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Abstract: This paper is concerned with the prediction of the occurrence of periventricular leukomala-
cia (PVL) in neonates after heart surgery. Our prior work shows that the Support Vector Machine
(SVM) classifier can be a powerful tool in predicting clinical outcomes of such complicated and
uncommon diseases, even when the number of data samples is low. In the presented work, we
first illustrate and discuss the shortcomings of the traditional automatic machine learning (aML)
approach. Consequently, we describe our methodology for addressing these shortcomings, while
utilizing the designed interactive ML (iML) algorithm. Finally, we conclude with a discussion of the
developed method and the results obtained. In sum, by adding an additional (Genetic Algorithm)
optimization step in the SVM learning framework, we were able to (a) reduce the dimensionality
of an SVM model from 248 to 53 features, (b) increase generalization that was confirmed by a 100%
accuracy assessed on an unseen testing set, and (c) improve the overall SVM model’s performance
from 65% to 100% testing accuracy, utilizing the proposed iML method.

Keywords: periventricular leukomalacia; active learning; interactive machine learning; support
vector machine; feature selection; dimensionality reduction; congenital heart disease; pediatric

1. Introduction

Artificial Intelligence (AI) and Machine Learning (ML) are the fastest growing fields
in computer science, and are expediting progress in many other research fields [1,2].
With ever-growing computational power and quantities of data, AI has made significant
advancements in numerous areas, including business analytics, speech recognition, system
diagnostics/prognostics, and autonomous driving [2]. In particular, the introduction of AI
and ML into clinical research has allowed the healthcare sector to make advances in the
decision-making process through better detection and prediction of diseases in patients
at an early stage ([2] pp. 289–302, [3,4]). However, despite the excellent solutions offered
by the automatic ML (aML) [5] approach, its learning process has become increasingly
complex and opaque, limiting its applicability in medical research [1,2].

In numerous medical fields, current research is confronted with limited data sets,
attributed primarily to the rarity of events and the cost of data collection. As a result,
the development of intelligent patient-monitoring and disease-predicting techniques is
hampered by the generalization of the aML classifiers [6,7]. Furthermore, many medical
problems are characterized by poorly understood causality of events [8]. For example, pre-
dicting rare diseases relies on knowledge-driven techniques to pinpoint what is important
in the data and incorporate this into the ML model. Against this backdrop, there is an
urgent need to enhance the transparency and generalization of ML algorithms.

In particular, ML models play a crucial role in identifying singular disorders or
diseases in infants. Our previous study applied ML to predict the occurrence of a rare brain
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injury known as periventricular leukomalacia (PVL) in neonates following congenital heart
surgery [9]. Hypoplastic left heart syndrome (HLHS) and transposition of the great arteries
(TGA) are two cardiac disorders that usually need surgical intervention in infancy and
are linked with increased risks of brain damage [8]. The occurrence of PVL after cardiac
surgery has been linked to physiological disorders such as hypoxemia, reduced cerebral
blood flow, and low arterial carbon dioxide levels [9,10].

Although the pathology of PVL is somewhat understood, predicting its occurrence in
neonates has thus far remained a challenge since the origins of this rare condition remain
to be recognized [9,11]. Currently, clinicians rely on magnetic resonance imaging (MRI)
to diagnose a neonate with PVL. Usually, one MRI is carried out on a patient just before
the surgery and one about a week after [12,13]. By comparing the white brain tissue near
the ventricles captured in the MRIs, a clinician can infer if PVL has occurred. Figure 1
illustrates the current approach and compares it with the novel predictive ML method used
in our previous study [14].
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Figure 1. Current decision method after 7 days and proposed predictive method (bold) after 12 h.

While the predictive model introduced in our previous studies [14–18] provided
satisfying classification results, it did not explain them. That is, the algorithm had no
transparency, providing no indication of which portion of the data was relevant to the
performance of the ML algorithm. Hence, in this study, we incorporate a derived step
from Active Learning (AL), to determine which part of the data was decisive in making
the prediction and, further, to explore the meaning of these data from a physiological
perspective [19]. In summary, with a limited amount of data samples, the goal of this
study is to develop an interactive ML method that lowers the dimensionality of the final
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disease-predicting model [20] while increasing generalization and overall performance for
future unknown data.

For this purpose, we first illustrate and explain the shortcomings of the traditional
aML approach. Subsequently, we describe our methodology addressing these shortcomings
while utilizing interactive ML (iML) [5]. Finally, we conclude with a discussion of the
developed method and the results obtained.

2. Methods

This section illustrates the methods that were used to address the challenges presented
in the introduction. First, it presents the raw data and provides context for understanding
the overall necessity of the proposed methods. The second subsection briefly presents
the ML data in its feature space, and the third discusses the need for feature selection.
The benchmark and the developed methods are presented in the following subsections,
where the latter depicts the limitations of the benchmark methodology and presents the
established methods to address those.

2.1. Raw Data

The raw physiological data was collected following a pre-specified protocol at Chil-
dren’s Hospital of Philadelphia (CHOP) and approved for this retrospective study. Patients
(N = 56), term neonates (gestational age [GA] > 37 weeks) with congenital heart disease
(CHD) who underwent cardiac surgery during the first 30 days of life, were monitored
postoperatively in a cardiac intensive care unit (CICU). During the post-operative moni-
toring, physiological data, including heart rate (HR), mean arterial blood pressure (MAP),
right atrial pressure (RAP), and oxygen saturation (SpO2), was recorded for 12 h directly
following the surgery. These four signals monitoring the heart’s health are believed to be
carrying significant indicators for PVL occurrence, particularly since PVL injury in neonates
is due to, but not limited to, the effects of various interventions such as cardiac surgery
required to treat children with complex congenital heart diseases, such as HLHS and
TGA [21]. PVL injury in each neonate was inferred from the MRI comparison by a trained
physician (Figure 1), where PVL positive (p = 32) denoted as patients with evidence of
intracranial hemorrhage in size larger than 100 mm3 and PVL negative (n = 24) denoted
such patients with intracranial hemorrhage smaller than 10 mm3. Figure 1 illustrates the
data collection’s temporal path and contrasts the shortcomings of the current PVL diagnosis
and the developed predictive model’s superiority.

2.2. Machine Learning Data

For each data sample (neonate), the characteristics of the four physiological measure-
ments were extracted using wavelet transform and assigned as features. The resulting
ML data set consists of 56 samples, each with a 248-dimensional input vector of features.
The output vector, PVL occurrence (PVL positive = 1, PVL negative = 0) in each neonate,
was inferred from the MRI comparison by a trained physician (Figure 1). Considering this
study’s objective, the details of the feature extraction process are excluded from this paper
but can be found in [14].

2.3. Feature Selection

A general phenomenon, overfitting, occurs with all types of learning algorithms and
is often the effect of large dimensionality in the feature space of the generated predictive
model [22,23]. This section illustrates two feature subset selection methods to reduce the
dimensionality of the model, with their relation to the performance and generalization of
the classification model. First, the benchmark method used in earlier work [14] is described
to highlight its shortcomings and the differences in the developed iML algorithm, the
concepts of which are described in the latter part of this section.
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2.3.1. Filter Method

To optimize the ML model published by Jalali and colleagues [14,15], the team used
a filter approach as a benchmark method to select the best possible feature subset. This
method aims to establish a relevance metric based on selected correlation (or depen-
dency) criteria between individual features and the output, ranking them from weak to
strong [23–25]. In this case, the relevance metric was established based on the computed
mutual information (MI) value for each feature [26–28]. Based on a user-specified relevance
threshold of the established MI-metric, the best possible feature subset was selected and
passed on to the ML algorithm.

Generally, as shown in Figure 2a, the user-specified threshold value is adjusted until
the best possible ML training performance is achieved. It should be noted that the filter
step is independent of the learning algorithm since it is established before the ML training
start; thus, as shown in the results section, the same rank of features was used with four
different types of ML algorithms: (a) Simple Tree with optimal pruning of 13 parents;
(b) Radial Basis Function kernel Support Vector Machine (RBF SVM) with a standard γ
calculated from the number of features used; (c) Linear SVM with automatically optimized
hyper-parameters; (d) k-Nearest Neighbor (kNN) with euclidean distance, no distance
weighting and 4 nearest neighbors.
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Optimal
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Model
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Figure 2. Dimensionality reduction and most relevant feature subset selection: (a) Filter method and
(b) Wrapper method.

2.3.2. Wrapper Method

As illustrated in the first part of the results section and explained in the discussion
section, the previously used benchmark filter method [14,15] suffers from several crucial
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drawbacks. To address these drawbacks, the invented feature selection algorithm presented
in this study builds on the idea of the wrapper method, shown in Figure 2b. The wrapper
method structure is as follows: the feature subset selection algorithm searches for the
“best possible” subset using a selected ML algorithm itself as part of the feature subset
evaluating function [23,25]. In this structure, the selected ML algorithm is trained on
the dataset, usually partitioned into internal training and validation sets, with different
subsets of features removed from or added to the data. The feature subset with the
highest evaluation is chosen as the final set on which to train the final ML model. In
this arrangement, the ML algorithm in the wrapper structure is often considered to be a
black box and is consequently evaluated during the training stage, either only on various
validation sets or ultimately on an independent testing set that was not used during the
training process. Although this approach gives better performance than the filter method,
it is computationally expensive and, more importantly, prone to overfitting.

In the established algorithm, we resolve the over-fitting of the wrapper method, which
originates primarily from the bias of the training data, with two major advances. First, the
black-box framework is discarded, and an optimization algorithm is embedded into the
learning structure of the ML algorithm, rendering the feature selection process part of the
ML model development. Second, the fitness (cost) function of the optimization algorithm
is built such that the optimized model is independent of the training results. As the feature
domain is discontinuous, the specified optimization problem requires a guided random
search technique. As a result, a Genetic Algorithm (GA) was chosen as an optimization
algorithm.

By natural design, the GA explores the population of points in the given domain
using probabilistic and global heuristic search [29]. This makes optimization resilient
to local minima/maxima, enabling investigation of the importance of features and their
combination across the entire feature domain [23]. Furthermore, GA performs well when
the fitness function, which is an objective function used to direct genetic programming
towards an optimal design solution, is complex and defined as a mixed (discrete and
continuous) multi-objective problem, as it is in this optimization process, described by the
fitness function FF in Equations (1)–(4).

argmin
FF1, FF2, FF3

FF = FF1 + FF2 + FF3 (1)

argmin
ACCtrain

FF1 =
1

ACCtrain
(2)

argmin
m

FF2 = a
1
m

(3)

argmin
||wm ||

FF3 = b
1

||wm||
, (4)

where m is the subset’s number of features, a and b are weight parameters, and ||wm|| is
the width of the separating plane in mth dimension.

The fitness function FF was created with the objective to minimize the subset of
features while striving to achieve three goals. First, FF1 ensures the model’s accuracy with
respect to the training set. Second, the FF2 term ensures that the total number of features
was minimized. Ultimately, the FF3 term has been established to direct the ML model to a
state with the greatest potential for generalization without relying on the training set as
feedback.

The idea behind the design of the FF3 function is based on the geometric concept in the
SVM structure and the notion of separating distance between two sets of classes [7,22,23,30–32].
It was hypothesized that if both classes A, B are of a normal distribution, the greater the
dividing margin between A, B in an m-dimensional space, the lower the overlapping
likelihood (A ∩ B) between the two classes in that space. Based on this fundamental
concept, as illustrated in Figure 3, this remains statistically valid for any normal data set
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and can be used as a dimensionality reduction or feature optimization method for any
SVM type learning algorithm.

w
A

w
B

feature set A  in
m-dimentional feature space

m feature set B  in
k-dimentional feature space

k

FF
3

Figure 3. Optimization function FF3 in terms of set distribution, where the set Bk ∈ Am, k ≤ m and
m is the number of all features.

Without detailed derivation, mathematically the SVM is expressed as a dual optimiza-
tion problem by:

argmax
α

∑
i

αi −
1
2 ∑

i
∑

j
αiαjyiyj(xi · xj), (5)

subject to the constraints αi ≥ 0 and ∑i αiyi = 0, and where x is the input vector, y is the
output vector and the vector α is the Lagrange multipliers. Thus, as stated by the dual
form of the SVM optimization problem (5), searching for the maximum-margin decision
boundary is analogous to searching for the support vectors (SVs) xi, for which αi 6= 0 and
the entire decision boundary can be described as follows:

w = ∑
i

αiyixi (6)

Thereby, the aim of FF3 in Equation (4) is to find a subset of features with maximum
decision boundary margin, expressed by the euclidian distance measure (2-norm) ||wm|| of
wm = ∑i αiyixi, with m being the number of features or the reduced dimensionality of the
learning model.

The entire optimization process is presented as pseudocode in Algorithm 1, covering
all of the key actions. In order to monitor the performance of the designed optimization
algorithm at each iteration, the best SVM model was evaluated on an unseen testing
set with the feature vector and the dimensionality determined by the model from each
optimization epoch.



Appl. Sci. 2021, 11, 11156 7 of 12

Algorithm 1 Embedded Feature Subset Optimization Algorithm

function GENETIC-ALGORITHM(population, FITNESS-FUNCTION)
inputs: population, set of c random feature subsets . c: number of chromosomes

repeat
new_population ← empty set

for i = 1 to SIZE(population) do
x ← RANDOM-SELECTION(population, FITNESS-FUNCTION) . x is selected random w.r.t. fitness-score as its

probability
y← RANDOM-SELECTION(population, FITNESS-FUNCTION) . y is selected random w.r.t. fitness-score as its

probability
child← REPRODUCE(x, y) . x, y are chromosomes and subsets of the feature set
if small random probability then child← MUTATE(child) . this probability is defined by a selected

mutation-rate
add child to new_population

population← new_population
until solution is found that satisfies minimum criteria, or enough generations have elapsed

return the best set in population, according to FITNESS-FUNCTION . best feature subset, according to the
FITNESS-FUNCTION

function REPRODUCE(x, y)
inputs: x, y, two chromosomes from the population . evaluated by the FITNESS-FUNCTION

n← LENGTH(x);
l ← number from 1 to n . l is defined by a selected crossover-rate
child← APPEND(SUBSTRING(x, 1, l), SUBSTRING(y, l + 1, n)) . new chromosome

return child

function FITNESS-FUNCTION(population) . user defined
inputs: population, a set of c random feature subsets . c: number of chromosomes

for j = 1 to SIZE(population) do
m← SIZE(population(j)) . m is the dimensionality of jth chromosome
SVM-model← TRAIN-SVM(Training-Samples(population(j))
ACCtrain ← accuracy of the SVM-model on the Training-Samples
wm ← DECISION-BOUNDARY(SVM-model)
||wm|| ← MAGNITUDE(wm) . the 2-norm of ||wm|| = decision boundary margin
FF1 ← 1

ACCtrain

FF2 ← a 1
m . a is a user defined weight parameter of FF2

FF3 ← b 1
||wm || . b is a user defined weight parameter of FF3

FF(j)← FF1 + FF2 + FF3 . fitness-score of the jth chromosome
fitness-score← FF . fitness-scores for all chromosomes in the population

return fitness-score

3. Results

When the filter method was used to minimize the dimensionality of the ML model,
where the defined MI metric was used to sequentially delete the least significant features,
the results did not always translate into the model’s best possible performance on an
unknown testing set. Figure 4 depicts the relationship between the model’s training, testing,
and overall accuracy as the dimensionality is reduced. This relationship is illustrated using
four different types of machine learning models: (a) Simple Tree, (b) RBF SVM, (c) Linear
SVM, and (d) kNN. The wrapper method is applied as a consequence of these benchmark
results, which are covered in depth in the discussion portion of this paper.
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Figure 4. Filter method (benchmark): Four machine learning algorithms evaluated with respect to sequential dimensionality
reduction using the mutual information relevance metric. (a) Simple Tree, (b) Radial Basis Function kernel Support Vector
Machine, (c) Linear Support Vector Machine, (d) k-Nearest Neighbor. Data: N = Overall = 56 (p = 32, n = 24), R =

Train = 38 (p = 23, n = 15), E = Test = 18 (p = 9, n = 9).

The findings indicate that the overall performance of the final ML model obtained
the best possible outcome by utilizing the embedded wrapper approach. As is evident
from Figure 5, we were able to create a feature set optimization algorithm that guides
the formation of the ML model to the state with the highest potential for generalization.
Figure 5 shows that, the dimensionality is reduced to 53 features, there is a strong relation-
ship between the optimization fit-value (fitness-function) and the individual outputs of the
ML model (training, testing, and overall accuracy). The final state of the GA optimization
achieves 100% overall accuracy after 893 epochs.

The importance of these results is examined and evaluated thoroughly in the following
section.
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Figure 5. Feature Optimization Results (left y-scale) of the Embedded Genetic Algorithm Wrapper Method and the
Dimension Reduction (right y-scale). Data: N = 56 (p = 32, n = 24), R = 38 (p = 23, n = 15), E = 18 (p = 9, n = 9).

4. Discussion

The results of this investigation clearly highlight the weaknesses of the (benchmark)
filter method. Its main drawback is highlighted in Figure 4, where no clear association
between the relevance of the removed features and the model’s performance trend can be
identified. In Figure 4a,c, no discernible impact of dimensionality reduction on the model’s
accuracy can be seen until it is reduced to nearly 80 features, and thereafter, the model’s
overall performance begins to decline. Figure 4b illustrates the same pattern, except in
a more dramatic manner, where the dimensionality of the model has little effect on the
model’s performance until it is reduced to fewer than 24 features.

One might claim that the Linear SVM at about 70 features and the RBF SVM at 19
features achieve their optimal performance; however, there is no perceptible information-
gain-trend before or after these peak outcomes that can be identified with the filter method’s
dimensionality reduction. Figure 4d shows some of the agreements between the dimen-
sionality of the model and its performance, with the overall accuracy (red) of the model
showing an upward rise, achieving its best performance with about 160 features. However,
as with the other three ML models, while the features are excluded sequentially from the
data, it is unclear how to establish the threshold point for rankings, which must be defined
by the user in order to include only the necessary features and exclude the redundant
ones. As a consequence, the only way the interaction between the filter method and the
ML models can be measured is through the performance of the model at the training
or the testing stage, which essentially results in a more data-biased classification model,
providing no clear indication that the generalization of the model was improved through
dimensionality reduction using the filter method.

Unlike the filter method, the ML model using the embedded wrapper approach and
GA optimization, generated far more satisfying results. As shown in Figure 5, we were
able to create a feature-set optimization algorithm that guides the development of the
ML model to the best possible state, with a maximum accuracy of 100%. The fit-value
(fitness function), represented by the solid black line in Figure 5, demonstrates a consistent
relationship with the model’s training (dotted blue), testing (dotted red) accuracy, and
decreased dimensionality, represented by a solid green line with its scale on the right side
of the same plot. Consequently, given that the fitness function (1)–(4) of the optimization
was entirely independent of the testing data and only partly reliant on the training data (2),
it is clear that the maximum accuracy was achieved solely as a result of the ML model’s
decreased dimensionality and increased generalization.

The high generalization and maximum precision are evidently attributable to the
innovative use of the mathematical framework of the SVM (5), (6) on which FF3 (4) was
designed, something that can only be incorporated using the wrapper method. Further-
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more, the strong results can be due to the combination of features investigated in the whole
feature domain. In comparison to the filter method and certain wrapper methods, we were
able to integrate the features’ dependencies on each other into the feature-selection cycle.
This was accomplished thanks to the probabilistic and heuristic structure of the GA. The
feature dependencies also became evident when the chosen number of chromosomes, one
of the GA hyper parameters, was selected to be small (<300). In this scenario, the fitness
function’s optimum fit-value would be obtained after just a few epochs (<100), because
it would settle around local minima with a feature combination close to the starting one.
Thus, the best GA optimization results were obtained for a large number of chromosomes,
to account for feature dependencies across the entire feature domain, while avoiding
local minima.

The best results of the embedded GA optimization wrapper were achieved with the
GA hyper parameters as follows: Number of Chromosomes = 1200, Maximum Number of
Generations (Epochs) = 1005, Crossover Rate = 0.8, Mutation Rate = 0.01. To attain the settling
fit-value of 1 (100% accuracy), the developed algorithm took 38 h on a 64 bit MacBook Pro
(MacOS 11.2.3), with a 3.1 GHz Quad-Core Intel Core-i7 processor and a 16 GB (2133 MHz
LPDDR3) memory using MathWorks MATLAB R2019a (9.6.0.1072779).

While the algorithm was tested many times and yielded consistent results, we admit
that the restricted computational power and resulting long optimization time hindered
deeper analysis of our algorithm. A high performance computational cluster will be used in
the future to investigate the developed feature set optimization algorithm with differently
weighted fitness functions (Equations (3) and (4)), additional variations of the GA hyper
parameters, and in conjunction with various meta-heuristic algorithms.

5. Conclusions

The importance of dimensionality reduction and generalization of a machine learn-
ing model has been explicitly demonstrated in this paper. As validated by the provided
work, it is advantageous to keep the dimensionality and hence the number of features low,
even more so when dealing with a limited sample set. When examining the trajectory of
the GA optimization, a clear correlation between the dimensionality, generalization, and
performance of the ML model was observed, suggesting that the assumptions utilized to
design the objective function were accurate. Furthermore, the findings describe significant
differences between the filter and wrapper feature selection methods and conclude that
the wrapper approach is superior. This is a critical observation since it validates the combi-
natorial advantages of the features, which the filter approach overlooks. The embedded
wrapper approach and favorable results from the GA optimization demonstrated once
more the importance of feature dependencies among themselves. Using the developed
iML algorithm, we were able to create a feature set optimization algorithm that guides
the training of the SVM model to the state with the highest potential for generalization,
while improving the classification accuracy on an unseen testing set from 65% to 100%.
Most notably, we were able to identify some of the most significant prognostic features
for PVL occurrence in neonates by reducing the dimensionality of the model from 248
to 53 features. Expanding on this concept, the researchers are now able to extend their
work through a different approach, to better predict and explain this form of pediatric
brain injury. Additionally, based on the reported findings, future research can focus on
engineering stronger features to enhance the ML model’s performance further.
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