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Abstract: One of the causes of mortality in bees is varroosis, a bee disease caused by the Varroa
destructor mite. Varroa destructor mites may occur suddenly in beehives, spread across them, and
impair bee colonies, which finally die. Edge IoT (Internet of Things) devices capable of processing
video streams in real-time, such as the one we propose, may allow for the monitoring of beehives for
the presence of Varroa destructor. Additionally, centralization of monitoring in the Cloud data center
enables the prevention of the spread of this disease and reduces bee mortality through monitoring
entire apiaries. Although there are various IoT or non-IoT systems for bee-related issues, such
comprehensive and technically advanced solutions for beekeeping and Varroa detection barely exist
or perform mite detection after sending the data to the data center. The latter, in turn, increases
communication and storage needs, which we try to limit in our approach. In the paper, we show
an innovative Edge-based IoT solution for Varroa destructor detection. The solution relies on Tensor
Processing Unit (TPU) acceleration for machine learning-based models pre-trained in the hybrid
Cloud environment for bee identification and Varroa destructor infection detection. Our experiments
were performed in order to investigate the effectiveness and the time performance of both steps, and
the study of the impact of the image resolution on the quality of detection and classification processes
prove that we can effectively detect the presence of varroosis in beehives in real-time with the use of
Edge artificial intelligence invoked for the analysis of video streams.

Keywords: Internet of Things (IoT); Varroa destructor; precision beekeeping; machine learning; cloud;
image analysis; Edge computing

1. Introduction

In recent years, we have been observing rapid growth of the advancement in tech-
nology, including Internet of Things (IoT) solutions. These solutions are developed all
over the world for almost every area of our lives. Daily use devices, such as smartphones,
smartwatches, TVs, household appliances, or cars are obvious examples. For medicine, IoT
solutions are used for remote monitoring of a patient’s health state and performing com-
plicated medical surgeries [1]. In agriculture [2], these systems are helpful for controlling
environmental factors or monitoring animals [3].

On the other hand, people are becoming aware of environmental and climate changes.
It is widely known that bees are crucial for the Earth. They are responsible for pollinating
trees and plants, including food crops for humanity. Insects pollinate nearly 90% of global
food production [4], while two-thirds of them are estimated to be honey bees. Unfortunately,
for almost twenty years, the bee population all over the world has been decreasing. This
phenomena was identified as Colony Collapse Disorder (CCD) [5]. The reasons have not
yet been fully classified; however, among possible factors, scientists often mention wrong
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bee nutrition [5,6], weather conditions (including climate changes) [5,7], pesticides that are
used in agriculture more and more often [4,8,9], and various organisms (mites, bacteria,
viruses etc.) that attack whole apiaries [4,8,10–12]. One of the mites that endangers bees’
lives is Varroa destructor (V. destructor) [7,12,13]. It reaches up to 1.2 mm in length and is
red or brown colored [14]. This is why the human eye can easily notice it without any
magnification. Varroa destructor attacks both the bees and their larva, can move between
workers and eggs inside a beehive, and feeds on hemolymph [13,15]. Bees infected with
this mite live for a shorter time, are affected with wing and body deformations, have
navigation problems, and work less efficiently than their healthy counterparts [14]. What
is more, Varroa destructor may transfer other viruses, i.e., Deformed Wing Virus (DMV),
Kashmir Bee Virus (KBV), or Acute Bee Paralysis Virus (ABPV) [13,14,16]. Currently,
the most popular way of detecting the existence of Varroa destructor is regular and time-
consuming bee observation in beehives performed manually by beekeepers. Responding
to such needs, IoT solutions finally started to be also implemented for this field. However,
detecting varroosis with IoT requires the development of devices that can constantly
monitor beehives and analyze the video data stream in real-time. This necessitates the use
of hardware-accelerated IoT devices since sending the video stream to the monitoring data
center in many situations is impossible (due to limited access to the Internet).

This paper presents a large-scale IoT Edge- and Cloud-based solution for detecting
the Varroa destructor mite among bees that enter and leave the beehive. We propose a
system built on an IoT monitoring device and single-board computer that can record video
streams, process video frames (images), use a Tensor Processing Unit (TPU) acceleration to
perform on-edge analysis with pre-trained Machine Learning models, and send the data to
the Cloud for the purpose of storage, further geo-wide analysis, and notifying beekeepers.
Our solution, presented in detail further in this paper, in contrast with others, is a complex
system designed for beekeepers who struggle with Varroa destructor mite. The use of TPU
and machine learning (ML) models enables the recognition of possible threats quickly and
efficiently and helps save bees from illness and death. Moreover, by performing the video
stream processing (including the image analysis) at the Edge, not in the data center, our
approach reduces the need for frequent communication with the data center and the storage
space required to keep large streams of video captured by the camera-enabled IoT device.
Our solution, unlike the other presented in the next section, entirely relies on edge and
cloud processing, applies ML with two dedicated Convolutional Neural Network (CNN)
models for bee identification and Varroa destructor detection, and can notify beekeepers
directly in case of detected danger. In this manner, it complements the solutions published
so far.

In the following section, we show particular component elements of our approach.
Section 2 presents current state-of-the-art research regarding various solutions for bee
monitoring developed during the last decades. Section 3 discloses details about the experi-
mental environment that we developed to monitor bees and detect varroosis, which we
experimentally tested. In Section 4, we present the results of the performed experiments.
Finally, we discuss the solution and obtained results and compare the results with the
results reported in the related works (Section 5).

2. Related Works

Bee monitoring has been a field for scientific research for more than a hundred years.
The first proposal of a system that enabled measuring temperature and weight of beehive
was described in 1914 by B.N. Gates [17]. The data were gathered hour by hour for one
year. Nearly twenty years later, W. Dunham [18] used an electrical thermocouple method
to monitor the temperature inside the beehive. Along with the development of technology,
more and more solutions were proposed. Finally, there came a time for IoT systems.

The most common methods of bee monitoring used in Precision Beekeeping [19–21]
include measuring temperature and other environmental factors inside and outside the
beehive, including its weight. Solutions based on monitoring temperature enable the
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detection of various situations inside the beehive—increased food consumption, beginning
of brood rearing, pre-swarming state, or even death of the bee family while controlling the
weight of beehive is helpful to indicate the time for honey harvesting, lack of food during
winter or swarming state without enormous financial expenses. Systems that analyze tem-
perature and humidity are described in [22,23]—both enable real-time monitoring; the one
developed by Braga et al. [24] includes also measuring the weight of a beehive, whereas
the system developed by Kontogiannis [25] monitors conditions inside the beehive and
can regulate them when necessary. The approach described by Debauche et al. [26] allows
web monitoring not only for temperature and humidity but also for additional factors
such as air pollution or wind speed. A similar solution is proposed in [27] and gathers
data from various sensors for air gases. The solution proposed by Meitalovs et al. [28]
enables video recording along with temperature and humidity monitoring, while the
system described by Balta et al. [29] also allows audio recording. Beehive weight-based
IoT systems are presented in [30,31]. A solution presented in [32], apart from controlling
temperature, humidity, air pressure, and beehive weight, also uses a gesture sensor to
analyze bee flight behavior. In recent years, some solutions were developed that use
chemical analysis of the air in the beehive that enable detection of the V. destructor mite
inside the beehive [33,34]. They assume that Varroa destructor influences gas composition.
Although the above solutions do not belong to IoT systems, they are worth mentioning.

Another category of IoT systems developed for beekeeping includes those that allow
for audio analysis. The analysis is useful for detecting a swarming state inside a bee
colony [35–38]. Qandour et al. [39] classify the behavior of queens, scouts, forgers, and the
whole bee family based on bee noises. An approach worth mentioning is presented by Van
Goethem et al. [40]. Although this system analyses bee sounds to determine bee pollination
efficiency, it is dedicated to fruit growers.

As the development in the electronics field proceeds, camera devices are becoming
more accessible and more and more often used in IoT systems. Beekeeping systems are not
an exception for this. Video monitoring solutions that monitor the number of bees entering
and leaving a beehive are presented in [41,42]. Campbell et al. [41] described encoun-
tered problems, such as recognizing bee bodies and their shadows, while Chen et al. [42]
proposed a solution with tags attached to the bee legs, which eliminated the difficulty.
Babic et al. [43] developed a system that detects bearing honey bees, along with counting
the number of bees. The real-time monitoring system proposed by Bjerge et al. [44] records
bees going through a passageway and enables counting them as well as identifying mites
on their bodies. Apart from the camera, the solution uses spectral waves that illuminate the
bee body and ML methods to classify bees affected by the Varroa destructor mite. The accu-
racy of classification reached up to 99%, depending on classifier parameters. The solution
developed by Elizondo et al. [11] locates V. destructor mite inside a honeybee cell. However,
it does not acquire video nor image data by itself. The last two works show that there
remains a space for developing Precision Beekeeping solutions that enable identifying
possible threats such as V. destructor mites. Some existing solutions for bee monitoring will
be extended for the capability to detect V. destructor mites. Such an approach is presented
in [45] with a Raspberry Pi platform-based, energy-efficient, and scalable solution that
enables tracking bees locally, sending cropped images to the Cloud. It consists of modules
for pollen detection, bee position, and bee type recognition, and a classification module.
The system described in [46] is also based on the Raspberry Pi platform and will be ex-
tended with a module for V. destructor detection using visual monitoring at the entrance
and gas sensors devices. Although the system is not an IoT solution yet, the authors aim
to extend it to that type of device. Table 1 presents a short comparison between the most
important of the above works.
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Table 1. Comparison of bee monitoring systems

Paper Authors Data Type Data Source Purpose Algorithm/Device

Campbell et al. [41] Video Own images Bee counting No information

Chen et al. [42] Video Own images Bee counting
SVM/CCD camera,
infrared LED light

source, PC

Babic et al. [43] Video Own recordings Bee counting, detect
bees with pollen

MOG,
NMC/Raspberry Pi,

camera

Bjerge et al. [44] Video, Spectral waves Own recordings
Bee counting,

identifying the varroa
mite

LDA/Passageway,
camera, mirror, LED

arrays, laptop

Elizondo et al. [11] Video
DB of Research Center
of Tropical Apiculture

Studies

Varroa detection inside
honeybee cell

Background
Subtraction,
Binarization
Process/No
information

Marstaller [45] Video iNaturalist, own data
bee tracking, pollen

detection, bee position,
bee types recognition

cloud-based
CNN/Raspberry Pi

Konig [46] Sound, environmental
conditions, video Own data

Bee state, flight
monitoring, Varroa

detection

kNN/environmental
conditions sensors,

Raspberry Pi

The solutions mentioned above do not fully respond to beekeepers’ needs. Although
state-of-the-art papers about bee monitoring exist, the vast majority of them refer to
controlling the conditions in- and outside the beehive. Moreover, the technological stack
applied in most of the above does not stand with the cutting edge devices and algorithms.
There are no comprehensive solutions that include image analysis based on edge-processing
that could be easily scaled for multiple beehives and would not affect bees at the same
time. Meanwhile, it is worth noting that scalability and fault tolerance are important
issues while developing complex, network-based systems, such as the one presented in
this paper. The decentralized solutions that use Peer-to-Peer connections (P2P) instead
of the traditional Master–Slave approach feature good time performance with basically
no loss of accuracy of data transmission [47]. Moreover, the P2P types of frameworks are
less susceptible to network breakdowns due to the dysfunction of one of the peers, which
makes the solution more scalable. The lack of such properties among the existing solutions
led us to develop the presented approach that responds to the mentioned needs and fills
these technical gaps. Our approach satisfies the scalability of performed analyses through
TPU acceleration and the scalability of the monitoring process through IoT-dedicated cloud
components. Fault tolerance is achieved by a redundancy of the IoT components, which is
native to the cloud. Our proposal, presented in this paper, extends the current spectrum of
existing works by:

• Providing a large-scale, Cloud-based infrastructure for monitoring bees and detecting
varroosis that can be easily extended for multiple beehives;

• Enabling real-time analysis and detection of Varroa destructor with embedded artificial
intelligence (AI) on the TPU-accelerated Edge IoT devices;

• Ensuring that gathering and processing data will not affect the regular activities
of bees.

3. Experimental Environment

For the purpose of real-time and large-scale bee monitoring, we developed an experi-
mental system composed of the monitoring IoT device and data center located in the Cloud
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environment. Construction of the monitoring IoT device is presented in Figure 1. Software
organization is shown in Figure 2. The architecture of the whole system is shown in Figure
3. Particular modules of the system are described in the following sections.

Figure 1. Overview of the IoT device used for monitoring a beehive.

3.1. Monitoring IoT Device with TPU Accelerator

We built the monitoring device based on the RaspberryPi 4 model B mini-computer
with Broadcom BCM2711 quad-core 64-bit ARM-8 Cortex-A72 1,5 GHz processor and 4
GB of RAM (Raspberry Pi Foundation, Cambridge, UK) (Figure 1). The device is powered
by an external source of electricity in the form of a power bank. Monitoring is performed
with the use of an ArduCam OV5647 5Mpx camera with an LS-2718 CS lens sourced
from Botland, Bralin, Poland. The camera supports the HD 1080 px mode, providing 30
frames per second. The camera is connected to a dedicated connector that the RasberryPi
is equipped with, ensuring fast data transfer. An additional GSM modem is used for
transmitting data to the data center. The modem is connected to the central unit via a USB
3.0 connector, and it is equipped with its own SIM card. In such a way, it is independent of
the availability of the broadband network in the vicinity of the beehive.

While having a network connection, it is possible to connect to the Cloud data center
through the AWS IoT Cloud gateway service. For each frame of the recorded video stream,
the IoT device performs bee identification (segmentation of bees) and Varroa destructor
detection (the classification process). If the bee is classified as infected, the IoT device
sends an MQTT message to the Cloud data center for further processing and notifying a
beekeeper. The software organization is presented in Figure 2.

Detection of bees and of varroosis is carried out through the use of the Google Coral
USB Accelerator. Thanks to the built-in Edge TPU co-processor, the Coral accelerator
enables quick inference with Machine Learning (ML) models. The Edge TPU co-processor
allows performing up to 4 trillion operations per second using only 2 watts of power [48].
This enables the implementation of modern mobile vision models with a speed of almost
400 frames per second in an energy-efficient manner. Moreover, the accelerator is compat-
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ible with the Tensor Flow Lite library. A general model of the monitoring IoT device is
shown in Figure 1.
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Figure 2. A software organisation for the Varroa destructor detection performed on the Edge IoT device.

The IoT device monitors the beehive and records a video data stream. Selected video
frames of the video stream (images) are then analyzed in order to identify bees. Identified
bees are marked with a surrounding rectangle (a frame indicating the region of interests,
ROI) and extracted from the image. Then, extracted pictures of bees (ROIs) are analyzed
again to detect V. destructor on bees (classification process). In such a way, each frame from
the video stream delivers many smaller pictures of bees classified as infected or not. Both
phases of the analysis are TPU-accelerated. In case of infection, the pictures of the infected
bees are transferred to the data center for further analysis, storing, upgrading ML models,
and sending a notification to the relevant beekeeper.

3.2. Cloud Environment for Bee Monitoring

The main data center for collecting data, geo-wide monitoring of many apiaries,
and notifying beekeepers is located in the Amazon Web Services (AWS) cloud. Commu-
nication between the monitoring IoT device and the data center occurs mainly when the
varroosis is detected and performed using the MQTT protocol. The data center acquires
MQTT messages from IoT devices, saves the information in the database, and finally in-
forms the end user (a beekeeper) with an email message that a bee infected with varroa
virus was detected.

To perform these tasks, the cloud-based data center consists of several modules. First,
the MQTT messages from monitoring IoT devices are received by the AWS IoT Core.
The AW IoT Core plays the role of the Cloud gateway. It enables the management of
the information sent in the MQTT messages. The received data is stored in the AWS
DynamoDB database. This is a key-value store that provides flexibility to changes in the
data structure. It stores the data such as the timestamp of the message, the health state of
the bee (healthy or sick), and the photo of a bee in the Base64 binary format. Finally, if an
infected bee is detected, the serverless AWS Lambda service launches a code responsible
for sending an email message to the user with the AWS Simple Notification Service (AWS
SNS). The whole process is presented in Figure 3.

Importantly, the detection of varroosis is performed at the Edge, at the TPU-accelerated
IoT device. The device-to-cloud data transmission is initiated only in case of detecting
Varroa destructor mites on bees. In such a way, the data transmission is limited to necessary
cases—when there is a necessity to notify the beekeeper. The image data are transmitted
together with the alert message to be stored in the global repository to constitute a reservoir
of images of infected bees. These images supply the training phase and updates in the
machine learning models that detect Varroa destructor infections. We train the ML models
using the Google AI of the Google Cloud Platform, which is compatible with the Google
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Coral Accelerator we use for the detection. The accelerator integrates well with its native
Cloud environment.

The trained ML model for varroosis detection is then deployed to the Google Coral
Accelerator. This is performed periodically when the detection model is updated to include
new cases.

Figure 3. The architecture of the Edge- and Cloud-based experimental environment for monitoring bees and detection
of varroosis.

3.3. ML Models for Bee Identification and Varroosis Detection

Both ML models for bee identification and Varroa destructor detection rely on con-
volutional neural networks (CNN). As CNNs are used mainly for image classification,
the idea is to apply filtering on images, reducing the number of parameters involved
in the classification process without losing essential features. The ML models creation
relied on a reinforcement learning [49]. The general idea of this process is presented in
Figure 4. A parent neural net controller generates architectural hyper-parameters of neural
networks and proposes a child model architecture. Then, a CNN model is trained—at
first, features are filtered and extracted into feature maps (convolution step) and combined
within smaller structures (pooling step). These steps may be repeated a few times. Then,
a fully connected layer is added, which enables the learning of non-linear combinations
of the most important features. Finally, a softmax algorithm is executed to differentiate
between high and low-level image details and perform classification. As feedback, the child
returns to the parent quality parameters and, based on that controller, decides whether to
generate an improved model or not. Google AutoML Vision maximizes the accuracy of the
model architecture by implementing the policy gradient method to automatically search
for the optimal CNN model. Real ML models for bee identification and Varroa destructor
detection are presented in Appendix A, Figure A1 and Appendix B, Figure A2. The models
developed in such a way expect images of 512 × 512 px size with 3 channels for the bee
identification and 224 × 224 px size with 3 channels for V. destructor detection. Then, 32
(bee identification) and 48 (varroa detection) filters designed as 3 × 3 × 3 structures are
applied for the first convolutional layer. The bee identification model is wide and results in
ten convolutional layers of 48 and 24 filters before reshaping and concatenating the output.
Then, a quantization process is performed to reduce model size with only a little loss of
accuracy. This optimization operation is important for the models that will be used on
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devices such as ours. The Varroa detection model is smaller, and the model output consist of
a 2-dimensional structure with the number of neutrons equal to 1280.

Figure 4. General image analysis employing CNNs with reinforced learning for bee identification and varroosis detection.

4. Experimental Evaluation

The capabilities of the developed IoT device and the entire environment for constant
monitoring of beehives with the real-time detection of varroosis through the analysis of
video data stream were evaluated in a series of experiments. Within these experiments
we investigated:

• The effectiveness of bee identification (segmentation of ROIs, Section 4.1) and Varroa
destructor detection (the classification of bee images, Section 4.2);

• Time performance of both operations (Sections 4.3 and 4.4);
• The impact of camera resolution on both detection processes (Section 4.5);
• Device resources consumption (Section 4.6).

4.1. Effectiveness of Bee Identification

The bee identification process tested within these experiments was performed with the
AutoML Vision Edge service in the Google Cloud Platform. Due to its compatibility with
Edge TPU, AutoML is recommended for preparing detection and classification models.
The AutoML Vision Edge service builds models through transfer learning and searching
neural architecture to find the best network architecture. Moreover, it optimizes hyper-
parameters of that architecture to minimize the loss function of the trained models.

As a training set for the bee segmentation model, we used 300 images (video frames)
extracted from the video data stream, where bees were marked with rectangles (frames).
The images were taken by the camera mounted on the monitoring IoT device described in
Section 3.1. Since images were acquired during the whole day, the training set included
pictures taken in various light conditions, with different numbers and positions of bees.
The example of an image included in the training set is shown in Figure 5.

While evaluating the effectiveness of the detection processes, we used the following
rates and effectiveness indicators:

• A confusion (error) matrix—presents the performance of the classification algorithm
in a visual manner, describes the number of actual and predicted cases classified
properly as true positives (TP) and true negatives (TN) or in a wrong manner as false
positives (FP) and false negatives (FN).

• Precision (positive predicted value—PPV)—the number of properly classified posi-
tive results (e.g., correctly identified bees) to a sum of all positives, including those
incorrectly classified as positives, which is defined as:

PPV =
TP

TP + FP
, (1)



Appl. Sci. 2021, 11, 11078 9 of 23

• Sensitivity (recall, true positive rate—TPR)—the number of properly classified pos-
itives (e.g., correctly identified bees) divided by all samples that should have been
classified as positives, defined as:

TPR =
TP
P

=
TP

TP + FN
, (2)

• F1-score, which stands for the harmonic mean of precision and sensitivity:

F1 = 2 ∗ PPV ∗ TPR
PPV + TPR

=
2TP

2TP + FP + FN
. (3)

The effectiveness of bee identification was evaluated with a test set containing 20 images
with various numbers of bees, their positions, and in different light conditions. These
images were processed by the bee identification model. After this step, we obtained a copy
of the image where detected bees were marked with ROIs (bee segmentation). To ensure
the readability of presented data, the images were named with numbers, beginning from 1
up to 20. Then, the results were analyzed manually to determine whereas all the bees were
detected properly. For every single image, we prepared the confusion matrix that allowed
us to calculate the values of precision (1), sensitivity (2), and F1 score (3) rates, which are
presented in Table 2.

Analyzing the obtained results, we can observe that only two bees were identified
for one image (no. 19), even though they were not present in the image (False Positive
rate). The bee identification model performed a bit worse while finding bees assembled
in groups, staying close to each other. The sensitivity rate (TPR) and F1 score reflect this
situation—both of them have a wide range of values for different images. Figure 6 presents
images no. 7 and no. 10, for which we obtained the worst detection results. However,
considering that bees are leaving and entering a beehive a couple of times a day, and the IoT
device will take their pictures several times, the outcome of this experiment is auspicious.

Figure 5. A sample picture extracted from the video data stream with bees marked with rectangles
(frames) used for training the model of bee detection.
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Table 2. Effectiveness of bee identification for various images (video frames).

Image No. TP FP FN TN PPV TPR F1

1 9 0 2 0 1 0.81 0.9

2 8 0 2 0 1 0.80 0.89

3 4 0 0 0 1 1 1

4 11 0 1 0 1 0.92 0.96

5 11 0 4 0 1 0.73 0.85

6 13 0 2 0 1 0.87 0.93

7 12 0 10 0 1 0.54 0.71

8 14 0 6 0 1 0.7 0.82

9 12 0 5 0 1 0.71 0.83

10 12 0 11 0 1 0.52 0.69

11 11 0 2 0 1 0.85 0.88

12 9 0 3 0 1 0.75 0.86

13 6 0 1 0 1 0.86 0.92

14 5 0 1 0 1 0.83 0.91

15 6 0 1 0 1 0.86 0.92

16 7 0 0 0 1 1 1

17 2 0 1 0 1 0.67 0.8

18 10 0 0 0 1 1 1

19 14 2 0 0 0.86 1 0.8

20 8 0 2 0 1 0.8 0.89

a) b)

Figure 6. Images no. 7 (a) and no. 10 (b).

4.2. Effectiveness of Detecting Varroosis

The classification model for detecting Varroa destructor was also prepared with the
AutoML Vision Edge Service. This time, the training set consisted of 10,743 images that
included 5748 pictures of healthy bees and 4995 pictures of bees infected by Varroa destructor
(unhealthy ones). Since there was no sufficient amount of pictures with infected bees, we
used image augmentation techniques to prepare the training set by randomly rotating,
shifting, and locating the V. destructor on chosen parts of the bee bodies. To assess the
effectiveness, the experiment itself took under analysis 50 pictures of bees (the test set)
that were not a part of the training set used during the learning phase. For this series of
experiments, we obtained the following results—the precision (PPV) of the model reached
nearly 0.7, sensitivity (TPR)—0.94, while the F1 score was at the level of 0.8.
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Additionally, for presenting the effectiveness of the varroosis detection model, we also
calculated the specificity (True Negative rate, TNR):

TNR =
TN
N

=
TN

TN + FP
. (4)

The specificity of the varroosis detection model was 0.92. Taking into account all the
above rates, the outcome of this experiment is satisfactory.

4.3. Time Performance of Bee Identification

Time performance measurements for both image analysis steps (bee identification and
the V. destructor mite detection) were performed according to a similar schema presented
in Figure 7. The step Perform operations stands for image segmentation (bee identification)
process and image classification for the Varroa detection process. Time measurements
covered the TPU inference for a particular step.

Figure 7. Time performance computing steps for bee identification and Varroa destructor detection.

The time performance of the bee identification process was analyzed for each of the
20 images (video frames) that were input as data for the bee identification classification
model. In addition, for the experiments, we chose images in the highest possible resolution
of 2592 × 1944 supported by the device’s camera, which gives 5 Mpx. The outcome is
presented in Figure 8. We can notice that the time needed to process an image was similar
for most of the video frames. It took a maximum of 795 ms to analyze image no. 1 and
a minimum of 769 ms to analyze image no. 17. The average time of processing a single
image extracted from the video stream was 778.25 ms, whereas the standard deviation
was 5.37 ms. It is also worth mentioning that there was no clear relationship between the
number of identified bees and processing time for the video frame. Taking all of the above
into account, the obtained results are satisfactory.
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Figure 8. Time performance for bee identification.
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4.4. Time Performance of Varroosis Detection

To examine the time performance of varroosis detection, we used 20 pictures of bees
selected from the test set used for the experiment described in Section 4.2. Pictures had
various sizes, resolutions and represented both healthy and infected bees to check if any
of the above factors impacted the time performance. The results are shown in Figure 9.
For presentation purposes, pictures were numbered as follows: numbers from 1 to 10 for
pictures with healthy bees, 11 to 20 for pictures presenting the V. destructor-infected bees.
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Figure 9. Time performance for the V. destructor detection.

For the obtained results, we calculated the average detection time, which took 182.15 ms
with a standard deviation of 7.32 ms for all of the pictures, 181.1 ms with a standard de-
viation of 8.65 ms for pictures with healthy bees, and 183.2 ms with a standard deviation
of 5.51 ms for pictures of infected bees. The average time was similar for both groups,
and differences between standard deviations are acceptable. Moreover, the picture with the
longest processing time (no. 1) had a resolution of 190 × 146 pixels, whereas the picture
with the shortest processing time (no. 14) had a resolution of 1446 × 124 pixels. The largest
picture (no. 18) with a resolution of 632 × 496 pixels did not generate the longest processing
time. This information led us to conclude that none of the following factors—resolution,
size, and the content of pictures—directly influence the performance of the V. destructor
detection process.

4.5. Influence of Camera Resolution on the Identification and Detection Processes

The last series of experiments was focused on verifying the impact of camera resolution
on the whole detection process. Here, we wanted to check:

• The influence of the quality of images obtained from video frames on bee identification
process;

• The influence of the quality of video frames (camera resolution) on the varroosis
detection;

• The influence of the camera resolution on the time performance of bee identification
and the V. destructor detection.

For all of the previously described experiments (Sections 4.1:4.4), the analyzed (input)
images had a resolution of 5 Mpx. In this part, we processed each of the video frames from
the 20-element test set to lower the resolution to 1.2 Mpx, 0.3 Mpx, and 0.1 Mpx. For these
four resolutions, we performed the bee identification again, checking its effectiveness.
The effectiveness was measured in terms of precision, sensitivity, and the F1 score.

The precision achieved for the bee identification process was almost the same for all
used camera resolutions. In most cases, it was close to 1.0. It differed only for image no.
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19—we achieved the lowest value of 0.76 for the resolution 0.3 Mpx. The average precision,
calculated for all images in particular resolution, is presented in Table 3.

Table 3. Average precision for bee identification depending on camera resolution.

Camera Resolution [Mpx] Avg. Precision

0.1 1

0.3 0.98

1.2 0.99

5.0 0.99

We noticed much more diversity for sensitivity, which is presented in Figure 10.
For camera resolution 0.1 Mpx, the sensitivity was the lowest for most of the analyzed
images. Nevertheless, for the other three resolutions, obtained results are close to each
other, and differences between them are rather small. The average sensitivity of 0.77 was
noted for the two highest resolutions (5 Mpx and 1.2 Mpx), 0.78 for 0.3 Mpx, and 0.68 for
the lowest resolution (0.1 Mpx).
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Figure 10. Sensitivity achieved for the bee identification process for different camera resolutions.

Figure 11 shows the F1 score measure obtained for particular images in tested reso-
lutions. For some of the processed and analyzed images, the camera resolution does not
influence the bee detection process. There are some images for which the camera resolution
is important, which is also confirmed by the average value of the F1 score. As it was also
visible for the sensitivity, the worst results (with the average F1 score reaching 0.81) were
noticed for camera resolution 0.1 Mpx, while for other resolutions, the score reached 0.87.

The second part of this experiment covered the analysis of the impact of camera
resolution on the V. destructor detection. Again, we used the initial test set with images
taken with the 5 Mpx camera, which we processed to lower the resolution. The identified
bees (there are usually many bees on each image) were manually labeled as healthy and
infected. Then, we performed the detection of the Varroa destructor and calculated the
effectiveness based on the confusion matrices obtained for different resolutions (5, 1.2, 0.3,
0.1 Mpx). Results are shown in Table 4.
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Figure 11. F1 score obtained for the bee identification process for different camera resolutions.

Table 4. Effectiveness of V.destructor detection depending on camera resolution (TPR—sensitivity,
TNR—specificity, PPV—precision, ACC—accuracy, F1 score).

.

Camera Resolution (Mpx) TPR TNR PPV ACC F1

0.1 1.000 0.000 0.185 0.185 0.313

0.3 1.000 0.000 0.167 0.167 0.286

1.2 1.000 0.043 0.185 0.214 0.313

5.0 1.000 1.000 1.000 1.000 1.000

Obtained results show that the detection capabilities depend highly on the camera
resolution. For lower image resolutions, the classifier categorized most of the bees as
infected (which could be observed in confusion matrices). Only for the highest resolution
of 5 Mpx, the V. destructor detection was fully successful and reflected the actual state. This
proves that, unlike bee identification, the detection of varroosis depends on the quality of
the video stream. We expected that better quality images would result in better detection
capabilities. However, we wanted to confirm how large the influence is to confirm the
camera choice.

In the last part of the experiments, we investigated the influence of the image qual-
ity on the time performance of bee identification and V. destructor detection processes.
Experiments were performed for the same four resolutions (5 Mpx, 1.2 Mpx, 0.3 Mpx,
and 0.1 Mpx) and the same initial test set of 20 video frames. The analysis time (covering
bee segmentation and varroosis detection) was measured for each image separately and
averaged, first for all pictures of bees segmented from the image (ROIs) and then for all
pictures of bees obtained for a particular resolution. Results are presented in Figure 12.

We observed that the whole execution times for images taken with camera resolutions
of 5 Mpx are 5–30% higher than for images in the resolution 0.1 Mpx. However, the number
of correctly segmented bees on images in the resolution 5 Mpx is higher than for the resolu-
tion 0.1 Mpx. When looking at the average time per segmented bee (Figure 12), we can see
that for the lowest resolution 0.1 Mpx, the average processing time of a picture was around
296 ms, which was the highest of all results. For the other three resolutions, average times
were similar—about 277 ms. Taking into account the results from previous experiments, it
seems that analyzing video streams with a resolution of 5 Mpx would be the best choice
regarding both efficiency and quality of bee segmentation and varroosis detection.
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Figure 12. Average processing time of a single bee picture for different resolutions.

4.6. IoT Device Power Consumption

The IoT device we developed was powered by a power bank with a capacity of
30,000 mAh. To check the power consumption of the device, we placed it in the front
of a beehive to capture the video stream constantly. Since the varroosis rarely occurs in
well-performed beekeeping, measuring power consumption in such a state would not give
a good view of the possible requirements for energy (the IoT device would not transmit
anything to the Cloud). For this reason, we simulated the occurrence of Varroa destructor
on some video frames by swapping every 10th frame in the video stream by a randomly
chosen frame from the test set containing 20 frames with some infected bees. This approach
led to sending an MQTT message with images of affected bees to the data center in the
Cloud after analyzing every ten frames of the video stream.

Under the above simulation conditions, the IoT device could work for 10 hours and
35 minutes, which means the whole day of monitoring the beehive without a need of
changing or recharging the power supply. Taking into account the fact that in natural
conditions, the device would not send MQTT messages so often, the obtained results are
satisfactory but lead to the conclusion that the best choice would be to power the device
with an additional photo-voltaic panel.

5. Discussion

IoT devices that allow for the monitoring of beehives and detection of varroosis are
becoming an important example of the use of advanced IT technologies and electronics in
the natural sciences. Such devices can help prevent the spread of Varroa destructor between
hives and whole apiaries worldwide, which is important not only for beekeeping itself but
also indirectly influences the cultivation of plants and the food industry.

Our solution, likewise presented in [45,46], is built on a single-board computer (Rasp-
berry Pi) platform and aims to analyze video streams with bees and detect varroosis. These
are the only similarities between the three systems. However, our solution extends the
capabilities of the mentioned solutions by including the modules for the V. destructor detec-
tion. The method of image processing in [45] includes sending cropped images of bees to
a cloud for further analysis (i.e., genus identification and pollen detection), whereas our
solution is based on Edge processing, and cloud operations are performed only when the
V. destructor mites are detected. This Edge computing-based approach allows limiting the
data transmitted to the data center and the storage space occupied. Indus Bees 4.0 [46] is
rather a prototype of a system. The author does not provide any results for V. destructor
detection yet. However, he mentions Intel Neural Compute Stick (NCS-2) as a potential
accelerator. Currently, he provides only the first no-detailed results for the V. destructor
counting system, which still uses camera images taken during routine hive checks. The ex-
periment was taken on a prepared clean slider that included 84 mites and used a k-NN
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classifier. The solution was more focused on the IoT device than on cooperation with a
cloud data center.

On the other hand, compared with existing solutions for V. destructor detection, our
solution complements them through providing IoT devices capable of data acquisition and
early analysis, and through a cloud-based data system for geo-wide analyses and training
of detection models. In contrast to the solution proposed by Elizondo et al. [11], who
analyzed video samples taken from DB of Research Center of Tropical Apiculture Studies
(National University of Costa Rica), we can collect the data with the designed IoT device
and detect V. destructor mite on it. Unlike Bjerge et al. [44], who recorded images of bees
and illuminated their body with spectral waves to locate the V. destructor mite with a special
passageway (which can be noticed as invasive), our approach is non-invasive since bees
are monitored from some distance without any modifications in the beehive construction.
Our solution is also comprehensive—it provides image acquisition, on-edge machine
learning-based detection, and cloud processing by notifying the user about detected Varroa
destructor. By using the Cloud platform, it can also be easily used on a wider scale and
globally available (although it requires a cloud subscription for keeping the data center
alive on the Cloud). We managed to obtain satisfactory results for identifying bees in
the video frames and classifying them as infected or healthy ones using only the camera
mounted at the beehive entrance. That approach does not affect bees and their bodies being
effective at the same time.

In terms of the bee and Varroa destructor detection quality, we also obtained promising
results. Whereas in [33], Szczurek et al. used gas sensors and the SVM classifier and
achieved the sensitivity (TPR) between 0.67 and 0.75, depending on the category of V.
destructor infestation level (low, medium, high), and specificity (TNR) between 0.93 and
0.97, our solution for V. destcructor detection reached 0.94 for TPR and 0.92 for TNR. These
are significantly better results for TPR and slightly worse for TNR. What is also worth noting
is that in the solution presented in [33], the authors recorded the data locally on an SD card,
and they trained the SVM model in the MathWorks environment. Although the authors
mention the possibility of remote data transmission with the GSM module, there is no
information that the solution, unlike ours, uses any Cloud or Edge processing. Additionally,
for kNN and LDA classifiers and the same method of data acquisition, Szczurek et al. [34]
achieved a bit worse results of V. destructor detection than we did.

In terms of detection quality, Bjerge et al. [44] reached the F1 score at a maximum
level of 0.91 when using a CNN classifier for Varroa destructor detection based on image
analysis. Although this is a better result than ours (F1 = 0.8), their solution affected bees’
natural environment—they used a passageway for bee illumination and recording. The
main differences between various solutions for bee monitoring, including detection of
the Varroa destructor mite, and our approach are summarized in Table 5. We compared
the approaches according to the capability of detecting the Varroa destructor, the type of
analyzed data, the algorithm used for the analysis, the device platform, and Cloud- and
Edge-based processing capabilities.

While analyzing four different camera resolutions in our research, we concluded that
the most accurate results were obtained with 5 Mpx as image resolution. The detection
and classification results are the best, and the average time needed for processing a single
image is similar to two lower resolutions. Measured processing times are also satisfactory
and do not differ significantly for both healthy and infected bees.
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Table 5. Comparison of bee monitoring solutions, including detection of the Varroa destructor.

Solution Varroosis
Detection Data Type Algorithm Device Cloud

Processing
Edge

Processing

Marstaller et al. [45] Mentioned, not
implemented Video CNN Raspberry Pi Yes No

Konig [46] Mentioned, not
implemented

Video,
temperature,

humidity,
weight

kNN Raspberry Pi,
sensors No No

Elizondo et al. [11] In honeybee
cells Video Background

subtraction No information No No

Bjerge et al. [44] Yes Video, Spectral
waves LDA

Passageway,
camera, mirror,

LED arrays,
laptop

No No

Szczurek et al. [33] Yes Gas
measurements SVM Gas sensors No No

Szczurek et al. [34] Yes Gas
measurements kNN, LDA Gas sensors No No

Our (proposed)
solution Yes Video Neural network

(AutoML)
RaspberryPi +

TPU Yes Yes

6. Conclusions

In this paper, we presented a comprehensive and efficient solution for detecting and
classifying the Varroa destructor mite on bees’ bodies. Our approach enables acquiring
image data by IoT device, performing machine learning operations related to bee and
varroosis detection at the device, transferring the suspicious cases to the data center located
in the Cloud, and informing a beekeeper when the infection is detected. The results
of our experiments confirm that with the presented approach relying on Edge-Cloud
computing hybrid architecture, we can perform the detection of the disease effectively and
efficiently. For most of the analyzed video frames, the precision rate (1) reached the value
of 1 for bee identification and about 0.7 for the Varroa destructor detection process. For the
sensitivity rate (2), most values exceeded 0.7 for bee recognition and 0.9 for the Varroa
destructor detection. The F1 score value was similar for both processes and reached around
0.8. Although the effectiveness of the detection processes is still not perfect, we have to
remember that the point is to detectVarroa destructor in the beehive as quickly as possible
before the disease starts to spread. This is more important than detecting every case of
the disease since, after the first notification, the beekeeper can start the healing procedure.
In this regard, our solution works sufficiently well.

In the future, we can extend our solution in several directions. First of all, we think
about improving device powering by adding solar panels. That would make our solution
more eco-friendly and limit the frequency of power bank recharging. Another idea can
refer to extending a system with bee activity monitoring. Bee behavior can reveal some ab-
normalities, including various mite infections. For that purpose, using context predictions
would be quite an innovative concept regarding bee monitoring. Several context-aware
applications, such as those presented in [50] and context-history based systems [51–53]
have proved promising results in other fields (project management—[52], competences
management—[50], thus predicting bee condition based on history of their behaviour may
bring interesting conclusions. Finally, our further works consider trying other placements
of the device to find the best location for obtaining good results, provide easy access for a
beekeeper and be non-invasive for bees at the same time. Each approach from the above
will bring some new findings and enrich smart beekeeping.
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The following abbreviations are used in this manuscript:

ABPV Acute Bee Paralysis Virus
API Application Programming Interface
AWS Amazon Web Services
CCD Colony Collapse Disorder
CCN Convolutional Neural Networks
DLL Dynamic-Link Library
DWV Deformed Wing Virus
F1 F1 score
FN False Negative
FP False Positive
IoT Internet of Things
KBV Kashmir Bee Virus
PPV Positive Predicted Value or precision
ROI Region of Interests
SDK Software Development Kit
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Value or sensitivity (recall)
TPU Tensor Processing Unit
VMs virtual machines

Appendix A. ML Model for Bee Identification

The structure of the convolutional neural network (CNN) used for bee identification
is presented in Figure A1. The high-quality figure presenting the structure of the CNN is
available as a supplementary file.
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Figure A1. Structure of the convolutional neural network (CNN) used for bee identification.
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Appendix B. ML Model for Varroa destructor Detection

The structure of the convolutional neural network (CNN) used for bee identification
is presented in Figure A2. The high-quality figure presenting the structure of the CNN is
available as a supplementary file.

Figure A2. Structure of the convolutional neural network (CNN) used for Varroa destructor detection.
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