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Abstract: Indirect neutron imaging is an effective method for nondestructive testing of spent nuclear
fuel elements. Considering the difficulty of obtaining experimental data in a high-radiation environ-
ment and the characteristic of high noise of neutron images, it is difficult to use the traditional FBP
algorithm to recover the complete information of the sample based on the limited projection data.
Therefore, it is necessary to develop the sparse-view CT reconstruction algorithm for indirect neutron
imaging. In order to improve the quality of the reconstruction image, an iterative reconstruction
method combining SIRT, MRP, and WTDM regularization is proposed. The reconstruction results
obtained by using the proposed method on simulated data and actual neutron projection data are
compared with the results of four other algorithms (FBP, SIRT, SIRT-TV, and SIRT-WTDM). The
experimental results show that the SIRT-MWTDM algorithm has great advantages in both objective
evaluation index and subjective observation in the reconstruction image of simulated data and
neutron projection data.

Keywords: neutron; sparse-view; median root prior; nuclear fuel element; weighted total
difference minimization

1. Introduction

With the rapid growth of the world economy, non-renewable resources such as oil,
natural gas, and coal are constantly consumed, and the problem of the energy crisis has
become more and more obvious [1]. To seek the way of sustainable development, nuclear
power plants have become a hotspot of people’s attention in many countries. At present,
nuclear power plants have become one of the most important components of modern
energy [2,3].

Nuclear safety is the lifeline for the healthy development of nuclear power, which
directly affects people’s normal life, production, and social activities. Especially after
the Three Mile Island nuclear power plant leakage accident in the United States in 1979,
the Chernobyl nuclear power plant accident in the former Soviet Union in 1986, and
the Fukushima nuclear power plant accident in Japan in 2011, the public has paid great
attention to the safety of nuclear power plants [4–6]. The nuclear fuel element is the core
component of a reactor. The nuclear fuel pellet located in the cladding releases energy
through nuclear fission. The interaction between the pellet and the cladding will affect the
safety of the fuel element. If the pellet is damaged, the debris will enter the gap between the
pellet and the cladding, which may cause close contact between the pellet and the cladding
to form a hotspot. The hotspot will result in the local temperature of the cladding being
too high and the rupturing of the cladding, which can lead to nuclear leakage. Therefore,
the safety inspection is one of the important means to ensure the safe operation of nuclear
power plants.
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Nondestructive testing technology has the advantages of being nondestructive and
rapid and reflecting the overall structure information of the tested samples [7]. In recent
years, with the development of electronics and information science, X-ray and neutron
imaging technologies have become more and more mature. Advanced detection imaging
equipment and image processing software have been developed and applied continuously
and can realize three-dimensional tomography and visualization of the tested samples [8,9].
However, the spent nuclear fuel element is a strong emitter of X-rays and gamma rays,
and it is impossible to analyze the irradiated object by X-ray computed tomography (CT).
Neutron CT is useful for nondestructive testing of spent nuclear fuel elements due to the
suitable neutron attenuation properties of uranium [10].

When scanning in the range of 180 or 360◦, if the detected object is sampled by a high-
density projection, the traditional filtered back-projection (FBP) algorithm will be used
to reconstruct high-quality images. When the number of projections does not satisfy the
complete sampling condition required by Shannon’s sampling theorem for reconstruction,
it is called sparse-view CT reconstruction [11]. The iterative reconstruction algorithm is
mainly used for image reconstruction of sparse-view projections, such as iterative filtered
back-projection algorithm, algebra reconstruction technique (ART) [12], simultaneous
iterative reconstruction technique (SIRT) [13], and simultaneous algebraic reconstruction
technique (SART) [14]. With the development of compressed sensing theory, algebraic
iterative reconstruction theory based on total variation (TV) has great potential in the
reconstruction of sparse-view projections [15,16]. Rudin proposed an ROF denoising model
for the image total variation, which used the total variation as a regular constraint for image
denoising so that the edge and detail information of the image could be well preserved
while the noise is reduced [17]. Sidky et al. proposed TV-POCS and ASD-POCS algorithms,
which have played a good role in the aspect of sparse-view reconstruction [18,19]. Several
methods based on TV and its variants, including edge-preserving TV [20], anisotropic
TV [21,22], weighted TV [23,24], and directional TV [25], were proposed to improve the
performance of the algorithm.

The regularized iterative reconstruction algorithm based on total difference mini-
mization (TDM) combined with soft-threshold filtering has achieved a good effect for
sparse-view CT reconstruction [26]. However, the total difference (TD) regularization only
considers the sparsity of the image gradient in the horizontal and vertical directions, and
the protection of the structure information is a little insufficient at the edge of the object.
Shu and Ahuja considered a new regularization measure method based on compressed
sampling, which constrains both the sparsity and continuity of the gradient and is called
weighted total difference minimization (WTDM) [27]. According to their research, the
hybrid compression sampling algorithm can obtain a high-precision image, and the edges
in the image can be well restored. The weighted total difference minimization not only
considers the sparsity constraint of the image gradient, but also considers the continuity
constraint of the image gradient, which can effectively protect the gradient information
in different directions of the image edge. In addition, the neutron projected data contain
isolated noise, which affects the quality of a reconstructed image. Median root prior (MRP)
regularization can suppress local non-monotonic structures and eliminate the influence
of isolated noise on image quality [28,29]. Inspired by MRP and WTDM regularization
algorithms, this paper proposes a method that can simultaneously remove the isolated
noise and effectively protect the gradient information in different directions. To make
the soft threshold filter function adaptively adjust the threshold according to the image
grayscale, the threshold rule is modified in this paper.

The process of the proposed algorithm (simultaneous iterative reconstruction
technique—modified weighted total difference minimization (SIRT-MWTDM)) in this
paper is that the image reconstructed by using the FBP algorithm is used as the initial
image of the SIRT-MWTDM algorithm. After each SIRT iteration, MRP and WTDM reg-
ularization operations are performed immediately. The loop is repeated until the stop
condition is met. The main contribution of this paper is the improvement of the WTDM
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soft threshold selection rules, and MRP and WTDM regularization are used in our algo-
rithm. The SIRT-MWTDM algorithm is applied to the sparse angle reconstruction from the
high-noise projections. The results of the simulation and neutron experiment show that our
algorithm is superior to other algorithms in suppressing noise and improving image clarity.
Moreover, it allows high-quality reconstructed images to be provided to the researchers of
nuclear fuel elements in a reactor, which is very meaningful.

2. Methods
2.1. Weighted Total Difference Minimization

Because the projection data used in sparse-view CT reconstruction are incomplete, it is
an ill-posed inverse problem. At present, a large number of documents realize the solution
to such ill-posed problems by introducing the regularization method into the process
of reconstruction. Finally, a small amount of projection data can be used to reconstruct
high-quality CT images. The regularization method is used to solve this kind of ill-posed
problem, which can be equivalent to the solution process of the optimization problem as
shown in Equation (1).

f = argmin
f
‖A f − p‖2

2 + λ · R( f ) (1)

where f is the image to be restored, A is the projection matrix, p is the projected image
which is captured, λ is a regularization parameter, ‖A f − p‖2

2 is a fidelity item, and R( f ) is
the regular term of the iterative reconstruction algorithm.

According to the literature [30], the weighted total difference minimization considers
the sparsity constraint of the image gradient and the continuity constraint of the image
gradient, which can effectively protect the gradient information in different directions at
the edge of the image. Therefore, we take WTDM as a regularization constraint for the
iterative reconstruction of sparse-view neutron images. According to WTD theory, the
WTD of an image f can be defined according to Equation (2):

WTD( f ) = ‖Gx fi,j‖1 + ‖Gy fi,j‖1 + ϕ(‖Gxy fi,j‖1 + ‖Gyx fi,j‖1) (2)

where
‖Gx fi,j‖1 = ‖ fi+1,j − fi,j‖1
‖Gy fi,j‖1 = ‖ fi,j+1 − fi,j‖1
‖Gyx fi,j‖1 = ‖ fi,j+1 − fi+1,j‖1
‖Gxy fi,j‖1 = ‖ fi+1,j+1 − fi,j‖1

(3)

where fi,j represents the pixel value in the coordinates (i, j) of the reconstructed image. ϕ
is the weight value between gradient continuity and gradient sparsity constraints. When
ϕ = 0, it only constrains the sparsity of the image gradient. When ϕ = 1, the same
degree of constraint for gradient sparsity and continuity can be achieved. If we substitute
the regularization term WTD( f ) into the iterative reconstruction Equation (1), the image
iterative reconstruction model is transformed into Equation (4).

f = argmin
f
‖A f − g‖2

2 + λ ·∑
i

∑
j

[∣∣ fi+1,j − fi,j
∣∣+ ∣∣ fi,j+1 − fi,j

∣∣+ ϕ(
∣∣ fi+1,j+1 − fi,j

∣∣+ ∣∣ fi,j+1 − fi+1,j
∣∣)] (4)

Therefore, the solution of the weighted total difference minimization CT reconstruction
model is equivalent to the solution of Equation (5). There are many methods for solving
Equation (5), such as the soft threshold filtering method and the split Bregman method [31].
The convergence and effectiveness of the soft threshold filtering method have been proved
in theory, and the soft threshold filtering method has been successfully applied to the
field of CT reconstruction [26]. Therefore, the soft threshold filtering method is also
used in this paper to solve Equation (5). In the framework of soft threshold filtering, a
pseudoinverse equation is constructed to solve the reconstruction model based on weighted
total difference minimization.
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f n+1
i,j =

1
4 + 4 · ϕ ×

{
F(ω, f̃ n+1

i,j , f̃ n+1
i+1,j) + F(ω, f̃ n+1

i,j , f̃ n+1
i,j+1) + F(ω, f̃ n+1

i,j , f̃ n+1
i,j−1) + F(ω, f̃ n+1

i,j , f̃ n+1
i−1,j)

+ϕ ·
[

F(ω, f̃ n+1
i,j , f̃ n+1

i+1,j+1) + F(ω, f̃ n+1
i,j , f̃ n+1

i+1,j−1) + F(ω, f̃ n+1
i,j , f̃ n+1

i−1,j−1) + F(ω, f̃ n+1
i,j , f̃ n+1

i−1,j+1)
] } (5)

where f̃ n+1
i,j is the gray value at the coordinate position (i, j) of the reconstructed image.

F(ω, y, z) =


(y + z)/2, |y− z| < ω
y−ω/2, (y− z) ≥ ω

y + ω/2, (y− z) ≤ −ω

(6)

where y and z are input parameters of the soft threshold function F.
To make the ω value change adaptively according to the local image, we redefine ω to

replace the original fixed value, as shown in Equation (7).

ω = abs( f −Med( f ))/k (7)

where k(k > 0) can be set according to the actual effect of the reconstructed image, which
is mainly used to adjust the value of the threshold ω.

2.2. Median Root Prior

The median filter is used as the energy function in the MRP algorithm so that the
MRP algorithm can suppress isolated noise. The neutron projection images often contain
isolated noise, which affects the quality of reconstructed images. Hence, the MRP algorithm
is introduced into the reconstruction process to realize the local monotone constraint of
the image and to suppress the influence of isolated noise. The MRP algorithm formula is
shown in Equation (8), and the noise suppression formula of the reconstructed image is
shown in Equation (9):

η
(n)
MRP(i, j) =

1

1 + γ
f (n)(i,j)−Med( f (n)(i,j))

Med( f (n)(i,j))+ε

(8)

f (n)MRP(i, j) = η
(n)
MRP(i, j)× f (n)(i, j) (9)

where n is the iteration number of the reconstruction algorithm. Med( f (n)(i, j)) is the me-
dian filtering algorithm by 3× 3 or 5× 5 pixel neighborhood. f (n)(i, j) is the reconstructed
image after n iterations. f (n)MRP(i, j) is the image of suppressed noise. ε is a perturbation
parameter that prevents the denominator from being infinite, which is 10−6 in this paper.
γ is the noise suppression intensity parameter of the MRP algorithm with the value ranging
from 0 to 1. If a reconstructed image contains locally nonmonotonic structures such as
isolated noise spikes, the MRP factor is not equal to 1 because of the inequality between the
pixel value and its median value. Then, the factor will modify the pixel value, and these
structures will be suppressed. According to our research, if γ = 0, the MRP is not used to
suppress noise. A large γ corresponds to a strong weight to suppress isolated noise.

2.3. The SIRT-MWTDM Iterative Algorithm

The SIRT algorithm adopts the point-by-point update mode, and the contribution
value of rays from all projection angles to the current point should be calculated for updat-
ing each point. The update of each image point is obtained by averaging the contribution
value of all rays passing through the point. It has more advantages in suppressing sta-
tistical noise than ART and SART. The iterative equation of the SIRT algorithm is shown
in Equation (10).

f j
(n+1) = f j

(n) + λ
(n)
SIRT ·∑

N
i=1 [aij(pi −∑M

m=1 aim fm)/∑M
m=1 aim]/∑N

i=1 aij (10)
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where n is the iteration number of the SIRT algorithm and f j is the pixel value of the
reconstructed image. Each ray beam is regarded as an infinitely narrow straight line, and
the length of the ray passing through the reconstructed pixel is defined as aij. Namely, aij is
an element value of the system matrix. 1 ≤ i ≤ N, 1 ≤ j ≤ M, and N and M are the width
and height of the sinogram. λSIRT is the relaxation factor ( 0 < λSIRT < 2).

Before the SIRT-MWTDM algorithm is used for iterative reconstruction, we use the FBP
algorithm to obtain a reconstruction image f (0) from sparse angle projections. f (0) is used
as the initial image of the SIRT-MWTDM algorithm. Then, the SIRT-MWTDM algorithm
starts the process of iterative reconstruction according to the parameters that have been set.
Each complete iteration process of the SIRT-MWTDM algorithm includes one SIRT iteration,
one MRP, and one WTDM. When the stop condition is met, we can obtain the reconstructed
image. In the initial stage of the SIRT-MWTDM algorithm, the estimated solution is far
from the optimal solution, and a large λSIRT value can speed up the optimization process.
As the iteration number increases, the estimated solution becomes closer and closer to
the optimal solution. As the number of iterations increases, the smaller λSIRT, the higher
quality of the convergence. Therefore, we introduce the parameter λred of attenuation rate
to our algorithm. To more clearly illustrate the SIRT-MWTDM algorithm, the organizational
scheme of the SIRT-MWTDM algorithm is shown in Figure 1 and Algorithm 1.
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Figure 1. Organizational scheme of the SIRT-MWTDM algorithm. In the organizational scheme, λSIRT

is the relaxation factor. λred is a decay ratio. ϕ is the weight value between gradient continuity and
gradient sparsity constraints. γ is the noise suppression intensity parameter. Niter is the maximum
number of iterations. k is a parameter to adjust the threshold ω. n is the number of iterations.
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Algorithm 1. The organizational scheme of the SIRT-MWTDM

Initialization: λSIRT; λred; ϕ; γ; Niter; k;
FBP reconstruction:

f (0) = FBP(p)
for n = 1 to Niter do

SIRT updating:

λ
(n)
SIRT = λ

(n−1)
SIRT × λred

f (n) = SIRT( f (n−1))
Non-negativity constraint:

If f (n) < 0, f (n) = 0
MRP:

Calculate λ
(n)
MRP about image f (n) according to Equation (8)

Calculate f (n)MRP according to Equation (9)
WTDM:

Calculate adaptive threshold ω according to Equation (7)
Solve equation (4) according to Equations (5) and (6)

Image updating and next loop
end

3. Experiment
3.1. Quantitative Evaluation Index

To quantitatively compare the reconstructed effects of the different reconstruction
algorithms from sparse-view projections, three indexes, namely structural similarity (SSIM),
peak signal to noise ratio (PSNR), and root mean squared error (RMSE), are used for
quantitative comparative analysis [32]. The equations of the three indexes are shown in
Equations (11)–(13).

SSIM( fA, fB) =
(2µ fA µ fB + c1)(2σfA fB + c2)

(µ2
fA
+ µ2

fB
+ c1)(σ

2
fA
+ σ2

fB
+ c2)

(11)

where fA is the reference image and fB is the reconstructed image. µ fA and µ fB are the
mean values of fA and fB. σfA and σfB are the standard deviations of fA and fB. σfA fB is
the covariance between fA and fB. c1 and c2 are constants with a small value, which are
used to maintain stability. In this paper, we set c1 = c2 = 0.001. SSIM is used to measure
the similarity between two images. A larger SSIM value indicates a higher similarity and a
smaller structural difference between the two images.

PSNR = 10 log10
(max( fA))

2

1
M×N ∑M

i=1 ∑N
j=1 ( fA − fB)

2 (12)

where M and N are the width and height of image fA and fB. PSNR is used to measure
the quality of the reconstructed image. If the PSNR value is larger, the quality of the
reconstructed image is higher.

RMSE =

√
1

M× N ∑M
i=1 ∑N

j=1 ( fA − fB)
2 (13)

RMSE is used to evaluate the quality of the reconstructed image and to measure the
deviation between the reconstructed image and the reference image. A small RMSE value
indicates that the difference between the two images is small.

3.2. Simulation Experiment

Due to the influence of neutron beam quality and hardware inherent noise, the quality
of the reconstructed image is affected by noise in the collected projections. Therefore, by
adding Poisson noise into the sinogram of the simulated models, we can not only verify
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the effectiveness of the sparse-view reconstruction algorithm, but also test the robustness
of the reconstruction algorithm to the noise. We set the number of photons according to
Beer’s law to add noise to the simulation images. The number of quanta is set 5× 104 for
Poisson noise. In the simulation experiment, the projected images are uniformly collected
within the range [0o, 180o] with equal intervals. The number of projections collected is 30
and 60, and the corresponding sampling angle intervals are 6o and 3o. We collected three
sets of simulation data, namely 30 and 60 noiseless projections and 60 noisy projections.
Because the neutron beams are parallel, there is no need to set the distance between the
neutron source and the detector. Both models are 512× 512 in size as shown in Figure 2.
The number of pixels of the detector is 512, and the pixel unit is mm. Figure 2a is the
Shepp–Logan phantom. Figure 2b is a simulated circular phantom based on the structure
of the nuclear fuel element. We provide the attenuation coefficients of each part in the
Shepp–Logan and circular phantoms.
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3.2.1. Shepp–Logan Phantom

Four reconstruction algorithms, FBP, SIRT, SIRT-TV, and SIRT-WTDM, are used for
comparison with the reconstructed results obtained by using the SIRT-MWTDM algorithm
in this paper. The calculation process of the SIRT-TV algorithm includes one SIRT and one
TV. We can obtain the reconstructed image when the set number of iterations is reached. To
make a reasonable and fair comparison of the four algorithms, we set the parameters of the
algorithms as follows: λSIRT = 1.8, λred = 0.995, ϕ = 1, and Niter = 600. As for the SIRT-TV
algorithm, λTV = 1.0. λTV is a positive factor of TV. As for the SIRT-WTDM algorithm,
ω = 0.00035. As for the SIRT-MWTDM algorithm, γ = 0.6 and k = 100. The reconstructed
images with different numbers of projections obtained by using the five reconstruction
algorithms are shown in Figure 3.

From Figure 3, we can see that as the number of projections increases, the clarity and
smoothness of the images reconstructed by the five algorithms are gradually improved, and
the quality of reconstructed images is significantly improved when there is no noise in the
projections. However, compared with the other four algorithms, there are obvious artifacts
in the image reconstructed by using the FBP algorithm. The reconstructed images of SIRT,
SIRT-TV, and SIRT-WTDM are smoother than that of FBP algorithm from 30 projections.
The edges of the image reconstructed by using the SIRT-MWTDM algorithm are sharper
than those of other algorithms. The boundaries of the three ellipses at the bottom of the
image reconstructed by using SIRT-MWTDM algorithm are clearer than those of other
algorithms. For 60 noise-free projections with 600 iterations, the image reconstructed by
using SIRT-MWTDM method almost has no difference f the original image in visual effect.
For 60 noisy projections, it can be seen that the image reconstructed by SIRT-MWTDM is
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less noisy. The intervals among the three ellipsoids are more obvious at the bottom of the
reconstructed image.
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Figure 3. Reconstructed results of the Shepp–Logan phantom obtained by using different algorithms
with different numbers of projections. Images from left to right show reconstructed results from 30,
60, and 60+ projections, respectively. Here, 60+ indicates that Poisson noise is added to 60 projections.
Rows from top to bottom are reconstructed by using FBP, SIRT, SIRT-TV, SIRT-WTDM, and SIRT-
MWTDM, respectively.

SSIM, PSNR, and RMSE are calculated for the images reconstructed by using the five
algorithms with different numbers of projections, and the results are shown in Figure 4. We
first analyze the evaluation index of the image reconstructed by using noise-free projections.
As can be seen from the SSIM histogram in Figure 4a, as the number of projections increases,
the SSIM values of the image reconstructed by using each algorithm are improved. In the
case of the same number of projections, the SIRT-MWTDM algorithm has the highest SSIM
for reconstructed images. The SSIM value of the image reconstructed by the SIRT-MWTDM
algorithm is 0.9878 for 30 projections, which also indicates that the proposed algorithm
is superior to other algorithms in retaining structural information of the reconstructed
image. As can be seen from the PSNR histogram in Figure 4b, PSNR and SSIM have
similar characteristics. As the number of projections increases, the PSNR of the images
reconstructed by using each algorithm is also improved. The PSNR value of the image
reconstructed by the SIRT-MWTDM algorithm is the largest with the same number of
projections. The PSNR value of the image reconstructed by using the SIRT-MWTDM
algorithm is 34.3259 for 30 projections, which indicates that the proposed algorithm is
superior to other algorithms in noise reduction. As can be seen from the RMSE histogram
in Figure 4c, the variation trend of RMSE is opposite to that of SSIM and PSNR. The RMSE
values of the image reconstructed by using SIRT-MWTDM are the smallest with the same
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number of projections compared with the other four algorithms. The RMSE values of
each algorithm decrease with the increase in projection number. The RMSE value of the
image reconstructed by the SIRT-MWTDM algorithm is 0.0145 for 30 projections, which
indicates that the difference between the reconstructed image and the reference image is
smaller and the image quality is higher. Then, we analyze the evaluation index of the image
reconstructed by using the noise projection data. As can be seen from the SSIM and PSNR
histogram, when the same number of noisy projections is used for reconstruction, both
SSIM and PSNR values of the image reconstructed by using SIRT-MWTDM are the largest.
As can be seen from the RMSE histogram, the RMSE value of the image reconstructed by
using SIRT-MWTDM is the smallest when the same number of noisy projections is used for
reconstruction. Therefore, from the reconstructed results obtained by using projection data
with and without noise, it can be concluded that the objective evaluation indexes of images
reconstructed by using our algorithm are the best compared with the other four algorithms
under the same conditions.
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Figure 4. The histograms of evaluation index for reconstructed images of the Shepp–Logan phantom with different numbers
of projections. (a) SSIM; (b) PSNR; (c) RMSE. Here, 60+ indicates that Poisson noise is added to 60 projections.

To evaluate the performance of the SIRT-MWTDM algorithm, we plot the profile of
the blue line position in Figure 2a as shown in Figure 5. From left to right, the number
of projections is 30, 60, and 60+. The profiles demonstrate that the amplitude of the FBP
and SIRT algorithms considerably fluctuates and differs from the true value of the pixel.
SIRT-TV and SIRT-WTDM perform much better than the FBP and SIRT algorithms, but
there is still a certain gap between their amplitude and the true value. However, the result
of the SIRT-MWTDM algorithm matches that of the original model and is much closer to
the true value. It also shows the effectiveness of SIRT-MWTDM algorithm in sparse-view
CT reconstruction.
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Figure 5. The profile of the blue line position in Figure 2a. The number of projections is (a) 30; (b) 60; (c) 60+. Here, 60+
indicates that Poisson noise is added to 60 projections.
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3.2.2. Circular Phantom

In the circular phantom simulation experiment, we set the parameters of the algo-
rithms as follows: λSIRT = 1.6, λred = 0.995, ϕ = 1, and Niter = 600. As for the SIRT-TV
algorithm, λTV = 1.0. As for the SIRT-WTDM algorithm, ω = 0.00085. As for the SIRT-
MWTDM algorithm, γ = 0.6 and k = 90. The reconstructed images obtained by using the
five algorithms with different numbers of projections are shown in Figure 6.
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Figure 6. Reconstructed results of the circular phantom obtained by using different algorithms
with different numbers of projections. Images from left to right show reconstructed results from
30, 60, and 60+ projections, respectively. Here, 60+ indicates that Poisson noise is added to
60 projections. Rows from top to bottom are reconstructed by using FBP, SIRT, SIRT-TV, SIRT-WTDM,
and SIRT-MWTDM, respectively.

From Figure 6, we can see that in the case of the same number of projections, the
images reconstructed by using the SIRT-MWTDM algorithm have the best reconstruction
effect. The outline of each circle from the reconstructed image can be seen clearly by
using the SIRT-MWTDM algorithm with 30 projections. Even if there is Poisson noise in
60 projections, we can still see the position and contour of each circle. From the visual
point of view, the reconstructed image obtained by our algorithm is smoother and has less
noise for 60+ projections.

In order to quantitatively analyze the reconstructed results of the different algorithms,
the histograms of three indexes (SSIM, PSNR, and RMSE) of the reconstructed image of
the circular phantom are shown in Figure 7. From left to right, the histograms respectively
represent the SSIM, PSNR, and RMSE of the reconstruction results of different algorithms
for different numbers of projections. The SSIM and PSNR of five different algorithms
show that the SIRT-MWTDM algorithm has the highest SSIM and PSNR in the same
number of projections. The SIRT-MWTDM algorithm has the lowest RMSE in the same
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condition of projections. Therefore, Figure 7 shows that the image reconstructed by using
the SIRT-MWTDM algorithm has the strongest noise suppression and the best performance.
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Figure 7. The histograms of evaluation index for reconstructed images of the circular phantom with different numbers of
projections. (a) SSIM; (b) PSNR; (c) RMSE. Here, 60+ indicates that Poisson noise is added to 60 projections.

To further investigate whether the performance of the proposed algorithm is better,
we plot the profile of the red line position in Figure 2b as shown in Figure 8. From left to
right, the number of sparse-view angles is 30, 60, and 60+. Here, 60+ indicates that Poisson
noise is added to 60 projections. It can be seen from Figure 8 that the profile of the image
reconstructed by using the SIRT-MWTDM algorithm is the closest to the original profile. In
addition, the algorithm well protects the edge of the original image.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19 
 

(a) (b) (c) 

   

Figure 7. The histograms of evaluation index for reconstructed images of the circular phantom with different numbers of 

projections. (a) SSIM; (b) PSNR; (c) RMSE. Here, 60+ indicates that Poisson noise is added to 60 projections. 

To further investigate whether the performance of the proposed algorithm is better, 

we plot the profile of the red line position in Figure 2b as shown in Figure 8. From left to 

right, the number of sparse-view angles is 30, 60, and 60+. Here, 60+ indicates that Poisson 

noise is added to 60 projections. It can be seen from Figure 8 that the profile of the image 

reconstructed by using the SIRT-MWTDM algorithm is the closest to the original profile. 

In addition, the algorithm well protects the edge of the original image. 

(a) (b) (c) 

   

Figure 8. The profile of the red line position in Figure 2b. The number of projections is (a) 30; (b) 60; (c) 60+. Here, 60+ 

indicates that Poisson noise is added to 60 projections. 

3.3. Neutron Experiment 

The neutron experiments were carried out on a neutron imaging test station at end 

of the CNGB guide of the China Advanced Research Reactor (CARR) located at the China 

Institute of Atomic Energy. In order to simulate the neutron imaging nondestructive test-

ing process of spent fuel, a 20 cm simulated nuclear fuel rod was used to obtain neutron 

projection data by using an indirect neutron CT device based on a neutron IP plate [33]. 

During the experiment, the operation power of CARR was 30 MW, and the neutron flux 

at the sample was 1 × 108/cm2/s with a collimation ratio L/D of approximately 100. In the 

experiment, the 20 cm × 25 cm neutron IP plates were used to obtain the neutron projection 

images, and the imaging data were obtained by scanning the IP plates with the Typhoon 

FLA 7000 IP laser scanning imager. The neutron projection images of the nuclear fuel ele-

ment were collected every 1° in the range of 
o o[0 ,180 ] . Each neutron IP plate collected 5 

projection data, and a total of 36 neutron IP plates with 180 projection data were collected. 

A normalized neutron projection image from one angle is shown in Figure 9a. The sino-

gram of an axial layer is shown in Figure 9b. The low quality of the normalized neutron 

projection image is due to the noise produced by gamma rays on the neutron IP plates, 

the inconsistency of the neutron IP plates in the experiment, and the registration error of 

the projection images in the angle segmentation. Since the nuclear fuel element is only 

SIRT-MWTDMSIRT-WTDM SIRT-TV SIRT FBP

0.0

0.2

0.4

0.6

0.8

1.0

S
S

IM

 30

 60

 60+

SIRT-MWTDMSIRT-WTDM SIRT-TV SIRT FBP

0

8

16

24

32

40

P
S

N
R

/d
B

 30

 60

 60+

SIRT-MWTDMSIRT-WTDM SIRT-TV SIRT FBP

0.00

0.04

0.08

0.12

0.16

0.20

 30

 60

 60+

R
M

S
E

200 225 250 275 300 325 350
0

40

80

120

160

200

Pixel Position

In
te

n
s

it
y

 Reference

 FBP

 SIRT

 SIRT-TV

 SIRT-WTDM

 SIRT-MWTDM

200 225 250 275 300 325 350
0

40

80

120

160

200

Pixel Position

In
te

n
s

it
y

 Reference

 FBP

 SIRT

 SIRT-TV

 SIRT-WTDM

 SIRT-MWTDM

200 225 250 275 300 325 350
0

40

80

120

160

200

Pixel Position

In
te

n
s

it
y

 Reference

 FBP

 SIRT

 SIRT-TV

 SIRT-WTDM

 SIRT-MWTDM

Figure 8. The profile of the red line position in Figure 2b. The number of projections is (a) 30; (b) 60; (c) 60+. Here, 60+
indicates that Poisson noise is added to 60 projections.

3.3. Neutron Experiment

The neutron experiments were carried out on a neutron imaging test station at end of
the CNGB guide of the China Advanced Research Reactor (CARR) located at the China
Institute of Atomic Energy. In order to simulate the neutron imaging nondestructive testing
process of spent fuel, a 20 cm simulated nuclear fuel rod was used to obtain neutron
projection data by using an indirect neutron CT device based on a neutron IP plate [33].
During the experiment, the operation power of CARR was 30 MW, and the neutron flux
at the sample was 1 × 108/cm2/s with a collimation ratio L/D of approximately 100. In
the experiment, the 20 cm × 25 cm neutron IP plates were used to obtain the neutron
projection images, and the imaging data were obtained by scanning the IP plates with
the Typhoon FLA 7000 IP laser scanning imager. The neutron projection images of the
nuclear fuel element were collected every 1◦ in the range of [0o, 180o]. Each neutron IP
plate collected 5 projection data, and a total of 36 neutron IP plates with 180 projection
data were collected. A normalized neutron projection image from one angle is shown in
Figure 9a. The sinogram of an axial layer is shown in Figure 9b. The low quality of the
normalized neutron projection image is due to the noise produced by gamma rays on the
neutron IP plates, the inconsistency of the neutron IP plates in the experiment, and the
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registration error of the projection images in the angle segmentation. Since the nuclear fuel
element is only close to the middle part in the projected image, the image is clipped before
reconstruction to leave only the image of the nuclear fuel element. The size of the useful
image is 5000× 200.
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Figure 9. Neutron projection image and sinogram. (a) A neutron projection image of the nuclear fuel element from one
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FBP algorithm is used to restore slice image from 180 projections, and the reconstructed
image is used as a reference image to compare with the reconstructed results obtained
by using other algorithms (FBP, SIRT, SIRT-TV, SIRT-WTDM, and SIRT-MWTDM) with
60 projections.

The reconstructed reference image is shown in Figure 10a, and it is normalized. The
reconstructed results of other algorithms are also normalized. The reconstructed results of
the five algorithms are shown in Figure 10b–f. The parameters of the iterative algorithm are
as follows: λSIRT = 0.8, λred = 0.995, ϕ = 1, and Niter = 100. As for the SIRT-TV algorithm,
λTV = 1.0. As for the SIRT-WTDM algorithm, ω = 0.00003. As for the SIRT-MWTDM
algorithm, γ = 0.3 and k = 20.

From the reconstructed results in Figure 10b, it is observed that severe artifacts exist
in this image due to the limitation of the number of projections. The interior of the
reconstructed image is rougher because of noise. The SIRT algorithm provides a better
reconstructed image compared with FBP, but the streak artifacts are still present as shown
in Figure 10c. As shown in Figure 10d,e, a large number of artifacts are suppressed
by using the SIRT-TV and SIRT-WTDM algorithms. However, the effect of the SIRT-TV
and SIRT-WTDM algorithms on noise suppression is not as good as that of the SIRT-
MWTDM algorithm. Visually, the SIRT-MWTDM algorithm performs better in terms of
noise suppression and artifact reduction compared with the other algorithms. Moreover,
the SIRT-MWTDM algorithm is superior to other methods and produces an excellent-
quality image in terms of maintaining detailed structure. It preserves most structural
information without any physical deformation.

The RMSE, PSNR, and SSIM are used to carry out quantitative analysis on the recon-
structed results obtained by using the five algorithms for 60 projections. The results are
shown in Figure 11. It can be seen from Figure 11 that the RMSE value of the image recon-
structed by SIRT-MWTDM algorithm is the smallest, which indicates the minimum error
between the reconstructed image and the reference image. The PSNR value of the image
reconstructed by using SIRT-MWTDM algorithm is the largest, which indicates that the
reconstructed image is smoother and the algorithm has a stronger ability to suppress noise.
The SSIM value of the reconstructed image obtained by SIRT-MWTDM algorithm is the
largest, which indicates that the reconstructed image retains more structural information.

We also plot the profile in Figure 12, which shows the profile marked by the horizontal
yellow line in Figure 10a. By comparison, the SIRT-MWTDM algorithm has advantages
in that the profile is much closer to the reconstructed results obtained by using the FBP
algorithm and 180 projections. In conclusion, real neutron reconstructed images indicate
that our algorithm has good performance in artifact reduction and noise suppression.
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Figure 10. Reconstructed results obtained by using the different algorithms with the display windows set to [0, 1].
(a) Reconstructed results obtained by using FBP algorithm and 180 views; (b) reconstructed results obtained by using FBP
algorithm and 60 views; (c) reconstructed results obtained by using SIRT algorithm and 60 views; (d) reconstructed results
obtained by using SIRT-TV algorithm and 60 views; (e) reconstructed results obtained by using SIRT-WTDM algorithm and
60 views; (f) reconstructed results obtained by using SIRT-MWTDM algorithm and 60 views.
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Figure 11. The histograms of evaluation index for reconstructed neutron images from 60 projections. (a) RMSE; (b) PSNR;
(c) SSIM.

AVIZO software was used to measure the area of the high-brightness substance
indicated by the red arrow in Figure 10, and the measurement results are shown in Table 1.
As can be seen from Table 1, the area measured from Figure 10f is closest to that of the
reference image Figure 10a.

The reconstruction of the nuclear fuel element was performed from all axial positions
by using the proposed algorithm. A three-dimensional (3D) representation of several
series of slices is shown in Figure 13. The AVIZO software was used to generate the 3D
representation. To show the internal structure more clearly, the 3D image is displayed in
color. Some of the pixels in the 3D image of the nuclear fuel element were dissected out to
see the internal structure. The boundary of the nuclear fuel element and the vertical hole can
be seen clearly in the diagram. The different colors of the image represent different types
of substances. The red pixels represent uranium, which has a high neutron attenuation
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factor, and we can see the spatial distribution of uranium in the nuclear fuel element. A
high-quality 3D image is very meaningful for researchers in the study of changes in the
internal substances of nuclear fuel elements.
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Figure 12. The profile of the reconstructed images.

Table 1. The area of high-brightness substance.

Image Figure 10a Figure 10b Figure 10c Figure 10d Figure 10e Figure 10f

Area (mm2) 0.3850 0.2075 0.3300 0.3375 0.3450 0.3775
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Figure 13. A 3D image of several series of slices. A part of the 3D image is removed so that the
internal structure can be seen clearly.

4. Discussion

The purpose of this paper is to obtain high-quality reconstructed images through
incomplete real neutron projections. Because the traditional FBP algorithm has difficulty
recovering the real structural information of the sample due to the high noise and a small
number of neutron projection data, we consider using an iterative algorithm to solve
this problem.

When the SIRT-MWTDM algorithm is used to reconstruct an image, some parameters
need to be set, such as λSIRT, Niter, γ, and k. In our research, we found that if the parameter
λSIRT fluctuates in a small range, the quality of the reconstructed image does not change
much. In other words, the SIRT-MWTDM algorithm is not very sensitive to this parameter.
We can adjust λSIRT through experience and reconstructed effect. Niter is usually set
between 100 and 200 because as the number of iterations increases, the speed of image
quality improvement will become slower and slower. Generally, after 100 or 200 iterations,
a better reconstruction result of the algorithm can be achieved. However, more experience
is required to set the values of γ and k. According to the quality of the reconstructed results,
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we need to continuously adjust the values of these two parameters until a satisfactory result
is obtained, which would be the shortcoming of the proposed algorithm in this paper. For
the reconstruction of new samples, it may take some time to adjust the parameters γ and k.
The other algorithms used in the article use fewer parameters than the proposed algorithm.
Therefore, it takes less time for other algorithms to adjust parameters than the proposed
algorithm. We believe it is worthwhile to spend some time adjusting the parameters of the
proposed algorithm to achieve high-quality reconstructed images.

We compare the convergence speed of the SIRT-MWTDM method with other al-
gorithms. The RMSE and SSIM curves of the reconstruction process in Figure 3 for
30 Shepp–Logan projections are shown in Figure 14. The RMSE curve for each itera-
tion is shown in Figure 14a. SIRT-MWTDM algorithm has the fastest descent speed at
the beginning and the lowest final RMSE value from Figure 14a. The results show that
the SIRT-MWTDM algorithm has a faster convergence speed and the gray value of the
reconstructed image is closer to the ideal gray value. Figure 14b presents the SSIM curve
for each iteration. SIRT-MWTDM algorithm has the fastest rising speed at the beginning
and the largest final SSIM value from Figure 14b. When the three iterative algorithms (SIRT,
SIRT-TV, SIRT-WTDM) are used to reconstruct the Shepp–Logan phantom from spare
projections, they take about 100 iterations to achieve convergence, while the SIRT-MWTDM
algorithm in this paper only needs about 50 iterations to achieve convergence.
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Figure 14. The RMSE and SSIM change curves of reconstructed images with different algorithms for 30 projections of the
Shepp–Logan phantom. (a) RMSE; (b) SSIM.

The RMSE and SSIM curves of the reconstruction process in Figure 6 for 30 projections
of the circular phantom are shown in Figure 15. Similarly, we can find from Figure 15 that
as the number of iterations increases, the SIRT-MWTDM algorithm has the smallest RMSE
and the largest SSIM. All algorithms reach convergence in about 50 iterations. Comparing
Figures 14 and 15, it can be found that the number of iterations to achieve convergence
is not the same when the same algorithm is used to reconstruct different phantoms. In
contrast, our method requires a small number of iterations to reach convergence. The
image reconstructed by our method in this paper can obtain the smallest RMSE and the
largest SSIM for the same number of projections.
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5. Conclusions

MRP regularization can be used to suppress local non-monotonic structures and
eliminate the influence of isolated noise. WTDM regularization not only considers the
sparsity constraint of the image gradient, but also considers the continuity constraint of
the image gradient, which can effectively protect the gradient information in different
directions of the image. Therefore, we combine MRP and WTDM as the regularization
constraint of the SIRT-MWTDM algorithm.

The quality of the reconstructed image is often affected by noise in the actual acquired
data. To simulate the real image more realistically, Poisson noise was added to the simulated
sinogram. Different numbers of projections were used to reconstruct images. We used
subjective evaluation and three objective indicators (PSNR, SSIM, and RMSE) to evaluate
and analyze the reconstructed results obtained by using five algorithms (FBP, SIRT, SIRT-
TV, SIRT-WTDM, and SIRT-MWTDM). The SIRT-MWTDM algorithm shows advantages
compared with the other algorithms both in subjective vision and objective evaluation.
Moreover, the profiles from the interesting positions of the reconstructed image also
show that the modified algorithm in this paper can better retain the details and suppress
noise. The profile of the image reconstructed by the modified algorithm is closer to the
reference image. Finally, it can be concluded that the SIRT-MWTDM algorithm shows great
advantages both in simulated data and real neutron projection data when compared to the
other algorithms in this paper.
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