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Abstract: Omnidirectional mobile wall-climbing robots have better motion performance than tra-
ditional wall-climbing robots. However, there are still challenges in designing and controlling
omnidirectional mobile wall-climbing robots, which can attach to non-ferromagnetic surfaces. In this
paper, we design a novel wall-climbing robot, establish the robot’s dynamics model, and propose
a nonlinear model predictive control (NMPC)-based trajectory tracking control algorithm. Com-
pared against state-of-the-art, the contribution is threefold: First, the combination of three-wheeled
omnidirectional locomotion and non-contact negative pressure air chamber adhesion achieves om-
nidirectional locomotion on non-ferromagnetic vertical surfaces. Second, the critical slip state has
been employed as an acceleration constraint condition, which could improve the maximum linear
acceleration and the angular acceleration by 164.71% and 22.07% on average, respectively. Last,
an NMPC-based trajectory tracking control algorithm is proposed. According to the simulation
experiment results, the tracking accuracy is higher than the traditional PID controller.

Keywords: omnidirectional mobile robot; wall-climbing robot; critical slip state; nonlinear model
predictive control; trajectory tracking

1. Introduction

The wall-climbing robot mainly consists of two modules: the locomotion module and
the adhesion module. For the locomotion types, arms and legs [1] are good at overcoming
obstacles but have drawbacks in velocity, wheels and chains [2] have advantages in contin-
uous and fast movement but cannot handle large obstacles, sliding frames [3] are simple
in both structure and control but move slowly compared with wheels and chains, and
wires and rails [4] are safe and carry a considerable payload weight but demand external
guidance and equipment. For the adhesion types, magnetic adhesion [5] has a strong
adhesion force but demands a ferromagnetic wall, passive suction cups [6] have lower
energy consumption, while active suction chambers [7–9] have stable adhesion, mechanical
adhesion [10–12] has low energy consumption and is stable but usually requires unique
construction or materials on the wall surface, and chemical adhesion [13] has low energy
consumption when the robot is not moving but is highly influenced by wall material.

According to the literature [14,15], there are few wall-climbing robotic systems at-
tached to non-ferromagnetic walls with omnidirectional locomotion. However, compared
against differential wall-climbing robotic systems, omnidirectional locomotion has better
motion flexibility, including omnidirectional moving with any orientation, changing orien-
tation arbitrarily during motion, and adapting to small spaces. A robot sometimes needs to
move along a specific trajectory when carrying out a task in real applications. Therefore,
trajectory tracking for ground mobile robots has been widely researched in past years.
However, the dynamic characteristics of wall-climbing robots are different from that of
ground robots because of the overturning moment caused by gravity. The difference makes
the trajectory tracking of wall-climbing robots more challenging. In this paper, we focus
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on the design and control of a novel three-wheeled omnidirectional mobile wall-climbing
robot with non-contact negative pressure air chamber adhesion.

The same as ground robots, omnidirectional wheels [16–18] are essential for omni-
directional mobile wall-climbing robots. However, almost all these robots use magnetic
adhesion, which cannot attach to non-ferromagnetic walls. Besides the omnidirectional
wheeled design, steerable wheels are also available for approximate omnidirectional lo-
comotion [19]. Although this robot can attach to non-ferromagnetic wall surfaces, its
motion control is more complicated. Moreover, its flexibility is not as good as robots using
omnidirectional wheels. However, there is no design of a three-wheeled omnidirectional
mobile wall-climbing robot with the non-contact negative pressure air chamber adhesion
at present.

As a traditional hot research topic, different algorithms have been proposed to address
trajectory tracking for mobile robots, e.g., traditional PID control algorithm [20], model
predictive control(MPC) algorithm [21,22], sliding-mode control algorithm [23], adaptive
control algorithm [24], algorithms based on artificial neural networks [25], moving horizon
H∞ control algorithm [26], and fuzzy control algorithm [27]. Rafael Kelly et al. designed
a fuzzy adaptation scheme for PD control with gravity compensation of robot manipula-
tors [28]. R.H. Guerra et al. designed a digital twin-based optimization procedure for a
system which is subject to both backlash and friction [29]. Specific to the trajectory tracking
for omnidirectional mobile robots, a novel minimum-energy cornering trajectory tracking
algorithm has been proposed for three-wheeled omnidirectional mobile robots [30]. Xie et al.
designed energy-optimal motion trajectory tracking algorithms for Mecanum-wheeled
omnidirectional mobile robots [31]. Sorour et al. designed complementary route-based ICR
control for steerable wheeled mobile robots [32]. However, the research on the trajectory
tracking problems of wall-climbing mobile robots is still insufficient [33].

This paper focuses on designing and controlling an omnidirectional wall-climbing
robot, where a negative-pressure air chamber is employed for adhesion. The robot has flex-
ible mobility and can climb on non-ferromagnetic walls. However, as the same with other
wall-climbing robots, the overturning moment makes its motion control challenging. As a
result, a critical slip state is proposed and used as a dynamic constraint for motion control.

2. Mechanical Structure of the Robot

Herein, we study a wall-climbing robot with fast and continuous motion on a flat
non-ferromagnetic material wall. We choose omnidirectional wheel locomotion because
of its advantages of fast speed, continuous motion, and flexible locomotion. Furthermore,
for the non-ferromagnetic wall environment, this paper designs a non-sealed negative
pressure air chamber adhesion, which has good robustness, stable attachment, and no
special requirements for wall roughness.

A schematic diagram of the omnidirectional mobile robot designed for this paper is
shown in Figure 1. The angle between adjacent wheels is Φ = 2π/3. XOY and X′O′Y′

are the world and the robot coordinate system, respectively. O is the axis origin of the
world corrdinate system and O′ is the axis origin of the robot corrdinate system. The three
omnidirectional wheels are denoted as W1, W2, and W3, where the geometric center of W1
is along O′X′.

In order to provide sufficient adhesion force, an adhesion module shown in Figure 2
has been designed. The culvert fan acts as a negative pressure generator, and the double-
layered rubber ring acts as a negative pressure air chamber. As a non-contact adhesion,
our chamber does not affect the locomotion by the friction with the wall. The advantage of
non-contact adhesion facilities the development of autonomous control of the robot.
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Figure 1. Schematic diagram of the three-wheeled omnidirectional robotic system.

Figure 2. Schematic diagram of the negative pressure air chamber adhesion.

Assuming the fluid in the progress of adhesion is ideal, according to the Bernoulli
equation for ideal fluids, we have

Fa = (p0 − pc)S

p0 +
ρav2

0
2

= pc +
ρav2

c
2

Q = Ldvc

(1)

where Fa is the adhesion force, p0 is the pressure of the atmosphere, pc is the pressure in
the chamber, v0 is the velocity of the fluid around the chamber’s upper surface, vc is the
velocity of the fluid in the chamber, ρa is the density of air, Q is the fluid flow, S is the area
of the chamber’s upper surface, L is the Perimeter of the chamber’s lower surface, and d is
the distance from the chamber’s lower surface to the wall.

Combining three equations in (1), we have

F =
ρaQ2S
2L2d2 (2)

According to (2), the flow of the generator should be as large as possible. The radius
of the air chamber does not affect the adhesion force directly.
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The robot mechanism combining the three-wheeled omnidirectional chassis and the
negative pressure air chamber is shown in Figure 3. In this structure, the geometric centers
of the wheels are evenly distributed on a circumference, and each wheel is driven by a
brushless motor.

Figure 3. Schematic diagram of the robot.

3. Dynamic Model Analysis

Unlike that of the ground robots, the positive pressure of the wall surface on each
wheel varies when the orientation changes. Furthermore, this change affects the maximum
acceleration in all directions, which significantly increases the control difficulty. In this
paper, a dynamic model of positive pressure is built to describe the relationship between
the positive pressure of each wheel and the orientation. In order to avoid slipping, a critical
slip state is proposed to derive the relationship between the driving force of each wheel,
the orientation, and the maximum acceleration of the robot.

3.1. The Dynamic Model of Positive Pressure

The robot on the wall is shown in Figure 4, and its overturning moment can be
expressed as

MG = mgh (3)

where m is the system mass, g is the gravitational acceleration, and h is the distance from
the system’s center of mass to the wall. In this case, the location of three wheels relative to
the robot center in the world coordinate system (xi, yi), i = 1, 2, 3 can be expressed as

xi = r cos(θ + π − 2π

3
i)

yi = r sin(θ + π − 2π

3
i)

(4)

where θ is the orientation of the robot, i.e., is the angle between X′O′Y′ and XOY. The three
contact points between the wheels and the wall form a circle, of which the radius is r.

From the force equilibrium and moment equilibrium, we have 1 1 1
y1 y2 y3
x1 x2 x3

F1
F2
F3

 =

 FA
−MG

0

 (5)
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where F1, F2, and F3 are the pressures from the wall to W1, W2, and W3, respectively, and FA
is the adhesion generated by the negative pressure air chamber.

Taking (4) and (5) into account, we have

F1
F2
F3

 = −2MG
3r


sin(θ + π)

sin(θ − π

3
)

sin(θ +
π

3
)

+



FA
3

FA
3

FA
3

 (6)

where FA is determined by the adhesion mechanism, and MG is determined by the overall
mechanical structure of the system. Ideally, these two parameters can be considered to be
constants. As a result, F1, F2, and F3 can be considered functions about θ. Furthermore,
when θ is certain and MG increases, the difference between F1, F2, and F3 increases. When
r increases, the difference of F1, F2, and F3 decreases. When FA increases, the absolute
difference of F1, F2, and F3 remains the same, but the relative difference decreases. In order
to make the locomotion of the robot system affected by θ as small as possible, m should
be designed as small as possible, h should be as small as possible, r should be as large as
possible, and FA should be as large as possible within the scope of the design.

Figure 4. Schematic diagram of the forces on the wall of the robot system.

3.2. The Critical Slip State

To facilitate the description, we propose a critical slip state for the wall-climbing robot
in this section. The state is defined as when “the friction between one or more wheels and
the wall reaches the maximum static friction, none wheel slips with the wall”. In other
words, when the robot reaches the critical slip state, at least one wheel has reached the
maximum static friction. Therefore, we have
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|Fw1| = f1(θ)

|Fw2| ≤ f2(θ)

|Fw3| ≤ f3(θ)

or


|Fw1| ≤ f1(θ)

|Fw2| = f2(θ)

|Fw3| ≤ f3(θ)

or


|Fw1| ≤ f1(θ)

|Fw2| ≤ f2(θ)

|Fw3| = f3(θ)

The omnidirectional platform fulfills holonomic constraints, i.e., the translation and
rotation will be decoupled for motion analysis. In order to analyze the translational accel-
eration, assuming θ is constant, let the angle between the direction of the combined force
and the X-axis of the world coordinate system be γ and the magnitude of the combined
driving force provided by the three omnidirectional wheels in the world coordinate system
is Fs. Then, the dynamic analysis of the robot system can be expressed as follows:

Fw1
Fw2
Fw3

 = Fs


−2

3
sin(θ + π)

2
3

cos(θ + π)

−2
3

sin(θ − π

3
)

2
3

sin(θ − π

3
)

−2
3

sin(θ +
π

3
)

2
3

sin(θ − π

3
)


[

cos γ
sin γ

]
(7)

According to (6), we have

 f1
f2
f3

 = −2µm MG
3r


sin(θ + π)

sin(θ − π

3
)

sin(θ +
π

3
)

+



µmFA
3

µmFA
3

µmFA
3

 (8)

where f1, f2, and f3 are the maximum static friction of W1, W2, and W3, respectively.
µm is the maximum static friction coefficient between the wheels and the wall surface.
As mentioned above, at least one of the driving forces Fw1, Fw2, and Fw3 reach the maximum
static friction when the critical slip state is reached.

Equations (7) and (8) yield

Fw2

Fw1
=
−2/3 sin(θ − π/3) cos γ + 2/3 cos(θ − π/3) sin γ

−2/3 sin(θ + π) cos γ + 2/3 cos(θ + π) sin γ

Fw3

Fw2
=
−2/3 sin(θ + π/3) cos γ + 2/3 cos(θ + π/3) sin γ

−2/3 sin(θ − π/3) cos γ + 2/3 cos(θ − π/3) sin γ

Fw1

Fw3
=

−2/3 sin(θ + π) cos γ + 2/3 cos(θ + π) sin γ

−2/3 sin(θ + π/3) cos γ + 2/3 cos(θ + π/3) sin γ

f1 = −2µm MG
3r

sin(θ + π) +
µmFA

3

f2 = −2µm MG
3r

sin(θ − π

3
) +

µmFA
3

f3 = −2µm MG
3r

sin(θ +
π

3
) +

µmFA
3

(9)

If W1 reaches the maximum static friction first, then we have

Fw1 = sgn(Fw1) f1

Fw2 = sgn(Fw1)
Fw2

Fw1
f1

Fw3 = sgn(Fw1)
Fw3

Fw1
f1

Fs =
sgn(Fw1) f1

−2/3 sin(θ + π) cos γ + 2/3 cos(θ + π) sin γ

(10)
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The same is true when W2 or W3 reaches the maximum static friction force first.
Combining (9) and (10), Fs, ax, and ay can be expressed as below.

ax =
Fs cos γ

m

ay =
Fs sin γ

m
− g

(11)

The translational acceleration a and corresponding orientation α where no slip occurs
are determined by ax and ay. The relationship can be expressed as follows.ax = a cos α

ay = a sin α
(12)

In the practical case, the physical model gives all the known physical parameters
appearing in (7)–(12). Moreover, the relationship between θ, α, and amax under a non-slip
state can be found. Assuming m = 2.615 kg, g = 9.8 m·s−2, MG = 1.314 N·m, r = 0.2221 m,
µm = 0.6, and FA = 150 N, the relationship between θ, α, and amax is shown in Figure 5.

In Figure 5, the surface corresponds to the critical slip state, the space enclosed by the
surface and the θ − α plane is the achievable non-slip motion. In order to prevent the robot
from slipping, without considering the influence of θ and α on the maximum acceleration,
the minimum value of a on the surface in Figure 5 is usually taken as the constraint for the
maximum value of the acceleration. Here, we have amin = 7.31 m·s−2. Under the specific
orientation and acceleration direction angle, the maximum acceleration of the robot is con-
strained to the maximum value of amax = 30.45 m·s−2 on this surface. It can be seen that the
maximum acceleration can be increased by 316.55% by adjusting the maximum acceleration
constraint in real time when considering the effect of the critical slip state. The average
acceleration of the points on the surface in Figure 5 is aavg = 19.35 m·s−2. It shows that the
maximum acceleration is increased by 164.71% on average when considering the influence
of the critical slip state.

Figure 5. The relation among the acceleration, orientation, and the direction of the acceleration.
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Similarly, for the rotational acceleration, we have

Fw1
Fw2
Fw3

 =


−2

3
sin(θ + π)

2
3

cos(θ + π)
1
3r

−2
3

sin(θ − π

3
)

2
3

sin(θ − π

3
)

1
3r

−2
3

sin(θ +
π

3
)

2
3

sin(θ − π

3
)

1
3r




0

mg

Iz θ̈

 (13)

According to (13), when θ is fixed, the difference in the driving force of each wheel is
fixed. Therefore, we have

Fw1 − Fw2 = −2
√

3mg
3

sin(θ +
π

3
)

Fw2 − Fw3 = −2
√

3mg
3

sin(θ + π)

Fw3 − Fw1 = −2
√

3mg
3

sin(θ − π

3
)

f1 = −2µm MG
3r

sin(θ + π) +
µmFA

3

f2 = −2µm MG
3r

sin(θ − π

3
) +

µmFA
3

f3 = −2µm MG
3r

sin(θ +
π

3
) +

µmFA
3

(14)

If W1 reaches the maximum static friction first, we have

Fw1 = f1

Fw2 = f1 − (Fw1 − Fw2)

Fw3 = (Fw3 − Fw1) + f1

β =
3r( f1 −

2
3

mg cos(θ + π))

Iz

(15)

The same is true when W2 or W3 reaches the maximum static friction force first. The
curve can be obtained as in Figure 6, which is the critical slip state parameter, and the
region enclosed by this curve and θ-axis is the motion state that can be achieved in the
non-slip state. When the influence of the critical slip state is not considered, the mini-
mum value of β on the graph curve is usually taken as the constraint on the maximum
value of the angular acceleration of the robot to prevent the robot from slipping. Here,
we have βmin = 276.94 rad·s−2. Under the conditions of a specific θ and α, the maxi-
mum acceleration of the robot is constrained to be the maximum value on this surface
βmax = 453.48 rad·s−2. It can be seen that when the influence of the critical slip state is
considered, the maximum acceleration of the robot can be increased by 63.75% by adjusting
the maximum acceleration constraint in real-time. The average acceleration of the points
on the surface in Figure 6 is βavg = 338.05 rad·s−2. It can be seen that the maximum
acceleration of the robot is increased by 22.07% on average when considering the influence
of θ and α on the maximum acceleration.

From the above, when θ and γ are given, the relation of Fwi(i = 1, 2, 3), a, and α can
be found. The conclusion can be used to adjust the maximum acceleration according to θ
and α. The constraints on the maximum acceleration of the robot can be adjusted in real
time to exploit the acceleration performance fully. When θ in the world coordinate system
is given, the maximum angular acceleration β of the robot in the world coordinate system
can be found when the robot is in the critical slip state. The constraint on β can be adjusted
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in real time according to θ, so the acceleration performance of the system can be more
fully exploited.

0 120 240 360
270

276.9

320

370

420

453.5

470

2
)

Figure 6. Maximum angular acceleration—orientation curve.

4. Nonlinear Model Predictive Trajectory Tracking Control

Trajectory tracking accuracy could be vital when a wall-climbing robot performs par-
ticular tasks in a real application. Traditional PID controllers are widely used in trajectory
tracking control. However, the accuracy of the traditional PID controller is significantly
impacted by delays of dynamic characteristics of the robot. Therefore, our robot’s trajectory
tracking motion control is designed based on nonlinear model predictive control(NMPC).
The kinematic equations of the system can be expressed as follows:

ẊXX =


ẋ(t)

ẏ(t)

θ̇(t)



−2

3
sin(θ(t) + π) −2

3
sin(θ(t)− π

3
) −2

3
sin(θ(t) +

π

3
)

2
3

cos(θ(t) + π)
2
3

cos(θ(t)− π

3
)

2
3

cos(θ(t) +
π

3
)

1
3r

1
3r

1
3r




v1(t)

v2(t)

v3(t)

 (16)

where ẊXX is the velocity state quantity of the robot, and ẋ and ẏ are the velocity component
of the robot’s motion on the X-axis and Y-axis of the world coordinate system, respectively.
θ̇ is the angular velocity around the center of the robot coordinate system. Velocities v1, v2,
and v3 are the relative motion velocities of the three wheels to the wall, respectively.

The dynamic equations of the system can be expressed as follows.

ẌXX =


ẍ(t)

ÿ(t)

θ̈(t)





− sin(θ(t) + π)

m

− sin(θ(t)− π

3
)

m

− sin(θ(t) +
π

3
)

m

sin(θ(t) + π)

m

sin(θ(t)− π

3
)

m

sin(θ(t) +
π

3
)

m
r
Iz

r
IZ

r
IZ




Fw1(t)

Fw2(t)

Fw3(t)

+


0

−g

0

 (17)
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where ẌXX is the acceleration state quantity of the robot, and ẍ and ÿ are the acceleration
component of the robot’s motion on the X-axis and Y-axis of the world coordinate system,
respectively. θ̈ is the angular acceleration around the center O′ of the robot coordinate
system. The final control quantity of the robot is the driving force of each wheel of the
robot. Moreover, the relationship between the velocity state and acceleration state can be
expressed as follows:

ẌXX(t) = f (ẊXX(t),uuu(t)) (18)

where

uuu(t) =


u1(t)

u2(t)

u3(t)

 =


Fw1(t)

Fw2(t)

Fw3(t)

 (19)

For a given reference trajectory, each point on the trajectory satisfies the kinematic and
dynamic equations described by (16) and (17). The reference quantity is denoted by the
subscript r. Then, we have

ẌXXr(t) = f (ẊXXr(t),uuur(t)) (20)

where 

ẊXXr =


ẋr(t)

ẏr(t)

θ̇r(t)



uuur(t) =


ur1(t)

ur2(t)

ur3(t)

 =


Frw1(t)

Frw2(t)

Frw3(t)


(21)

In order to obtain a better control effect, a model predictive controller with a dual-loop
structure including position and velocity loops is designed in this paper, as shown in
Figure 7. The control quantity calculated by the position loop is the velocity of the robot in
the world coordinate system. It is then used as the reference quantity of the velocity loop.
Therefore, the position loop is calculated to obtain its error prediction model.

Figure 7. Schematic diagram of the dual-loop structure.
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According to the sampling theorem, when the number of prediction steps is n, the dis-
cretization of the XXX can be expressed as follows:

XXXe(k + n|k) = XXX(k|k) + T
n

∑
i=1

ẊXXr(k + i− 1|k)−XXXr(k + n|k) (22)

where XXXr(k + n|k) is a vector of position state quantities of the reference trajectory after
the time nT, input to the controller from higher-level decisions such as trajectory planning
in the robot. Vector ẊXXr(k + i − 1|k) is the velocity state volume vector of the reference
trajectory of the robot after the time (i− 1)T, which is the control volume of the position
loop and calculated by the position loop’s optimization controller and input to the velocity
loop as the reference trajectory of the velocity loop.

In this paper, an objective function is designed, which considers the accuracy of
trajectory tracking, smoothness of motion control, and solvability of the optimization
algorithm [34] of the robot, and its expression form is as follows:

J(k) =
Np

∑
i=1

∣∣∣∣ẊXXe(k + i|k)
∣∣∣∣2

QQQ +
Nc

∑
i=1
||∆uuu(k + i|k)||2RRR + ||εv||2ρ (23)

where J(k) is the optimization objective function, QQQ and RRR are the weight matrices, ε is the
relaxation factor, ρ is the relaxation factor weight coefficient, Np is the number of prediction
steps, and Nc is the number of control steps, with Np ≥ Nc. We have

∆uuu(k + i|k) = uuu(k + i|k)−uuu(k + i− 1|k) (24)

where k = 1, 2, 3, · · · , Nc − 1.
This is considering the fact that the critical slip state into the constraint can fully utilize

the robot’s motion performance because no undesired slip occurs. Based on the conclusions
related to the critical slip state, the constraints are adjusted according to the specific needs
of the NMPC algorithm. In practical applications, if the robot is in a critical slip state for
a long time, its motion will be unstable and eventually lead to undesired slip. Similarly,
if the robot’s drive motor is at full load for a long time, it may lead to high current, motor
heating, and a decrease in the drive torque that the motor can provide, which may cause
the motor to block. Therefore, a safety factor is designed for the constraints aiming at
real-life problems to ensure that the robot will not be in a critical slip state and the motors
will not be fully loaded for a long time.

With the introduction of the safety factor, the constraints of the velocity loop are|uuu(t + kT)| ≤ SSS f fff(t + kT)

|uuu(t + kT)| ≤ SSSwFFFwmax

(25)

where SSS f and SSSw are the safety coefficient matrices.
For the position loop, the constraint mainly lies in the fact that the tangential relative

motion speed between each wheel and the wall should not exceed the linear speed that the
motor can provide for each wheel. Otherwise, the undesired slip between the wheel and
the wall will occur. Thus, for the position loop, we have

SSSvvvvmin ≤ AAA(t + kT)ẊXX(t + kT) ≤ SSSvvvvmax (26)
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where SSSv is the safety coefficient matrix, and

AAA(t + kT) =


− sin(θ(t + kT) + π) cos(θ(t + kT) + π) r

− sin(θ(t + kT)− π

3
) cos(θ(t + kT)− π

3
) r

− sin(θ(t + kT) +
π

3
) cos(θ(t + kT)− π

3
) r

 (27)

5. Simulation Experiments

In this paper, the dynamics simulation software ADAMS is used to model the dynam-
ics of the robot to verify the derived positive pressure model of each wheel on the wall and
the model of the critical slip state. In the simulation experiments, we consider the contact
deformation and the dimensional parameters of the model. The type of material and its
physical parameters in the experiments are the same as the mechanism design. Here we
have m = 2.615 kg, h = 51.27 mm, FA = 150 N, and r = 222.1 mm.

5.1. Critical Slip State Experiments

In the critical slip state experiment, three states of non-slip, critical slip, and slip were
analyzed. The control signal is a step signal fed directly to the wheel. In the critical slip state
experiments, we have no constraints on the performance of the motor in the simulation
environment. For θ = 90◦ and α = 0◦, the theoretical acceleration values were compared
with the simulated experimental values in the three states.

Figure 8 shows the measured acceleration and theoretical acceleration curves of the
robot in the simulation experiment when the driving force of W1, W2, and W3 are 23.76 N,
2.91 N, and −26.67 N, respectively. The robot is in a non-slip state in this case. It can be
seen that the theoretical acceleration curve in the figure is consistent with the acceleration
measured in the simulation experiment. The pulse at 15 ms in the graph is generated by
the shock caused by the system starting from a standstill.
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Figure 8. Acceleration–time curve of the non-slip state.

Figure 9 shows the measured acceleration and theoretical acceleration curves of the
robot in the simulation experiment when the driving force of W1, W2, and W3 are 28.02 N,
0.80 N, and −28.82 N, respectively. In this case, the robot is in the critical slip state. It can
be seen that the acceleration theoretical value curve in the figure is consistent with the
acceleration measured in the simulation experiment. The pulse at 17 ms in the figure
is generated by the shock caused by the system starting from rest. The oscillation after
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500 ms is caused by an unstable form of friction. The wheel speed is already high at this
time, and the omnidirectional wheel rollers make contact with the wall one after another,
resulting in the unstable form of friction.
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Figure 9. Acceleration–time curve of the critical slip state.

Figure 10 shows the measured acceleration and theoretical acceleration curves of the
robot in the simulation experiment when the driving forces of W1, W2, and W3 are 31.68 N,
−1.05 N, and −30.63 N, respectively. The robot is slipping in this case. It can be seen
that the acceleration theoretical value curve in the figure differs significantly from the
acceleration measured in the simulation experiment. The difference is due to the oscillation
of acceleration as the omnidirectional wheel rotates, generating sliding friction and slipping.
The rollers of the omnidirectional wheel are in alternating contact with the wall, which
causes the oscillation. The oscillation here is more evident than the non-slip state and the
critical slip state, which is not suitable for the stable control of the robot, so the undesired
slip of the omnidirectional wheel with the wall should be avoided.
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Figure 10. Acceleration–time curve of the slip state.



Appl. Sci. 2021, 11, 11065 14 of 19

From the three experiments above, it can be seen that according to the critical slip state
model in Section 3.2, the drive force can be accurately calculated for the system to accelerate
in any direction without changing θ in the non-slip state and the critical slip state.

5.2. Control Algorithm Experiments

To verify the performance of our NMPC controller, we have completed experiments
using the NMPC controller and the PID controller as a comparison. The simulated solvers
are all fixed-step types with 5 ms step. In addition, a time delay of 5 ms is added to the
feedback link to simulate the sensor communication time delay in real applications.

The dual-loop structure of the PID controller in the simulation experiments is shown in
Figure 11, and the structure of Kp, Ki, and Kd is used in the calculation. The PID parameters
corresponding to the error values of X-direction, Y-direction, and rotation direction of
the position loop are 7, 0.1, and 0.1, respectively. The PID parameters corresponding to
the error values of the X-direction and Y-direction of the velocity loop are 7, 0.1, and
0, respectively. The PID parameters for the error values of rotation angle velocity are
14, 0.1, and 0. The PID parameters are selected through experimental tests. First, the PID
parameters is empirically adjusted so that the robot can roughly follow the trajectory
in X-direction, Y-direction and orientation. Then, the parameters of the inner loop are
tuned in the order of Kp, Ki, and Kd, followed by the outer loop in the same tuning
order. The parameter step of Kp is 0.5 and the parameter step of Ki and Kd is 0.1. Next,
when the robot’s trajectory is close to the reference trajectory, we compare the RMSE
of the trajectory tracking. Finally, the parameters with the smallest sum of the RMSE
in the three dimensions. The result shown in the paper is the local best performance
obtained from numerical experiments. The lower bound of the constraint of the position
loop is

[
−0.32 −0.32 −70

]T , and the upper bound is
[
0.32 0.32 70

]T . The lower

bound of the constraint of the velocity loop is
[
−50 −50 −50

]T , and the upper bound

is
[
50 50 50

]T . The constraints’ parameters are calculated from the physical constraints.
The experimental results are shown in Figure 12.

Figure 11. Schematic diagram of the PID controller’s structure.

The parameters of the experimentally measured trajectory in Figure 12 do not overlap
with those of the reference trajectory. As a result, the experimentally measured trajectories
of the position in the X-direction, Y-direction, and the orientation have a slight time delay
compared with the reference trajectory.

In the simulation experiments using the NMPC algorithm, the number of prediction
steps is 1 and the number of control steps is 1.
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Figure 12. The result of PID controller in the simulation experiment. (a) X-directional position–time curve in PID experiment.
(b) Y-directional position–time curve in PID experiment. (c) Orientation–time curve in PID experiment. (d) Error of X-
directional position–time curve in PID experiment. (e) Error of Y-directional position–time curve in PID experiment. (f) Error
of Orientation–time curve in PID experiment.

The control frequency of the position loop is 20 Hz, and the control frequency of the
velocity loop is 200 Hz. The parameters of the prediction and control horizons are set
for control frequency and model accuracy reasons. According to (22), the computation
of the difference model increases significantly when the prediction and control horizons
increase. Moreover, to simplify the calculation, θ is replaced by θr in the model, so the
model mismatch is also more severe when the prediction and control horizons increase.
It has been tested that when the prediction and control horizons are 1, the controller can
reach the maximum control frequency with no decrease in accuracy. The tracking accuracy
penalty matrix of the position loop can be expressed as follows:

QQQp =

100, 000 0 0
0 100, 000 0
0 0 10, 000


The control smoothness penalty matrix of the position loop is

RRRp =

0.01 0 0
0 0.01 0
0 0 0.001


The relaxation factor coefficient of the position loop is

ρp = 0
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The tracking accuracy penalty matrix of the velocity loop is

QQQv =

270, 000 0 0
0 270, 000 0
0 0 900


The control smoothness penalty matrix for the velocity loop is

RRRv =

0.01 0 0
0 0.01 0
0 0 10, 000


The relaxation factor coefficient of the velocity loop is

ρv = 0

The safety coefficient vector SSS f , SSSw and SSSv are all taken as
[
0.95 0.95 0.95

]T .
The results of the simulation experiment are shown in Figure 13. The experimental

measurement trajectories in the experimental results overlap with the reference trajectory.
Compared with the PID algorithm, the NMPC algorithm reduces the impact of time delay
on control accuracy. The NMPC controller achieves accurate and smooth trajectory tracking
control of the robot during the wall motion.
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Figure 13. The result of NMPC controller in the simulation experiment. (a) X-directional position–time curve in NMPC
experiment. (b) Y-directional position–time curve in NMPC experiment. (c) Orientation–time curve in NMPC experiment.
(d) Error of X-directional position–time curve in NMPC experiment. (e) Error of Y-directional position–time curve in NMPC
experiment. (f) Error of Orientation–time curve in NMPC experiment.
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In order to further quantify and compare the tracking accuracy of the PID algorithm
and NMPC algorithm, we use the root mean square error (RMSE) between the experimen-
tally measured trajectory position quantity and the reference trajectory position quantity as
the evaluation index. The comparison results are shown in Table 1.

Table 1. Comparison of the RMSE of PID experiment and NMPC experiment.

Program RMSE for X- RMSE for Y- RMSE for
Directional Position Directional Position Orientation

PID experiment results 3.661× 10−2 3.684× 10−2 1.219
NMPC experiment results 4.946× 10−4 3.839× 10−3 4.844× 10−1

From the results in Table 1, the RMSE of PID experimental results in X-direction and
Y-direction position quantities are approximately 74.02 times and 9.596 times of NMPC
experimental results, respectively, while the ratio of RMSE of PID experimental results to
NMPC experimental results in terms of orientation is 2.516. Thus, the results indicate that
the deviation of the actual trajectory and the reference trajectory of the NMPC algorithm
is smaller than that of the PID algorithm in the joint dynamics simulation environment.
Therefore, the NMPC algorithm outperforms the PID algorithm in terms of trajectory
tracking accuracy in the application scenario of this paper.

6. Discussion and Future Work

As the omnidirectional wheels rotate, the alternating forces on the rollers create a
cyclic shock. The shock causes a periodic change in the positive pressure between each
robot wheel and the wall. Therefore, when the robot is in a critical slip state, this shock
eventually leads to unstable friction between the robot’s wheels and the wall, thus causing
the oscillation after 500 ms in Figure 9. According to the description in [35], this shock
can be reduced by adjusting the omnidirectional wheel form. As a result, the motion
performance of the robot can be more fully exploited. The next step can be to improve the
design of the omnidirectional wheel based on this requirement and complete the real robot.

In this paper, an NMPC algorithm is designed that is more accurate than the linear
MPC algorithm model but still suffers from the model mismatch. In the experiments,
the angle information in this model directly selects the angle of the reference trajectory
instead of the prediction angle. If the angle of the reference trajectory is used, the prediction
model mismatch will be aggravated when the robot’s orientation tracking is inaccurate;
if the prediction angle is used, the computation of the prediction model will increase
significantly as the number of predictions steps increases. Making the prediction model
more accurate while ensuring the efficiency of the algorithm is an important research
element to enhance this control algorithm. One possible solution to the problem of model
mismatch is to use a data-driven nonlinear model. Parameter adaption techniques are
often integrated into the MPC algorithm. Model predictive control based on the data-
driven model as the neural network-based model predictive control(NNMPC) [36] and
the Bayesian neural networks model predictive control(BNN-MPC) [37] are now widely
researched and used.

Because of the favorable results of this simulation, the next step would be to implement
this NMPC-based control algorithm on a real robot to test and compare the efficacy with
the simulation results. Further theoretical research and engineering implementation are
proceeding in parallel now. However, the conditions for experiments on a real robot are not
available yet. There are many differences between real-life implementation and simulation
that need to be addressed. For example, in real-life, the delay of the robot is unstable due to
many factors, such as the hardware and environment. In addition, the accuracy of motion
control is reduced because of perturbations in the robot’s attachment and drive forces.
These problems make it challenging for the disturbance rejection of the control algorithm.
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7. Conclusions

In this paper, a novel omnidirectional mobile pneumatic adhesion wall-climbing robot
is designed, its dynamics model is derived, and the critical slip state is proposed. The
dynamics constraint is given when considering the critical slip state, giving the robot fuller
play to its motion performance. Its maximum acceleration can be improved by 164.71%
on average when the robot only has translational acceleration. The maximum angular
acceleration can be improved by 22.07% on average when the robot is only accelerated
by rotation. Based on the dynamics model of this robot, a nonlinear model predictive
trajectory tracking control algorithm is designed, and better control performance can be
achieved in comparison with the PID algorithm in trajectory tracking. Using the RMSE
of the measured trajectory and the reference trajectory as the criterion to evaluate the
trajectory tracking accuracy, the accuracy of our algorithm is 74.02 times that of the PID
algorithm in the X-direction position, 9.596 times in the Y-direction position, and 2.516
times in the orientation .
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