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Abstract: The recent surge of social media networks has provided a channel to gather and publish
vital medical and health information. The focal role of these networks has become more prominent
in periods of crisis, such as the recent pandemic of COVID-19. These social networks have been the
leading platform for broadcasting health news updates, precaution instructions, and governmental
procedures. They also provide an effective means for gathering public opinion and tracking breaking
events and stories. To achieve location-based analysis for social media input, the location information
of the users must be captured. Most of the time, this information is either missing or hidden.
For some languages, such as Arabic, the users’ location can be predicted from their dialects. The
Arabic language has many local dialects for most Arab countries. Natural Language Processing
(NLP) techniques have provided several approaches for dialect identification. The recent advanced
language models using contextual-based word representations in the continuous domain, such as
BERT models, have provided significant improvement for many NLP applications. In this work,
we present our efforts to use BERT-based models to improve the dialect identification of Arabic
text. We show the results of the developed models to recognize the source of the Arabic country,
or the Arabic region, from Twitter data. Our results show 3.4% absolute enhancement in dialect
identification accuracy on the regional level over the state-of-the-art result. When we excluded the
Modern Standard Arabic (MSA) set, which is formal Arabic language, we achieved 3% absolute gain
in accuracy between the three major Arabic dialects over the state-of-the-art level. Finally, we applied
the developed models on a recently collected resource for COVID-19 Arabic tweets to recognize the
source country from the users’ tweets. We achieved a weighted average accuracy of 97.36%, which
proposes a tool to be used by policymakers to support country-level disaster-related activities.

Keywords: BERT models; dialect identification; location analysis; language identification;
social networks

1. Introduction

On 30 January 2020, the World Health Organization declared COVID-19 a pandemic
after the massive spread of the virus SARS-CoV-2 in many countries all over the world [1].
Up to the time of this study, the number of confirmed cases is over 252 million [2]. Such
a problem has encouraged many governments to initiate plans of crisis management.
One of the most essential rules to reduce the spread of the virus is social distancing.
This process encourages individuals to rely more on social network communications.
Twitter is arguably one of the most famous social media sites, thanks to its simplicity
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and ease of knowledge sharing. The social interactions represent a valuable resource
for monitoring and analyzing the impacts of disasters such as COVID-19. Locations of
widespread infections, people’s reactions to quarantine procedures, symptoms of the
new variants of the virus, and the psychological effects can be highlighted from the text
analysis of social media data to support real-time disaster operation and management [3–6].
In [7], the author states that the ministry of health of Saudi Arabia has used several
accounts on Twitter to populate many health-related hashtags to provide governmental
pieces of advice to Saudi Arabian citizens. This is evidence that decision-makers are
considering social media as important channels for communicating with people. So,
any accurate tool that can provide the policymakers with the response of their specific
citizens would be of special importance. And this information can be extracted from the
dialectical analysis of social media texts. Furthermore, the identification of Arabic dialects
is considered as one of the first pre-processing components in any reliable Arabic Natural
Language Processing (NLP) application [8]. This identification is significant for several
NLP problems such as information retrieval, automatic translation, sentiment analysis,
and event detection. For example, when new cases of spreading disease start to appear in a
specific region, the information about such cases most probably begins to emerge on social
media. Detecting such events as soon as possible can be very critical for the containment of
the disease. And this vital process can be handled using a robust NLP solution.

In this work, we introduce our efforts for analyzing COVID-19 Arabic conversations
on the Twitter network. We used a large dataset of Arabic tweets related to the topic of
COVID-19 [7]. It has been crawled in the period from January to April 2020. The total
number of tweets in the dataset is around 3.8 million. The dataset consists of different
Arabic dialects such as Egyptian, Gulf, Levantine, along with Modern Standard Arabic
(MSA). The dataset is primarily from hashtags populated from Saudi Arabia, which can
be utilized in other Arabic-speaking countries. The dataset includes several types of
conversations discussing different aspects of COVID-19 such as social solidarity and
preventive measures announced by governments.

It is worth noting that a word in the Arabic language may refer to a wide collection
of meanings in different dialects. Officials usually use MSA, the formal version of the
language, in educational organizations and pan-Arab news broadcasting, which is different
from the varieties that are spoken in daily communications by native speakers [9–11].
These daily varieties constitute the dialects of Arabic that can be classified based on some
common linguistic features of geographical locations. The most common Arabic dialects
categorization is:

• Egyptian (EGY): An Egyptian dialect spoken in Egypt and is also commonly spoken
because of the historical influence of Egyptian media.

• Gulf (GLF): A dialect spoken mostly in Saudi Arabia, the United Arab Emirates,
Kuwait, Oman, Bahrain, and Qatar.

• Iraqi: The widely-spoken Arabic dialect by the people of Iraq.
• Levantine (LEV): A dialect spoken mainly by people from the Levant (in other words,

people of Palestine, Jordan, Lebanon, and Syria).
• Maghrebi: A dialect of Arabic spoken in North Africa, except Egypt.

Figure 1 illustrates the geographical layout of the above Arabic dialects [12]. We
implemented an Arabic dialect identification system to localize COVID-19 data so as to
provide region-based insights and analysis. Dialect identification is a form of language
identification in which the purpose is to differentiate between dialects that are closely
related. Our experiments provided 3.4% absolute enhancement over the state-of-the-
art result [13] in dialect identification accuracy on the region level. Additionally, we
achieved more than 3% accuracy improvement between the three major Arabic dialects
after excluding the MSA set. Moreover, the developed models have been successfully
applied on a recently collected dataset of COVID-19-related Arabic tweets to identify the
source country of each tweet with a weighted average accuracy of 97.36%. We believe that
the achieved accuracy is notable and can be effectively used to support decision-makers
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with a valuable source of information regarding people’s reactions towards the current
pandemic. The rest of the paper is organized as follows: Section 2 reviews the previous
effort for Arabic Dialect identification, Section 3 describes the implemented models, and
Section 4 includes the description of the used data sets and the results. Finally, Section 5
concludes the paper with future directions.

Figure 1. The map of Arabic dialect groups distribution.

2. Related Work

The identification of Arabic dialects is based on both spoken [14–16] and written
form [12,13,17–21]. Much of early research has focused on distinguishing between MSA
and EGY forms. For example, in [17], Elfardy and Diab suggested a supervised method
for the task of sentence-level MSA-EGY identification by exploiting a subset of the Arabic
Online Commentary (AOC) dataset. They studied whether pre-processing affects the
performance of the classifier or not. The authors found that this was helpful in some
cases. They reported an accuracy of 85.5% using 10-fold cross-validation with an SVM
classifier. In [12], Zaidan and Callison-Burch tested a word trigram model for MSA, EGY,
GLF, and LEV sentences. They achieved an accuracy of 77.8% to classify tweets between
EGY and MSA. In the case of (EGY vs. GLF vs. LEV), an accuracy of 83.3% was achieved.
The accuracy in the case of the 4-way classification task (MSA, EGY, GLF, and LEV) was
69.4% [22].

In [23], Elfardy et al. suggested a system that identifies linguistic code-switching for
the MSA-EGY classification task. The authors adjusted their system in [18] and used a
word-based 5-gram model. They utilized a morphological analyzer to annotate the dataset.
For annotation, they used MADAMIRA that has been proposed in [24]. The authors
improved system in [18] achieved an accuracy of 87.7% when distinguishing between
EGY and MSA. In [21], Darwish et al. proposed a work that is similar to these systems
in focusing on the classification problem of MSA-EGY for Twitter data. They collected a
dataset of 880 K tweets to train the model and used 700 tweets for testing. The authors
investigated several morphological and lexical features. They reported a 10% absolute gain
over the models trained solely on n-grams.

In [25], Ragab et al. proposed an ensemble model consisting of a group of several
classifiers using a set of features that includes word-level and character-level Term Fre-
quency Inverse Document Frequency (TF-IDF) features, class probabilities of many linear
classifiers, and probabilities of a language model [26]. Also, Ghoul and Lejeune in [27]
presented MICHAEL, a lightweight approach developed for domain dialect identification.
Their proposed method used character-level features and perform classification without
any pre-processing. They used character N-grams extracted from the original sentences to
train a multinomial naive Bayes classifier. MICHAEL achieved an accuracy of 53.25% with
N equals to 1, 2, or 3 and accuracy of 62.17% with character 4-grams. In [28], Priban and
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Taylor proposed systems that are based on language modeling. They used language models
to extract features that are later utilized as an input for other machine learning methods.
In [29] Harrat et al. used a classification method based on symmetric Kullback-Leibler For
discriminating between dialects in a multi-dialect context.

Huang [30] concentrated on the AOC categories for the 4-way classification task (MSA,
EGY, GLF, and LEV). The author claimed that a simple word-level n-gram model trained on
the manually annotated portion of AOC as well as unannotated Facebook data improved
classification accuracy. On 10% of the manually annotated AOC dataset, Huang [30]
reported an accuracy of 87.8%. In [13], Elaraby and Abdul-Mageed proposed a model
that handles the binary (MSA, non-MSA), 3-way (EGY, GLF, and LEV), and 4-way (MSA,
EGY, GLF, and LEV) classification tasks. They also used the AOC data and reported an
accuracy of 87.23%, 87.41%, and 82.45% for binary, 3-way, and 4-way classification tasks,
respectively. It is worth mentioning that Huang’s [30] result is based on AOC data plus
other unannotated data. However, the segmentation of data and benchmark results on
AOC is not available. While using AOC in our work, the results of Huang’s [30] works are
not comparable to our results.

3. Arabic Dialect Identification Model

The proposed dialect identification model consists of two components. The first
one is the feature extractor and the second is the classifier system. We looked at several
alternatives for each of these two elements in the following two sections.

3.1. The Feature Extractor

The feature extractor module matches input text to a set of features to provide better
discriminant representation for the target classes in the mapped dimension space. We
investigated two types of features; the first one is based on the TFIDF features [31]. TFIDF
measures the relevancy of a word to a specific dialect represented by a group of documents
for each dialect. Usually, the regional dialects are identified with compound expressions
that consist of more than one word. So, for our feature set, we investigated using the
unigram, bigrams, and trigrams expressions. We also investigated using different sizes of
relevancy lists ranging from the most important 1000 keywords up to the most important
20,000 words.

The second sort of feature relies on word embedding [32]. Word embedding maps the
identities of the words from the discrete domain to the continuous domain, represented by
word vectors that can be used as a lexical and semantic representation for words. Different
embedding models were investigated. Such models have been developed using different
datasets with different characteristics and are described in Section 4.

3.2. The Classifier System

For dialect identification application, we investigated several types of classifiers.
We started with the classical logistic regression model. Then we investigated the more
advanced neural network-based models. The following subsections provide more details
on each one of these classifiers.

3.2.1. Logistic Regression (LR)

Logistic regression is one of the classification algorithms. It can be used to estimate
output based on a number of independent parameters representing the used features set.
For the LR classifier, we tested the TFIDF features.

3.2.2. LSTM and BiLSTM

The Recurrent Neural Networks (RNN) is one type of effective model for sequential
data classification, such as our application of dialect identification of a stream of text.
For long sequences, such as the text input on social networks, RNN has the drawback
of vanishing gradients. Long Short Term Memory (LSTM) neural networks are designed
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to extract long-term dependencies by integrating a memory state into a regular RNN.
The LSTM uses a previous state h_(t−1) and an input x_t to measure the hidden state h_t,
as illustrated in Figure 2. We used a word-based LSTM in this study, with an architecture
of 100 hidden units in 100 dimensions.

Figure 2. An example of Long Short Term Memory (LSTM) neural network.

Conventional LSTMs have the drawback of being able to decide predictions based
only on previously seen content. Bidirectional LSTMs (BiLSTMs) are a form of LSTM that
solves this problem by data processing in both directions in two different hidden layers.
These two hidden layers are feedforwarded to the same output layer. The forward hidden
sequence, the backward hidden sequence, and the output sequence are all computed
by BILSTMs.

The architecture we used for the BiLSTM classifier is:

• Embedding Layer: Each word represented with 300 dimensions;
• Sequence length 30 time stamp;
• Dropout rate = 0.8;
• L2 norm of regularization;
• Relu activation;
• Dense Layer: 4 units with a softmax activation function.

In addition, with the recent notable success of combining attention mechanisms with
neural networks in a variety of NLP problems, including speech recognition, machine
translation, and image captioning [33,34], we investigated employing an attention mecha-
nism with our BiLSTM models to boost the models’ accuracy. We used an implementation
inspired by [35], in which we applied attention to the LSTM layers output vector.

The architecture we used was the following: Tanh activation function on the outputs
of BiLSTM in sequence, calculate the softmax of the outputs (attention weights), multiply
the attention weights with outputs of BiLSTM, then sum the outputs of the multiplication.

3.2.3. BERT Model

Finally, we investigated the recent Bidirectional Encoder Representations from Trans-
formers (BERT) model [36], a transformer-based machine learning technique for NLP
pre-training. The BERT process corrupts some tokens in the input by replacing them
with MASK and then trains a model to recreate the original tokens (Figure 3). BERT uses
unlabeled text to pre-train deep bidirectional representations, unlike other older language
representation models, by jointly conditioning the right and left context in all layers. As a
result, fine-tuning the pre-trained BERT model can be done using one extra output layer to
provide state-of-the-art models for a big range of NLP tasks. In this work, we fine-tuned
the BERT model to produce an Arabic dialect identification model.

In our experiments, we utilized three pre-trained BERT models as the base models
to be tuned. Pre-trained BERT models cannot be used directly for dialect identification.
So given an Arabic BERT model, we used the AOC training data subset to fine-tune the
model where the input is a sequence of comments associated with a specific dialect and
the output is compared to the target dialect for minimizing the difference to fine-tune the
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weights to convert the model into a dialect identifier. Once the model is fine-tuned, it can
be queried using an Arabic sentence and the model should propose a specific dialect for
the input. A summary of pre-trained BERT models is the following.

Figure 3. Bidirectional Encoder Representations from Transformers (BERT) model.

ArabicBERT

ArabicBERT was the first pre-trained BERT model for Arabic [37] that used a corpus
consists of an unshuffled version of OSCAR data [32] and a relatively recent data dump
from Wikipedia, which sums up to 8.2 B words and a vocabulary set of 32,000 word pieces.
The corpus and the vocabulary set were not restricted to Modern Standard Arabic (MSA)
and contained some dialectical Arabic too, which boosted the model’s performance in
terms of data from social media platforms. The main specifications of the ArabicBERT
model are:

• Hidden size: 768;
• Num attention heads: 12;
• Num hidden layers: 12;
• Vocab size: 32,000.

AraBERT

AraBERT was pre-trained specifically for Arabic, hoping to replicate BERT’s success
with state-of-the-art results on the majority of tested Arabic natural language processing
tasks [32]. It has been trained using crawling Arabic news websites, among other sources.
The performance of AraBERT is better than multilingual BERT from Google (mBERT) in sev-
eral downstream tasks. Specifications of the AraBERT model are summarized as follows:

• Hidden size: 768;
• Num attention heads: 12;
• Num hidden layers: 12;
• Vocab size: 64,000.

MARBERT

The third model was MARBERT [38]. MARBERT is an Arabic large-scale masked
language model that was proposed this year. It targets both MSA and dialectical Arabic.
It has been trained using a large dataset of Arabic tweets. MARBERT is best suited for
downstream tasks involving dialectal Arabic. It also has state-of-the-art results in many of
the downstream tasks in Arabic. The following are the main characteristics of the model:

• Hidden size: 768;
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• Num attention heads: 12;
• Num hidden layers: 12;
• Vocab size: 100,000.

4. Experiments and Discussion

Our experiments were conducted on Intel(R) machine (Xeon(R) Gold 6230 CPU @
2.10GHz 20*2 Cores with 1 Tesla V100 32GB GPU). We trained our models with the largest
available Arabic Dialectal data set, which is AOC. AOC consists of 3 million MSA and
dialectal comments, with 108k of them labeled by utilizing crowdsourcing. We used the
following data splits: 80% for training (Train), 10% for validation (Dev), and 10% for the
test (Test) after shuffling the 108 K comments at random. Table 1 and Figure 4 illustrate the
data distribution through the different segmentations and the shared vocabulary between
the dialects [13].

Table 1. Distribution of dialects in the used Arabic Online Commentary (AOC) dataset [13].

Variety MSA EGY GLF LEV ALL

Train 50,845 10,022 16,593 9081 86,541
Dev 6357 1253 2075 1136 10,821
Test 6353 1252 2073 1133 10,812

Figure 4. Distribution of shared vocabulary between the dialects within the used AOC dataset.

We performed two different classification tasks: (A) 3-way dialects, in which we
estimate the difference between LEV, EGY, and GLF; and (B) 4-way variants (i.e., LEV vs.
EGY vs. GLF vs. MSA).

4.1. Embeddings Types

The following are a list of the embeddings’ types used in the experiments:

• AraBERT embeddings: This type uses the encodings of subwords used by the AraBERT
model.

• ArabicBERT embeddings: Similarly, this type utilizes the subwords encodings of the
ArabicBERT model.

• MARBERT embeddings: These are the encodings used by the MARBERT model.
• Twitter-City embeddings: 300-dimensional word vectors proposed in [39].
• AOC-based embeddings: These embeddings are extracted from a continuous bag of

words model described in [13] to generate 300-dimensional word vectors.
• Random embeddings: These embeddings are generated by randomly initializing the

input layer.
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4.2. AOC-Based Results

Tables 2 and 3 show our results when using AOC data for training and fine-tuning for
the 4-way and 3-way dialect identification using all the experimented classifiers and the
different word embedding techniques. It can be observed from Table 2 that the LR classical
classifier is still a good candidate for the application of dialect identification due to its
simplicity and efficiency for model training. Furthermore, most of the dialect effect can be
captured just from the top frequent 5000 words. Using larger word lists would not provide
better performance. Due to the stochastic behavior of several processes of neural network
training, we applied each neural network-based experiment three times. The results
illustrated in Tables 2 and 3 that are related to neural-based experiments are the average
values for each experiment. The neural networks-based models significantly improve
performance with the best result achieved with the pre-trained BERT-based models using
the MARBERT base and embedding, which achieved an accuracy of 85.86%.

By excluding the MSA part, which represented a dominant segment of the data,
and repeating the experiments for 3-way dialect identification, the fine-tuned MARBERT-
based model also achieved the best performance with an accuracy of 90.45%.

To check the stability of the proposed models, we conducted several experiments.
Using our best model (MARBERT based), we checked the sensitivity of the model via
changing two of the main parameters: Dropout rate and batch size. First, we fixed the
batch size as 16 and applied the dropout rate values 0.0, 0.3, 0.5, and 0.8. The best accuracy
was achieved using these settings with a dropout rate of 0.5. So, the value of dropout was
maintained at 0.5 and batch size values of 24, 32, 48, 64, and 84 were applied. Table 4
illustrates the results of parameters sensitivity experiments.

As shown in Table 4, the accuracy values change from as low as 83.91% to as high as
86.17% when changing the values of dropout rate and batch size. Although this change in
the accuracy value is not small, the whole range of values is higher than the state-of-the-art
result of [13] (82.45%). However a careful selection of hyperparameters should be made to
maximize the achieved gain.

Table 2. The 4 classes dialect identification results.

Embeddings Level Embeddings Type Model Precision Recall F1 Score Accuracy

Word (unigrams, bigrams, trigrams) TFIDF Logistic Regression 0.7647 0.6723 0.7019 0.7703
Word (unigrams) TFIDF Logistic Regression 0.7949 0.667 0.712 0.7829
Word (1k unigrams) TFIDF Logistic Regression 0.7785 0.6635 0.7036 0.7756
Word (5k unigrams) TFIDF Logistic Regression 0.7972 0.6766 0.7199 0.7879
Word (10k unigrams) TFIDF Logistic Regression 0.7992 0.6727 0.7175 0.7861
Word (20k unigrams) TFIDF Logistic Regression 0.7986 0.6693 0.7149 0.7847
Word (unigrams) Random Embeddings BiLSTM 0.7783 0.7179 0.7389 0.7952
Word (unigrams) AOC Embeddings BiLSTM 0.778 0.7038 0.7309 0.7947
Word (unigrams) Twitter Embeddings BiLSTM 0.8046 0.7632 0.7811 0.8344
Word (unigrams) Random Embeddings Attention BiLSTM 0.7814 0.7097 0.7344 0.7932
Word (unigrams) AOC Embeddings Attention BiLSTM 0.78 0.6842 0.7189 0.7871
Word (unigrams) Twitter Embeddings Attention BiLSTM 0.8001 0.7577 0.7748 0.8278
Subword AraBERT Embeddings AraBERT 0.8086 0.7564 0.7777 0.8364
Subword ArabicBERT Embeddings ArabicBERT 0.8132 0.7677 0.787 0.8396
Subword MARBERT Embeddings MARBERT 0.8402 0.8000 0.8157 0.8586

Figure 5 illustrates confusion matrices of MARBERT-based model result errors. The
right confusion matrix shows the four dialects classification errors while the left one
presents the errors of the three dialect classification task. As we can see, the confusion of
dialects between each other in the 3-dialect experiment is relatively low. However in the
4-dialect experiment, there is a notable perplexity between MSA & LEV (19%) and MSA &
GLF (18%). This is aligned with the fact that there is a considerable overlap of vocabulary
between MSA & LEV and MSA & GLF as we have seen in Figure 4.
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Table 3. The 3 classes dialect identification results.

Embeddings Level Embeddings Type Model Precision Recall F1 Score Accuracy

Word (unigrams) TFIDF Logistic Regression 0.87 0.83 0.85 0.853
Word (1k unigrams) TFIDF Logistic Regression 0.86 0.82 0.84 0.8423
Word (5k unigrams) TFIDF Logistic Regression 0.87 0.83 0.85 0.8553
Word (10k unigrams) TFIDF Logistic Regression 0.88 0.84 0.85 0.8568
Word (20k unigrams) TFIDF Logistic Regression 0.87 0.83 0.85 0.8548
Word (unigrams, bigrams, trigrams) TFIDF Logistic Regression 0.83 0.82 0.83 0.8315
Word (unigrams) Random Embeddings BiLSTM 0.8703 0.8531 0.8605 0.8659
Word (unigrams) AOC Embeddings BiLSTM 0.8522 0.8393 0.8449 0.8513
Word (unigrams) Twitter Embeddings BiLSTM 0.8742 0.8669 0.8703 0.876
Word (unigrams) Random Embeddings Attention BiLSTM 0.8568 0.8507 0.8533 0.8577
Word (unigrams) AOC Embeddings Attention BiLSTM 0.847 0.8375 0.8418 0.8473
Word (unigrams) Twitter Embeddings Attention BiLSTM 0.8792 0.8697 0.874 0.8793
Word (unigrams) Random Embeddings Self Attention 0.8325 0.8147 0.8221 0.8294
Word (unigrams) Twitter Embeddings Self Attention 0.8467 0.8221 0.832 0.8423
Word (unigrams) AOC Embeddings Self Attention 0.824 0.7935 0.8048 0.8158
Word (unigrams) Random Embeddings Transformer Encoder 0.8619 0.8536 0.8574 0.8585
Word (unigrams) Twitter Embeddings Transformer Encoder 0.8563 0.8462 0.8507 0.8573
Word (unigrams) AOC Embeddings Transformer Encoder 0.803 0.7753 0.7857 0.7995
Subword AraBERT Embeddings AraBERT 0.8802 0.8613 0.8692 0.8749
Subword ArabicBERT Embeddings ArabicBERT 0.8852 0.8654 0.8739 0.8739
Subword MARBERT Embeddings MARBERT 0.9039 0.8993 0.9011 0.9045

Table 4. The 4 classes dialect identification results of our best proposed model for a wide range of dropout rate and batch
size values.

Dropout Rate Batch Size Precision Recall F1 Score Accuracy

0.0 16 0.8198 0.7611 0.7872 0.8424
0.3 16 0.8166 0.7679 0.7882 0.8391
0.5 16 0.8204 0.7638 0.7889 0.8429
0.8 16 0.8173 0.7584 0.7844 0.8396
0.5 24 0.8454 0.8026 0.8177 0.8578
0.5 32 0.8504 0.7946 0.8156 0.8588
0.5 48 0.8423 0.7938 0.8053 0.8503
0.5 64 0.8338 0.8020 0.8066 0.8500
0.5 84 0.8511 0.8014 0.8203 0.8617

Figure 5. Analysis of MarBERT-based model results. (Left): The confusion matrix for 3-dialects clas-
sification. (Right): The confusion matrix for 4-dialects classification.

4.3. COVID-19 Twitter Data Results

The focus in the dataset we utilized which is described in [7] was on hashtags used
in Saudi Arabia, although they might be used in Arabic-speaking countries outside of
Saudi Arabia. Saudi Arabia is one of the countries with the highest amount of Twitter users
among the country’s online population [40,41]. Saudi Arabia also generates 40 percent of
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all tweets all over Arab countries [42]. The used dataset has several sections including
conversations discussing the precautionary measures governments have applied, conversa-
tions discussing social solidarity, and conversations supporting the governments’ decisions.
Moreover, the dataset has data from three Saudi official accounts. The amount of tweets in
the dataset is around 3.8 million. We applied the BERT-based dialect recognition model
on this dataset and selected the tweets that achieved a 90% confidence score (based on the
SoftMax score), which provided 1.76 million tweets. We randomly selected 2500 tweets
from each region set and made a manual review for them. Table 5 shows the distribution
of the labeled region dialects for the 1.76 million tweets and the accuracy results for the
randomly selected set.

Table 5. COVID-19 labeled tweets and dialect recognition result.

Region Number of Tweets Accuracy

MSA 1,373,869 97.7%
Gulf 222,083 97.6%

Egyptian 139,143 92.8%
Levantine 34,037 99.6%

Total 1,769,132 97.36%

As shown in Table 5, our model achieved significant results for region detection with
a weighted average accuracy of 97.36%.

4.4. Discussion

While our models used AOC data for training and testing, we can compare our
results to state-of-the-art models that used the same data. As mentioned in the Related
Work section, the authors of [13] proposed the AOC data-based state-of-the-art models.
They reported accuracy of 87.41% and 82.45% for 3-way and 4-way classification tasks
respectively. According to these results, we have over 3% absolute gain in the 3-way
classification task, and over 3.4% absolute gain when dealing with the 4-way classification
task. When applied to the Twitter COVID-19 dataset, the proposed model performance was
notable to the level that makes it an important knowledge source for applying geo-based
analysis of pandemic disasters text data.

Regarding the limitations of the proposed work, it is worth mentioning that the
Twitter dataset we used for verification is domain-specific. So, it is expected to get a higher
accuracy above the result achieved in the AOC-based test. In addition, the current versions
of the suggested models do not support some Arabic dialects like Maghrebi. However,
the dialects we have addressed in the experiments cover about half of the Arab population
along with the modern standard Arabic that is common among all Arabs.

5. Conclusions

In this work, we introduced an enhanced method for Arabic language dialect identifi-
cation. We investigated several techniques such as logistic regression and recent advanced
deep learning-based classifiers. We achieved the best performance using the BERT-based
model that provided 90.45% accuracy on the Arabic Online Commentary (AOC) dataset.
When we applied the BERT-based dialect recognition model for identifying the source
region of COVID-19 related tweets, we managed to recognize the source region for 1.76 mil-
lion Arabic tweets. After randomly sampling 2500 tweets from each region set and checking
them manually, we got a weighted average accuracy of 97.36%. The tweets from January
to April 2020 were used for experimentation, which was the starting critical period of the
virus spread. The high accuracies of the results show that the proposed model can be used
as a powerful tool for getting geo-based insights for disaster-related social data. We plan to
expand dialect recognition to the country level in future work, which is challenging due to
the overlap of the local dialects in neighboring countries.
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