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Abstract: A reverse vending machine motivates citizens to bring recyclable waste by rewarding
them, which is a viable solution to increase the recycling rate. Reverse vending machines generally
use near-infrared sensors, barcode sensors, or cameras to classify recycling resources. However,
sensor-based reverse vending machines suffer from a high configuration cost and the limited scope
of target objects, and conventional single image-based reverse vending machines usually make
erroneous predictions about intentional fraud objects. This paper proposes a dual image-based
convolutional neural network ensemble model to address these problems. For this purpose, we
first created a prototype reverse vending machine and constructed an image dataset containing
two cross-sections of objects, top and front view. Then, we chose convolutional neural network
models widely used in image classification as the candidates for building an accurate and lightweight
ensemble model. Considering the size and classification performance of candidates, we constructed
the best-fit ensemble combination and evaluated its classification performance. The final ensemble
model showed a classification accuracy higher than 95% for all target classes, including fraud objects.
This result proves that our approach achieves better robustness against intentional fraud objects than
single image-based models and thus can broaden the scope for target resources. The measurement
results on lightweight embedded platforms also demonstrated that our model provides a short
inference time that is enough to facilitate the real-time execution of reverse vending machines based
on low-cost edge artificial intelligence devices.

Keywords: convolutional neural network; neural network ensemble; edge AI device; reverse vending
machine; waste classification

1. Introduction

General waste recycling methods can be classified into curbside recycling and paid
recycling [1]. Curbside recycling is a simple way to collect recyclable waste, but it cannot
reward recycling with payment. On the other hand, reverse vending machine (RVM) [2] is a
famous paid recycling method in Europe and the United States, which returns payment for
people who recycle resources such as polyethylene terephthalate (PET) bottles or aluminum
cans. This direct compensation for recycling can increase the recycling rate. Based on this
advantage, studies on introducing RVM for the smooth collection of recycling resources
have been conducted [3–5].

RVM can also be adopted in smart and sustainable cities for waste management. One
of the core elements for waste management in smart and sustainable cities is an on-time
collection system with intelligent sensor-based infrastructure and the classification of
waste [6]. To meet this goal, studies suggested and surveyed waste management with
cloud or Internet of Things (IoT) based systems [7,8]. By this time, RVM has been a
successful solution for waste management in many regions [9], and the system is often
configured with the embedded platform. Therefore, RVM can be further developed into a
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system suitable for smart and sustainable cities by applying more accurate image-based
classification and IoT with a cloud-based system.

The essential requirements for the RVM system are the accurate and rapid classifi-
cation of input resources and detection of fraud objects that intend to fool recognition
systems [10,11]. The RVM systems currently employ various sensors such as barcode
sensors, weight sensors, or near-infrared sensors to satisfy these requirements. The barcode
sensor-based RVM system requires binary encoding information of the input resources
and its vast up-to-date database. Since barcode sensors can only classify the resources
with readable binary encoding information, a system based on barcodes may limit the
scope of the target resources. The use of a near-infrared sensor enhances the detection rate.
However, it leads to high configuration costs of the RVM system, which may impede the
active installation and enhanced accessibility of RVM.

Convolutional neural network (CNN) is one of the most commonly applied techniques
for computer vision. It can broaden the scope of the input resources for the RVM system
with the dataset consisting of various objects. Furthermore, CNN can decrease the config-
uration cost of the RVM system because the vision-based RVM system only requires the
camera to classify input resources. Therefore, many studies have been conducted to apply
CNNs for the RVM system. For example, Kokoulin et al. [12], Kokoulin and Kiryanov [13]
compared the performance of single image-based systems with multiple CNNs to classify
input objects. Park et al. [14] showed that a single image-based system cannot accurately
identify intended fraud objects and proposed a multi-modal network that uses various
modalities such as image, weight, and ultrasound. Although this multi-modal network
system is robust against fraud objects, the cost incurred in the modality measurement and
integration is high.

In summary, the challenges of the current RVM are the limited scope of input re-
sources, high system configuration cost, and inaccurate classification of intentional fraud
objects. To come up with these challenges, we propose a dual image-based CNN ensemble
model suitable for a lightweight embedded artificial intelligence (AI) platform. The main
contributions of our work are as follows:

1. We constructed an open access dataset for RVM with three classes by building the
prototype RVM and collecting the recycling resources. Since it is challenging to find
an adequate open access dataset for RVM, our open access dataset can be one of the
baselines for future RVM studies;

2. We also analyzed a limitation of conventional single image-based systems that inaccu-
rately classify fraud objects through extensive experiments. Then, we proved that the
limitation can be effectively overcome by introducing a CNN ensemble model based
on both top and front views of objects;

3. Finally, we demonstrated that our proposed model provides short inference time
enough to facilitate the real-time execution of RVM built on top of low-cost edge AI
devices.

The rest of this paper is organized as follows. Section 2 presents the related work of
this study. Then, we introduce the datasets and our proposed method in Section 3. Next,
Section 4 presents and discusses the experimental results and, finally, we conclude the
paper in Section 5.

2. Related Work

RVM and CNN: Various studies have been conducted to solve the limited scope of
target resources and the high configuration cost of the RVM system, focusing on classifica-
tion accuracy, speed, and fraud detection rate. For example, Liukkonen [10] showed that
it is possible to process an average of 40.8 objects per minute just using six Raspberry Pi
cameras. Although it solved the problem of the high cost of the RVM system, it could not
solve the limited scope of collection resources since it is a barcode-based system. Sinaga
and Irawan [15] and Rahim and Khatib [16] also presented sensor-based low-cost RVMs,
but they were also constrained by the limited scope of collection resources and the lack of
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various test cases. These studies indicate that there should be different modalities besides
barcodes to broaden the scope of the target objects in the RVM system.

In the past decades, with high-performance hardware, such as graphics processing
units (GPUs), CNNs have shown groundbreaking results in computer vision, speech
processing, or face recognition [17]. The two basic building blocks of CNN are the con-
volutional layer and the pooling layer. Since the convolutional layer generates an output
feature map from the input image by the convolution operation of the convolutional filter,
called kernel, it can extract the feature of the input image including spatial information.
The pooling layer reduces the size of the feature map by subsampling the input data. This
two-fold approach enables the extraction of the spatial-independent global feature of input
images [18]. Moreover, since the convolutional layer only needs parameters from a convo-
lutional filter, the number of parameters used in the convolutional layer is significantly less
than those in a fully connected layer [19]. For this reason, many studies employed CNNs
for the RVM system to widen the scope of the target resources.

Kokoulin et al. [12], Kokoulin and Kiryanov [13] introduced an image-based object
classification system for PET and aluminum cans. They compared various CNN models
such as LeNet, AlexNet, and SqueezeNet, and showed that the best results are derived
when LeNet classifies an object into two classes, PET bottles and cans. However, this study
is very limited in that it deals with only 15 test cases. Park et al. [14] proposed a multi-
modal network to solve the problem that the single image-based RVM system has difficulty
in detecting intentional fraud objects. The modalities used in the study are the image, the
weight, and the reflected ultrasound of the object, and they applied the attention module
and correspondence learning to the model. The result showed that the model accurately
classified the target objects, such as plastic bottles, cans, glasses, and non-target fraud
objects. However, since the system integrates modality data with a high-cost controller, the
system configuration cost is so high that it may not be an alternative for current RVMs.

Neural Network Ensemble: The neural network ensemble technique combines neural
networks trained for the same purpose [20]. Typical ensemble methods include bootstrap
aggregating (bagging) [21], boosting [22], and stacking [23]. These methods can derive a
better performance by integrating the predictions of weak classifiers. Ensemble networks
can also achieve better results when each network is trained from different datasets and
merged [24]. However, integrating every trained classifier does not always produce optimal
results [25], and thus we need to choose the classifiers that fit the application.

The neural network ensemble is being used in various fields such as image classification
and detection to improve performance and make a robust model [26–29]. Chen et al. [26]
classified a channel randomly selected for hyperspectral images and then ensembled each
classifier with the majority voting to derive the final result. Antipov et al. [27] presented
a CNN ensemble model that predicts gender from the face image. This model showed
a state-of-the-art performance even using a 10× smaller dataset than previous studies.
Manzo and Pellino [28] proposed a neural network ensemble model to diagnose COVID-19
disease from computer tomography images. They demonstrated that combining multiple
models produces better results than using a single model. The CNN ensemble technique
can also be applied to waste classification. Zheng and Gu [29] proposed a CNN-based
model for classifying household solid waste through images by integrating GoogLeNet,
ResNet-50, and MobileNetV2. Each model creates three predictive vectors, and the model
integrates them using the unequal precision weighting method to derive the final result.

Edge AI Device: As the data from the IoT devices are becoming more complex,
it also becomes crucial to extract valuable features from raw sensor data through deep
learning. The centralized cloud server generally processes the data obtained from IoT
devices. However, processing the huge and complex data in the cloud server can be
inefficient since transmission bandwidth between the IoT devices and the cloud server is
limited. Edge computing is a useful technology to solve this problem, which decentralizes
computing tasks from the cloud server to the edge devices that lie in the IoT gateway layer
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near the user end [30,31]. Furthermore, it enables using a deep learning model from the
edges, and thus only processed data are transferred to the cloud server.

There are various edge AI devices for deep learning inference, including Raspberry Pi,
ASUS Tinkerboard, NVIDIA Jetson series, and Google Coral Dev Board [32–34]. NVIDIA’s
Jetson is the most widely used edge AI device for deep learning tasks among these plat-
forms. Jetson has CPU-GPU heterogeneous architecture, and this architecture provides the
CUDA-programmable feature, which leads to acceleration in machine learning [35]. There
are multiple devices in the NVIDIA Jetson family, including Jetson Nano, TX1, TX2, and
Xavier NX. Ullah and Kim [36] compared the inference time, memory usage, and power
consumption of Jetson Nano, TX1, and Xavier NX platforms. Koubaa et al. [37] compared
inference time, GPU memory consumption, and detection performance of Jetson Nano,
TX2, Xavier NX, and Xavier AGX for face recognition.

3. Materials and Methods

In this section, we suggest a CNN ensemble model for dual image-based and cost-
effective RVM. Figure 1 shows the workflow of our study. As the first step, we construct
a dual image dataset in our prototype RVM. The images are acquired from top and front
views. Next, we choose candidate CNNs from popular image classification models based
on their size. Then, we train the candidate CNNs for each view with our dataset and
compare both the accuracy and the number of parameters to obtain the best-fit models.

Figure 1. Workflow of choosing optimized classifiers and framework of the proposed CNN ensemble
model.

Once the best-fit models from each view are ensembled, we compare the performance
of the ensemble models. Finally, we evaluate the inference time of our best ensemble model
in lightweight embedded platforms.
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3.1. Dataset

This study constructed the dual image dataset of waste objects by putting the collected
resources and capturing their images in the prototype RVM, as shown in Figure 2. We
generated two different image samples for each object, that is, a top view and a front view.
The resolutions of webcams used for the top view and the front view are 2592 × 1944 and
1280 × 720, respectively. In total, there are 3084 images in our dataset, which are accessible
in [38].

Figure 2. Hardware setup for constructing dataset: (a) Prototype RVM; (b) Settings for capturing
dual image.

As illustrated in Figure 3, our dataset consists of the top view and the front view
images subsets. We further divided each subset into PET, Can, and Non-target classes,
which are the most common classification classes of the commercial RVMs [39,40] and the
previous studies in [12,13]. The objects belonging to each class are summarized in Table 1.
Figure 4 presents actual data samples constructed for our study.

Figure 3. Dataset and its composition.
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Figure 4. Actual images from the dataset: (a) Top view of PET and Can classes; (b) Top view of
Non-target class with printed images of PET and can, PET label-only object, and IAO such as paper
cup; (c) Front view of PET and Can classes; (d) Front view of Non-target class with printed images of
PET and can, and IAO such as whiteboard eraser.

Table 1. Classes and objects used in this study. The composition of objects is same on both the top
view and the front view.

Class Objects

PET PET bottles with or without labels, and with or without caps
Can Aluminum cans with or without lids

Non-target Printed PET bottles, cans, and PET label-only objects (fraud objects).
Human hands, roll papers, paper box, etc (IAOs).

Again, we classify the non-target class objects into fraud objects and inappropriate
objects (IAOs). Fraud objects intend to fool the system. They consist of the objects made
by printed images of plastic bottles or cans and the objects made only with the label of a
plastic bottle. We define the IAOs as general objects inserted carelessly into the RVM, such
as roll paper, paper boxes, and even human hands. Even though fraud objects are included
in the Non-target class, we used no fraud objects in the training phase and only used IAOs
since evaluating untrained fraud objects is one of our intentions. In the test phase, we used
the Non-target class dataset consisting of fraud objects and untrained IAOs. More details
about detecting fraud objects are presented in Sections 3.3 and 4.



Appl. Sci. 2021, 11, 11051 7 of 19

3.2. Candidate CNN Models

Ensemble model-based classification generally achieves better accuracy but takes
a longer processing time. Therefore, the size of the classifier is crucial when building
a lightweight model for the embedded AI platform suggested in our study. For this
reason, we chose the candidate CNNs among the popular models used in image classifica-
tion, considering the number of parameters representing the model size. The candidate
models addressed in this study are ResNet-50, DenseNet, SquezeNet, MobileNetV2, and
EfficientNet-B0/B1/B2.

Training deep and complex models is difficult due to the vanishing gradient. Residual
neural network (ResNet) [41] and Dense Convolutional Network (DenseNet) [42] are the
efficient deep CNNs for addressing the vanishing gradient problem. As shown in Figure 5,
ResNet and DenseNet rely on the heaped residual blocks and the stacked dense block,
respectively. In addition, both models use shortcut connections to strengthen the gradients.
The difference is that ResNet and DenseNet use element-wise addition and concatenation
for a shortcut connection, respectively.

Figure 5. Building blocks of ResNet and DenseNet: (a) Bottleneck building block for ResNet
50/101/152 where the 1 × 1 layers reduce and increase dimensions, and 3 × 3 layer extracts features;
(b) Simple dense block of DenseNet. The multiple dense blocks are connected with the transition
layers and compose the DenseNet.

Although embedded devices have very limited computing resources, they need to
achieve similar accuracy to conventional models, so lightweight and efficient deep learn-
ing models should be used. SqueezeNet [43] and MobileNetV2 [44] are widely used
lightweight models for embedded or mobile environments. Figure 6 shows the core
modules of SqueezeNet and MobileNetV2. As illustrated in Figure 6a, SqueezeNet [43]
consists of the network based on the Fire module that reduces the overall model size.
The number of parameters is reduced by 50× compared to AlexNet, but the accuracy
on ImageNet has similar or better results. MobileNetV2 [44] aimed to operate real-time
in resource-constrained environments where heavy CNN models cannot be used due to
weak computational powers. MobileNetV2 uses an inverted residual block and a linear
bottleneck to the depthwise separable convolution [45], shown in Figure 6b. The inverted
residual block uses a narrow-wide-narrow structure to reduce memory consumption. Mo-
bileNetV2 gives similar or better results with fewer parameters and faster inference speed
than NasNet-A and ShuffleNet on ImageNet.
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Figure 6. Building blocks of SqueezeNet and MobileNetV2: (a) Fire module of SqueezeNet with
three 1 × 1 convolutional filters in the squeeze layer, four 1 × 1 convolutional filters in the expand
layer, and four 3 × 3 convolutional filters in the expand layer; (b) Bottleneck depthwise separable
convolution with residuals, which is a basic building block of MobileNetV2. This figure represents
the block where stride = 1.

Modifying the resolution, depth, or width of CNNs is widely used for enhancing the
performance of CNNs. One of the main issues is to decide an adequate factor and its degree
for better performance after scaling up. However, this process requires trial and error
that causes inefficiency and often results in sub-optimal performance. To overcome such
handcrafting, EfficientNet [46] proposed compound scaling, which is a principled way to
scale up the model for better performance and efficiency. Compound scaling uniformly
scales the three dimensions of depth, width, and resolution with a constant ratio. The
experimental result showed that the EfficientNet-B3 achieved better Top-1 accuracy than
ResNeXt-101 with 18× fewer FLOPS.

3.3. The Proposed CNN Ensemble Model

We propose an ensemble CNN model using the top and front view images to resolve
the limitations of previous state-of-the-art RVM studies using a single image-based sys-
tem [12,13] or multi-modal network [14]. The main goal of our ensemble approach is to
classify fraud objects with high accuracy on a vision-only system.

When building an ensemble network, we can use two strategies: picking the models
randomly or using the models with a better performance. Perez et al. [47] suggested that
both methods show good results, but in small ensembles the same as in our study, the latter
approach can derive a better result. Based on this research, we combine the best-fit CNN
models from each view with an ensemble scheme.

As mentioned in Section 2, typical neural network ensemble techniques are bag-
ging [21], boosting [22], and stacking [23]. All these methods attempt to improve perfor-
mance by combining weak classifiers to derive robust results. Bagging creates sub-datasets
through bootstrap from the original dataset and trains the classifier with the sub-datasets.
After the training, the weights for each classifier are set equally, and methods including
majority voting produce the final result. Boosting trains the classifiers with the original
dataset, and each classifier is weighted differently according to the classifier’s prediction re-
sult. After this, the final result is derived from weighted voting or weighted average [48,49].
Stacking or stacked generalization [23] derives the final result through two processes, as
illustrated in Figure 7. In the first phase, each classifier is trained with the Level-0 dataset
and creates predictions. Then, these predictions become the Level-1 dataset for the meta
classifier, and the meta classifier finds the optimal combination of predictions after training.
In other words, the meta classifier combines the results obtained by several poor classifiers
and derives a robust final result.
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Figure 7. Simple scheme of stacking ensemble learning procedure.

General neural network ensemble schemes train each classifier with the same dataset
or multiple partial datasets derived from the original dataset. By contrast, we train each
classifier on different training sets, that is, a top view and a front view dataset. So, each
prediction contains information from a different view. The CNN ensemble model is a
small ensemble with two classifiers, and the size of the prediction vectors for each classifier
is three. Therefore, we decided that the optimal combination of each classifier with the
stacking ensemble scheme fits better than the voting or weighted averaging method in
boosting or bagging.

We used the single-layer perceptron (SLP) as the meta classifier in our model to
combine two classifiers independently trained from the top view and the front view. Since
the SLP is a lightweight and straightforward network, the proposed model can operate in a
lightweight embedded platform without any performance problems.

In the proposed stacking ensemble scheme, datasets for SLP are concatenated vectors
of the top view and the front view prediction. Using the class probabilities rather than a
single class value is recommended since the probabilities represent the confidence measure
for the prediction [50,51]. The final result vector derived through the trained SLP goes
through the softmax layer and becomes the final prediction vector.

Since RVM is a system that rewards users, it is essential to collect many target objects
and reliably identify them simultaneously. Therefore, we do not select the argmax class that
has the highest probability from the final prediction vector. Instead, when the probability
of the argmax class shows the value above the decision threshold, we select that class as
the final class. If it does not exceed the decision threshold, non-target classes are chosen.
The decision threshold is an implicit classification metric for non-target objects when the
prediction vector does not include the Non-target class. On the other hand, the decision
threshold can act as the second verification when the prediction vector includes the Non-
target class. For example, suppose that the final prediction vector is given as:

(PET, Can, Non-target) = (0.3815, 0.2410, 0.3775), (1)

the argmax class indicates that the object is likely to be PET even though the probability of
the Non-target class is as high as the PET class. However, with the decision threshold of
0.5, this object is predicted as a non-target class in the end.

The ensemble process of the top view and front view classifier can be expressed as:

z = (z1, z2, · · · , zc), (2)

zj =
N

∑
i=1

wj,i Pi(x) + bj , j ∈ {1, 2, · · · , C}, (3)

where z is the final vector and zj is the j-th element of vector z. wj,i is the weight of SLP
in our model, connecting i-th element of the input vector to j-th element of the output
vector. b is the bias, and P(x) is the input vector, after concatenating the result vector of
each classifier. N is the size of vector P(x) and C is the size of the final vector z, respectively.
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The final vector z passes the softmax layer σ, and we can get the class with the highest
accuracy. The class with the highest probability H and its probability Pf are defined as:

H = argmax σ(z), (4)

Pf = max σ(z). (5)

Finally, we check if the predicted probability Pf is higher than the decision threshold.
If it exceeds the threshold, the final result y is H. Otherwise, it becomes N, which denotes
the non-target class. Equation (6) represents this process.

y =

{
H if Pf ≥ Decision Threshold
N if Pf < Decision Threshold.

(6)

The final framework of the proposed CNN ensemble model can be represented as
Figure 8. First, the top view image of the input object is classified through MobileNetV2,
and the front view image is classified through SqueezeNet. Then, the prediction vectors
generated by each classifier are concatenated and classified into PET, Can, and non-target
classes through SLP. The following section describes the specific experimental results and
discussions on our path to find the proposed model.

Figure 8. Framework of the proposed CNN ensemble model.

4. Experimental Results and Discussions

In this section, we present and discuss the experimental results. In every experiment,
we used the deep learning library PyTorch [52] version 1.7.0 to implement and modify
CNN models. These CNN models were pre-trained with the ImageNet and fine-tuned
on NVIDIA GeForce RTX 2080 Super with 8 GB memory. As our performance metric, we
chose classification accuracy, which represents the ratio between the number of correctly
classified data and the entire dataset. Since we used a well-balanced dataset for multi-
class classification, classification accuracy can be the most reasonable and straightforward
performance metric [53].

4.1. Outline of Experiments

This study conducted three successive experiments to obtain the optimal CNN ensem-
ble model. The experiments performed are summarized in Table 2. First, we classified data
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using only top view images in the PET and Can class, similar to the previous image-based
RVM studies [12,13]. In the following experiment, we added a class representing a negative
class, called the non-target, and classified the data using top view and front view images
separately. From the experimental results, the candidates for the final ensemble model
were narrowed down to the models with high classification accuracy and small model
size. Next, we ensembled the CNNs selected from the previous experiment and chose the
best-fit model by comparing the performance of the ensembles. Finally, we also evaluated
the inference time of our best-fit CNN ensemble model in the NVIDIA Jetson Nano and
TX1 Developer Kit.

Table 2. Details of our experiments to find optimized classifiers.

Step Network Input Image Decision
Threshold Class

(1) Single CNN Top view only 0.8 PET, Can
(2) Single CNN Top view only 0.5 PET, Can, Non-target
(3) Single CNN Front view only 0.5 PET, Can, Non-target
(4) CNN Ensemble Model Top view and Front view at once 0.5 PET, Can, Non-target

As suggested in Section 3.3, to increase the prediction reliability, this study applied
the decision threshold as secondary validation after picking the class with the maximum
probability. The decision threshold is set to 0.5 by default, but the threshold value can
vary on the application characteristics. For example, when we classify the objects into
two classes, PET and Can, the maximum probability will always exceed 0.5. Thus we
need a different threshold value to distinguish the non-target objects. In such a case, we
used a heuristic threshold of 0.8 instead of the default threshold value. For the other
experiments classifying the objects into PET, Can, and non-target classes, we applied the
default threshold of 0.5.

4.2. Single Image-Based Classification

As a baseline experiment, we classified the object with only the top view image. This
experiment was conducted in two steps. First, we trained the model without the non-target
dataset and classified the object into two classes, PET and Can classes. Since the models
used in the investigation do not produce the non-target class, we applied the decision
threshold of 0.8 to distinguish the non-target objects in the secondary validation. Table 3
shows the results of this experiment. SqueezeNet and MobileNetV2 showed the highest
and balanced accuracy among the candidate models, but their classification performance
for non-target objects was unsatisfactory. Furthermore, when we further divide non-target
objects into fraud and IAO, the accuracy on fraud objects is significantly lower than IAO.
This result indicates that CNNs trained with our dataset also show erroneous classification
results on non-target objects including fraud objects, as in the previous RVM study [14].

Table 3. Performance of CNNs trained with top view data, classifying objects into PET and Can classes. Heuristic threshold
has been applied to distinguish non-target objects.

Model #Params PET Can Non-Target
Fraud IAO

ResNet-18 11.2M 86.36% 87.88% 22.86% 60.00%
DenseNet-121 7.0M 97.73% 77.27% 10.00% 71.67%
SqueezeNet 0.7 M 93.94% 92.42% 14.29% 18.33%

MobileNetV2 2.2 M 93.94% 90.91% 24.29% 43.33%
EfficientNet-B0 4.0 M 89.39% 45.45% 34.29% 78.33%
EfficientNet-B1 6.5 M 65.15% 33.33% 45.71% 75.00%
EfficientNet-B2 7.7M 76.52% 42.42% 40.00% 73.33%
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In the following experiment, we added the non-target class to improve the poor
classification performance of non-target objects. Table 4 shows the results of the experiment.
It is observed that the EfficientNet family and DenseNet have a lower classification accuracy
of the Can class than the PET class, while SqueezeNet and MobileNetV2 show equally high
accuracy for both classes. On the other hand, in the classification accuracy of the non-target
class, all models showed better results than the first experiment. However, it is still not
enough for a real-world RVM system.

Table 4. Performance of CNNs trained with top view data, classifying objects into PET, Can, and non-target classes.

Model #Params PET Can Non-Target
Fraud IAO

ResNet-18 11.2M 89.39% 88.64% 44.29% 88.33%
DenseNet-121 7.0M 100.00% 79.55% 47.14% 96.67%
SqueezeNet 0.7 M 90.15% 90.91% 52.86% 63.33%

MobileNetV2 2.2 M 93.18% 88.64% 41.43% 85.00%
EfficientNet-B0 4.0 M 95.45% 66.67% 37.14% 75.00%
EfficientNet-B1 6.5 M 79.55% 67.42% 47.14% 90.00%
EfficientNet-B2 7.7M 85.61% 71.21% 48.57% 90.00%

Comparing the results of SqueezeNet and MobileNetV2 in Tables 3 and 4, we ob-
serve that adding a negative class improves the robustness against intentional frauds and
unexpected inputs. However, it also degrades the accuracy of target object classification.
Therefore, we further investigated using model visualization of which parts of the images
the training models focus on to make the classification decision. As the model visualization
method, we used the Gradient-weighted Class Activation Mapping (Grad-CAM) [54].

Figure 9a,b illustrate the Grad-CAM visualization results of correctly classified objects
and incorrectly classified objects with the MobileNetV2 model, respectively. It shows that
the trained MobileNetV2 concentrates on the neck and bottom part of the PET bottle rather
than the label. So, it is challenging to classify a bottle with a short neck or a large label
covering a whole part of the container. Contrarily, as for the aluminum cans, the model
mainly focuses on the label but sometimes focuses on the shadows. Therefore, it becomes
difficult for models to correctly identify an object of which the label has never been trained,
and the illumination condition may also affect the result. From these observations, we need
to find and use the common characteristics of PET bottles and aluminum cans other than
the appearance or label and the shape of the neck or bottom part of the objects to achieve
better interference results.
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Figure 9. Grad-CAM visualization results using MobileNetV2 for target objects: (a) Properly classified
objects; (b) Misclassified objects. The predicted class and its probability are shown below each Grad-
CAM figure.

As shown in Figure 10, we can find that a common characteristic of most PET bottles
and aluminum cans is the shape of the lid, which corresponds to the front view in our
approach. Using this common feature, we tested the classification accuracy with only the
front view images and show the results in Table 5. Since ResNet-18 has the largest model
size among the candidate CNNs but is not showing acceptable classification performance,
we excluded the ResNet-18 from subsequent experiments. The experimental results in
Table 5 show that, as expected, training with the front view images is more accurate than the
top view image training. The general accuracy of 100% on target objects is not surprising.
Previous work by Park et al. [14] also presented the 99% classification accuracy of pet
bottles, cans, and glasses, but they did not consider the fraud objects.

Figure 10. Front view of five different aluminum cans.
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Table 5. Performance of CNNs trained with front view data, classifying objects into PET, Can, and Non-target classes.

Model #Params PET Can Non-Target
Fraud IAO

DenseNet-121 7.0 M 100.00% 99.24% 31.43% 100.00%
SqueezeNet 0.7 M 100.00% 100.00% 34.29% 100.00%

MobileNetV2 2.2 M 93.18% 100.00% 61.43% 100.00%
EfficientNet-B0 4.0 M 83.33% 100.00% 70.00% 100.00%
EfficientNet-B1 6.5 M 68.94% 100.00% 68.57% 93.33%
EfficientNet-B2 7.7 M 93.18% 100.00% 47.14% 100.00%

According to the classification accuracy of target objects, SqueezeNet and MobileNetV2
can be regarded as the best-fit models for the RVM application, as in the previous experi-
ments. However, their accuracy for the fraud object is still low. Furthermore, creating an
intentional fraud object of the front view is more straightforward than the top view.

4.3. Dual Image-Based Classification with CNN Ensemble Models

All previous experiments were conducted using only one cross-section of an object.
Since the single view provides limited information about the object, the models trained in
previous experiments produce erroneous predictions when classifying intentional fraud.
To overcome this limitation and provide more details to the model, we used both the top
view and the front view of input objects for training. We also constructed CNN ensemble
models combining top view and front view classification results with a stacking ensemble
scheme.

The CNN models for the final ensemble were chosen based on their classification
accuracy and size. From the previous experimental results, SqueezeNet and MobileNetV2
showed consistently good classification accuracy over other models. They also have a
noticeable advantage in lightweight embedded platforms because the models have fewer
parameters than other models. For this reason, we constructed CNN ensemble models
using SqueezeNet and MobileNetV2.

Table 6 shows the performance of four different CNN ensemble combinations from
SqueezeNet and MobileNetV2. The results show that the best-fit ensemble model uses
MobileNetV2 as the top view classifier and SqueezeNet as the front view classifier. The
best-fit CNN ensemble model shows classification accuracy better than 95% for all the
classes. Although the accuracy for the PET and the Can classes are slightly lower than the
single CNN results in Table 5, we can consider this little performance degradation as a
reasonable trade-off for the remarkable improvement in the accuracy for the fraud objects.

Table 6. Performance of CNN ensemble models trained with top view and front view data simultaneously, classifying
objects into PET, Can, and non-target classes.

Top view Front view #Params PET Can Non-Target
Fraud IAO

MobileNetV2 SqueezeNet 2.96 M 97.73% 95.45% 97.14% 100.00%
MobileNetV2 MobileNetV2 4.46 M 87.88% 95.45% 95.71% 100.00%
SqueezeNet SqueezeNet 1.47 M 90.15% 92.42% 98.57% 100.00%
SqueezeNet MobileNetV2 2.96 M 87.12% 92.42% 81.43% 100.00%

To analyze what makes our proposed CNN ensemble model produce more accurate
classifications of fraud objects than a single CNN, we applied kernel density estimation
to the prediction results of the fraud objects. Figure 11 illustrates the kernel density
estimation of the fraud object predictions in our experiments. Figure 11a,b show the results
of MobileNetV2 trained with only the top view or the front view image, respectively, and
Figure 11c shows the result of the final CNN ensemble model. Figure 11a,b indicate that
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when MobileNetV2 incorrectly classifies a fraud object as PET or Can class after picking
argmax, in most cases, prediction probabilities exceed the decision threshold of 0.5. This
result leads to poor accuracy by finally misclassifying it as a legal target class.
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Figure 11. Kernel density estimation for prediction result of fraud objects: (a) MobileNetV2 trained only with top view
images; (b) MobileNetV2 trained only with front view images; (c) The proposed CNN ensemble model.

Figure 11c shows that our proposed CNN ensemble model also incorrectly identifies
fraud objects as legal target objects after argmax. However, even in an erroneous classifica-
tion, the prediction probability is mostly lower than the decision threshold and is finally
classified as a Non-target class. For this reason, the proposed CNN ensemble model can
improve the detection rate of fraud objects. To summarize, the proposed CNN ensemble
model shows better accuracy than single CNN models by lowering the confidence on fraud
objects that are misclassified into target objects.

4.4. Performance on Embedded AI Platform

In the last stage of our experiment, we measured the inference time of the proposed
CNN ensemble model on different edge AI devices to investigate the execution perfor-
mance. NVIDIA Jetson Nano and TX1 platforms are employed for this experiment, and the
platform specifications are summarized in Table 7. Both platforms equally used PyTorch
version 1.7.0, CUDA version 10.2.89, and CuDNN version 8.0.0.180. We measured the
inference time using CUDA Event class because CUDA functions are called asynchronously
in PyTorch, and also we performed a sufficient GPU warm-up before measurement for
precise measurement.
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Table 7. Specification of Jetson Nano and Jetson TX1.

Platform Jetson Nano Jetson TX1

GPU 128-core NVIDIA Maxwell 256-core NVIDIA Maxwell

CPU Quad-Core ARM Cortex-A57
@1.42 GHz

Quad-Core ARM Cortex-A57
@1.73 GHz

Memory 4GB 64-bit LPDDR4 4GB 64-bit LPDDR4
AI Performance 472 GFLOPs 1.0 TFLOPs

Size 100 mm × 80 mm × 29 mm 170 mm × 170 mm × 15 mm
Price USD 99 USD 480

Table 8 shows a 99% confidence interval of inference time with 1182 measurements.
We observed that the confidence intervals of Jetson Nano and TX1 are 67.25 ± 1.46 ms
and 55.24 ± 1.2 ms, respectively. We then compared the results with a previous work
by Liukkonen [10]. In [10], the sufficient throughput for the RVM system was suggested
as 40.8 objects per minute, that is, the average processing time of 1470.56 ms per object.
On the other hand, the performance of the state-of-the-art commercial RVMs [39,40] also
amount to about 45 to 60 objects per minute. Our results in Table 8 indicate that with 99%
confidence, the average inference time of our model will be below 70 ms, which is about
4.7∼7% of the total processing time in other RVMs. From the results, we consider that the
inference time based on our proposed approach is fast enough to guarantee the real-time
processing of object classification in RVMs.
Table 8. The proposed model’s inference time on Jetson Nano and Jetson TX1. The unit of inference
time is ms.

Platform Mean Standard
Deviation

99% Confidence Interval
Lower Bound Upper Bound

Jetson Nano 67.25 19.54 65.79 68.72
Jetson TX1 55.24 16.01 54.04 56.44

5. Conclusions

Current RVMs and previous studies on waste classification have suffered from limited
collection resource scope, high system configuration cost, and the erroneous prediction of
intentional frauds. To tackle these problems, we proposed a CNN ensemble model that
combines two CNN models trained for different views of objects using a stacking ensemble
scheme. To this end, we first investigated the classification performance of popular CNN
models based on the image dataset acquired from our prototype RVM. From the results,
we notice that the single image-based classification approach is fragile to intentional fraud
objects. Therefore, we attempted to use both the top view and the front view of objects
and construct the ensemble models with the classifiers having good accuracy for single
image-based training tests and small model sizes. As a result, we finally set up the best-fit
ensemble model that uses MobileNetV2 as the top view classifier and SqueezeNet as the
front view classifier.

The experimental results for the best-fit ensemble model derived in this study showed
that our approach could produce classification accuracy higher than 95% for all target
classes. In particular, our model significantly outperformed single image-based CNNs
in classifying fraud objects. This improvement is due to two reasons. First, the dual
image-based system provides more object information than the single image-based system
and thus leads to better accuracy on target objects. Second, the confidence measure of
intentional fraud objects is lower than the single image-based system, leading to better
accuracy after passing the decision threshold layer. Furthermore, the proposed model
presented an inference time of less than 70 ms on the NVIDIA Jetson platforms. This result
also demonstrates that our model can achieve an execution performance comparable to a
lightweight commercial RVM solution.
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The future work includes using more than two different views, such as the top, front,
and backward views. The use of multiple views can classify the object regardless of the
input direction.
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