure 6e Figure 6f

NSGA-II 0.907 0.839 0.803 0.840 0.875 0.836
best run SPEA2 0.908 0.920 0.915 0.923 0.926 0.935

MOEA/D-
EAM 0.882 0.877 0.847 0.882 0.898 0.898

NSGA-II 0.810 0.791 0.771 0.801 0.848 0.786
median run SPEA2 0.891 0.893 0.863 0.891 0.909 0.916

MOEA/D-
EAM 0.871 0.852 0.728 0.854 0.878 0.868

NSGA-II 0.782 0.775 0.735 0.740 0.790 0.659
worst run SPEA2 0.823 0.857 0.809 0.864 0.890 0.883

MOEA/D-
EAM 0.844 0.834 0.771 0.843 0.866 0.825

The advantage of NSGA-II over the other two methods is faster execution, but the
differences are small because the cost of objective evaluations dominates the run-time. The
average optimization run-times are reported in Table 5. The run-time variances between
optimization executions of the same method on a single tree model are negligible. The
slight differences between methods are in line with the expected time complexities of the
methods, which are discussed in more detail in Section 4. Comparison of Tables 1 and 5
reveals that the run-time grows linearly with tree model complexity, which is expected
because the objective functions in Equations (4)–(7) are linear in the number of internodes.

Table 5. Average running time (in seconds) of NSGA-II, SPEA2, and MOEA/D-EAM in pruning
optimization problem.

Method
Tree Model

Figure 6a Figure 6b Figure 6c Figure 6d Figure 6e Figure 6f

NSGA-II 26 29 45 63 65 90
SPEA2 29 32 48 65 68 91

MOEA/D-EAM 29 31 49 66 69 93

4. Discussion

The experiments demonstrate that diverse sets of non-dominated solutions can be
obtained by using heterogeneous pruning objectives, which is valuable for both educational
and analytical purposes. However, algorithmic pruning optimization has wider potential
applicability to complement rule-based solutions in the developing field of automated
pruning [37]. The progress of scanning technology and computer vision allows producing
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increasingly faithful digital reconstructions of real trees [38–40]. A wider availability of
relatively low-cost devices equipped with LiDAR scanners should enable further advance
of the field, as already demonstrated by some recent research [11,41]. In such scenar-
ios, the multi-objective assessment of pruning effects may need to rely on estimation of
tree parameters that are not fully observable, or cannot be captured to a sufficient level
of accuracy.

The main limitation of the proposed methodology is the assumption of exact knowl-
edge of tree properties, which are provided by the simulation environment. In order to
account for the possibility of missing information, fuzzy objective measures should be
incorporated into the optimization process. This would also improve the alignment of the
methodology with the human perception of achieved pruning goals.

Another practical drawback of current implementation is its run-time, which needs to
be improved for the use of methodology in interactive sessions. The differences between
the optimization methods in this respect are small, because the run-time is governed
by objective evaluations. The definitions of objectives in Section 2.3 indicate that their
evaluation should increase approximately linearly with problem size, i.e., the number of
tree internodes. The objective f1 in Equation (4) sums over the flower buds, whose number
is linear in the number of internodes. The most time consuming part of the objective f2
computation is the generation of a convex hull. This can be done in O(nh), where n is
the number of branch tips and h is the number of points in the hull. While n increases
approximately linearly with the tree size, h was determined to be within a small constant
factor for all trees. Objectives f3 and f4 are directly related to the number of internodes, so
their computation is also linear. The linear relationship of run-time and problem size has
been experimentally confirmed, as presented in Table 5. The small run-time differences
between methods arise from their average time complexities, which are O(N2) for NSGA-II,
O(N2 log(N)) for SPEA2 and O(N2 + NM) for MOEA/D-EAM, where N is the population
size and M is the archive size. Further optimization and parallelization of objective value
computation is one of priorities for future framework development.

The presented use of additional objective constraints to prevent overfitting of pruning
on actual target objectives is a generally applicable concept. It can be used in other MO
problems where the bounds are hard to specify on optimization objectives directly. In
the proposed approach to pruning optimization, the objective constraints complement
heuristic decision constraints in the search space. However, the violations of the latter can
be easily detected and corrected within the optimization loop. In this way the waste of
computational resources on evaluation of infeasible solutions can be avoided. Violations of
objective constraints, on the other hand, can only be established after their evaluation, and
it is usually not clear how to resolve them. A strategy for handling the infeasible solutions
in the population is therefore required. In the currently implemented strategy, all solutions
that violate the constraint objective become equally dominated due to the assignment of
low score. However, a finer distinction between nearly feasible solutions and truly bad
ones with adaptively increasing constraint violation penalty could improve the exploration
efficiency of the method.

5. Conclusions

In the paper, we introduced the use of heterogeneous objectives within an MO frame-
work for virtual tree pruning. We also proposed the use of constraint objectives, which
are not the optimization targets, but are employed as heuristic constraints in the objective
space of pruning solutions. Finally, a performance analysis of three popular MO methods
was performed on the presented discrete optimization problem.

The experiments have shown that, by using additional objectives to place heuristic
constraints on search in the fitness space, the overfitting of solutions to individual objectives
can be restricted. It was demonstrated that the use of an external archive allows SPEA2
and MOEA/D-EAM to achieve better performance than NSGA-II in the studied problem,
while the slight advantage of NSGA-II is the shorter run-time.
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