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Abstract: In this paper, we introduce a tone mapping algorithm for processing high-brightness video
images. This method can maximally recover the information of high-brightness areas and preserve
detailed information. Along with benchmark data, real-life and practical application data were taken
to test the proposed method. The experimental objects were license plates. We reconstructed the
image in the RGB channel, and gamma correction was carried out. After that, local linear adjustment
was completed through a tone mapping window to restore the detailed information of the high-
brightness region. The experimental results showed that our algorithm could clearly restore the
details of high-brightness local areas. The processed image conformed to the visual effect observed
by human eyes but with higher definition. Compared with other algorithms, the proposed algorithm
has advantages in terms of both subjective and objective evaluation. It can fully satisfy the needs in
various practical applications.

Keywords: high-brightness; video images; tone mapping; car plate recognition

1. Introduction

Videos are frequently used to judge and identify information. They have been widely
used in public security monitoring. However, according to weather conditions, luminance
conditions, capture equipment and other causes, high-brightness areas may exist in a given
video, which results in the information of the target not being obtained. The existence
of the bright regions cannot meet the needs of applications. In particular, strong light
sources (such as car lights, streetlights and flashlights) make it challenging to enhance
night-time images. However, although the existing image enhancement algorithms have
apparent effects in improving the details of low-light images, they do not suppress the
high-brightness areas in the picture. The existence of bright regions seriously affects the
display of the highlighted area’s details and the observer’s direct visual experience.

To solve the abovementioned problems, we propose a method for video image pro-
cessing based on tone mapping. The method is used to remove the bright part of the
image, and it can restore the original details of the illuminated area while other areas with
brightness remain.

The examined video was composed of one image frame, so we focused on the en-
hancement of a single image. The information of the area with uneven illumination was
recovered by the image enhancement algorithm. Although the dynamic range can be
compressed by global linear scaling, the result is unsatisfactory because the image structure
is flattened linearly, losing most of the visual information in light areas and shadows.
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Tone mapping is a technique for mapping high-dynamic range (HDR) images to
display devices with low dynamic ranges. Tumblin et al. [1] introduced the concept of
tone mapping to computer graphics in 1993. Larson et al. [2] modified and adjusted
traditional histogram equalization technology and added some theories regarding the
human visual perception system, such as contrast, sharpness and color sensitivity, which
were inspired by the previous work of Ferwerda [3]. The method proposed by Ferwerda
reduces the dynamic range of an image by simple linear scaling, so it cannot operate
with strong dynamic range compression. Durand et al. [4] proposed separating an image
into high-frequency sub-images and low-frequency sub-images by using an approximate
bilateral filter and a downsampling acceleration filter. The high-frequency part is called
the detail layer, and the low-frequency part is called the basic layer, which can better
preserve edges. This method can be applied to any global tone mapping algorithm, but
after using this method, halation is not entirely eliminated. For the improvement of this
method, trilateral filters and other methods have appeared. In 2002, Reinhard et al. [5]
proposed a tone mapping method based on photography. This algorithm (with a global
component) mainly compresses the high-brightness part of an image. Photographic hue
reproduction is a local tone mapping algorithm that retains the boundary effect and avoids
halation. In addition, it has the advantage that it does not need to input corrected images.
Ferradans et al. [6] proposed a global mapping method in line with the human visual
model, and this algorithm enhances the local contrast of images.

In 2003, Drago et al. [7] proposed a classical global tone mapping algorithm—the
adaptive logarithmic mapping algorithm—which can adaptively adjust the cardinality of
logarithmic equations according to the different brightness values of pixels. This method
can reduce the dynamic range of the examined image, but it easily loses local details, and
its effect on improving the overall contrast of the image is not apparent. Duan et al. [8]
proposed a novel hue mapping algorithm based on the fast adjustment of global histograms,
which can effectively use the whole dynamic range of the display to reproduce the global
contrast of high dynamic range images. However, this method cannot effectively preserve
local contrast and details, which is a common weakness of global tone mapping operators.
The local tone mapping methods proposed in [9–13] are better than the global tone mapping
approach used in detail preservation and dynamic range compression. Qiao et al. [12] used
local gamma correction, which is also regarded as a kind of local tone mapping algorithm.
Tone mapping algorithms in [14–21] are the latest that have good processing effects in
terms of image structure, detail preservation, lighting and other features. Wang [15]
proposed a new blind tone mapping image (TMI) quality evaluation method based on local
degradation characteristics and global statistical characteristics. The texture, structure, color
and other image attributes can be local or global. The extracted local and global features are
aggregated into the overall quality by regression. Most color mapping operators use the
human visual system, and the scene’s dynamic range is displayed dynamically by a curve.
For example, a model based on the sensitivity of the retina and an adjustment of the graph
histogram was proposed in [21]. An asymmetric sigmoid curve is constructed to optimize
this algorithm. Choi et al. [22] proposed a novel tone mapping method. Jung et al. [17]
proposed a GAN training optimization model for the tone mapping of HDR images. The
author collected a large number of tone mapping images, which existing tone mapping
operators generated. An objective index is used for evaluation for all output tone mapping
operators, and the algorithmic result with the highest evaluation index is selected and
classified into the dataset. The model trained by the dataset can learn the best features of
the tone mapping operator, so the experimental image processing effect is better than those
of the existing tone mapping algorithms. Banderle et al. [23] proposed a new classification
method for tone mapping based on the global and local tonal mapping methods commonly
mentioned by other authors, frequency tone mapping approach (only the low-frequency
part of the image) and split tone mapping approach (the image is divided into large
areas and mapped separately for each area). This classification is more detailed than and
different from those of other authors. For example, most authors classify the approaches in
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references [8,9] as local tone mapping methods, but Banderle ranked them as frequency
tone mapping operators. Liang [21] proposed a new decomposition model that decomposes
an HDR image into a base layer and detail layer and uses the prior information of the base
layer and detail layer to minimize the halos and artifacts in the resulting image. Regarding
tonal mapping image evaluation, [24] proposed a measure called the tonal mapping quality
index (TMQI), which has become one of the most popular indicators for comparing the
quality of tonal mapping images.

Although HDR video acquisition technology was relatively mature in approximately
2010, video tone mapping algorithms appeared as early as 15 years ago. After relevant
research [25], most video tone mapping algorithms have the same problems: heavy artificial
traces, contrast losses and detail losses.

Many methods for adjusting local contrast for video processing are based on optical
flow prediction in the motion domain [26–28]. The advantage of these postoperative
algorithms is that we do not need to consider how the tone mapping process is completed
(as in previous algorithms), and we do not need to consider what changes need to be made
to the filter or whether other operations need to be added for different tone curves. The
disadvantage of this kind of method is that it is weaker than the filter method for presenting
local contrast and actual video effects. Shahid et al. [29] proposed a hybrid model. As the
term suggests, two different tone mapping algorithms are used to process the same frame.
Each frame is processed by the method in [30], and the image is divided into regions with
drastic changes and regions without drastic changes. The regions with drastic changes are
mapped by the algorithm from [31], which preserves the details of the image through the
local operation. The remaining region of the image is processed by a histogram correction
algorithm [2]. Finally, to maintain the temporal properties of the video, the brightness of
the mapped frames is scaled so that the intensity differences between consecutive frames
do not exceed the preset threshold.

We propose a method that uses a window based on tone mapping and solves global
optimization problems with local constraints. Specifically, our window method can operate
over the whole image. In each window, a linear function limits tone reproduction to
suppress strong edges while retaining weak edges naturally. An image with a high dynamic
range can be compressed by solving the image-level optimization problem, which integrates
all window-based constraints. A global optimization method is used to avoid the artifacts
and halation caused by local tone mapping.

After using our optimized framework, the overall tone mapping effect of the given
image is nonlinear and spatially variable, and it is suitable for the diverse structure of the
image. Our method has a closed-form solution to achieve the global optimum. Due to this
optimality, any local tone adjustment in our method causes the overall effect such that the
error is minimized and distributed in the whole image. In addition, our method can flexibly
adjust the image quality with only a few parameters to meet the various requirements
related to the range compression ratio and the level of detail that must be retained.

Compared with those of the existing algorithms, the main contributions of the pro-
posed algorithm are as follows:

(1) The utilized small window can overcome the problem in which the global tone
mapping algorithms cannot availably enhance the local contrast and details of the
input image. The method we propose in this paper can operate globally and avoid
halos and artifacts.

(2) For the guidance map component, factors including image brightness, radiance, local
average value, standard deviation and so on are considered, which have good effects
on image restoration.

(3) The experimental images selected in this paper are vehicle images, and the highlighted
part blocks the information of the license plate. The background color of the license
plate is blue. Therefore, the B channel in the RGB image is retained, and the R and
G channels are exchanged for image preprocessing, which significantly affects the
recovery of the image exposure area.
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The rest of this paper is organized as follows: Section 2 shows the related work.
Section 3 prepares and introduces our algorithm. Section 4 shows our experimental results.
Section 5 is our conclusion.

2. Related Work

Generally, we divide tone mapping into two categories: global tone mapping and
local tone mapping. Histogram-based algorithms and S-shaped transfer function-based
algorithms (such as gamma correction) are the two main categories of global operators. The
key for global tone mapping methods is to establish one-to-one mapping or low dynamic
radiance mapping. In reference [19], the statuses and categories of tone mappings were
summarized. Reference [20] proposed a multiscale image decomposition method that can
preserve image edges. The results show that this type of image decomposition method is
superior to bilateral filtering in producing range-compressed images.

Unlike the methods above, our algorithm does not need to decompose the input image
into binary or fractional images. Therefore, it avoids the problems associated with layer
decomposition. We propose a global optimization framework to constrain each pixel value
naturally. In addition, our method does not need to impose any smoothness constraint on
the final output.

Comparing our work with existing tone mapping algorithms, our method can signifi-
cantly improve the pixel intensity in the overexposed area and balance the brightness of
other areas to ensure that the overall contrast of the image will not change too much.

3. Proposed Method

We propose a window algorithm based on tone mapping, which improves the visual
effect of the overexposed area in an image by compressing the image’s dynamic range
and restoring the information in the exposed area. In this section, we introduce our
algorithm in detail. First, the input image is linearized, and the RGB channel of the image
is reconstructed; this is a simple preprocessing step. Then, a local gamma correction is
performed on the image, and the local contrast of the image is further improved by color
compression. The image passes through the previously set window frame, including a
series of operations such as guided filtering, after which the final image is output. The
algorithmic flow chart is shown in Figure 1:
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The algorithm process mainly involves the following steps: (1) image input; (2) channel
reconstruction; (3) gamma correction; (4) generating the guidance map c according to
Equation (14); (5) restoring the RGB channels Il

k in the tone mapped result by Equation (12);
(6) resulted image output.
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The first step of linearizing the image is crucial. The main reason for operating on the
image in linear space is that this provides greater control and predictability regarding the
brightness and color domain expansion. In an unknown area, it is difficult to predict how
the expansion process will behave. In addition, to recover the scene attributes, such as the
mean, geometric average, and standard deviation, we need to estimate the radiance of the
scene accurately.

For an input image Il = f
(

Ih
)

, Ih is the radiance map of the image. f (·) represents

the operator. Il represents the radiance map of the image after the operation is completed.
In short, the core idea of our algorithm is to increase smaller amplitudes and decrease
larger amplitudes, this processing step should be conducted in a small area to meet the
requirements of amplitude mapping in each pixel neighborhood. The linear function of
window wi, centered on pixel i is expressed as follows:

Il(j) = mi Ih(j) + ni, j ∈ wi (1)

Formula (1) is a complete representation satisfying local constraints. The coefficients
m and n directly affect the local contrast, and m represents the slope of the linear function.
When m > 1, the local contrast is enhanced so that the dark areas in the image are
brightened; when 0 < m < 1, the high-brightness areas in the image are improved. In the
overlapping windows with multiple pixels, similar smoothing constraints are enforced
in the neighborhood of the center pixel in the smooth area. The contrast is maintained
reasonably in the area with abrupt amplitude changes, so there is no need to add constraints.

The defined local linear equation is applied to the window wi, and the image is
processed by minimizing the solution:

∑
i

∑
j∈wi

[
Il(j)−mi Ih(j)− ni

]2
(2)

Because of the existence of a trivial solution, we need to add a constraint term to the
above formula to make the minimization Formula (2) feasible. According to Formula (1),
the coefficient m directly affects the local contrast of the image. We propose guiding its
value in each small window to reduce the global contrast while maintaining the image’s
information. We support the final objective function as follows:

f = ∑
i

{
∑

j∈wi

[
Il(j)−mi Ih(j)− ni

]2
+ εc−2

i (mi − ci)
2

}
(3)

where ci is the default positive number, which is used to guide the processing of the
local contrast. The collective ci in the image space form the guidance map. By setting
an appropriate value for this map, the contrast of the local area can be adjusted correctly
(weakening the strong-contrast areas and enhancing the low-contrast areas). The term
εc−2

i (mi − ci)
2 is the squared relative error from the guidance map. The term c−2

i is used to
normalize the difference between mi and ci. The term ε is the weight of the added item. We
set its value to 0.1 in the experiments.

The importance of the guidance map c is as follows. Although the value ci affects
the local contrast of the image, the accuracy ci does not need to be very high as the
radiance value Ih can be directly modified. In our optimization window, ε is a weight
coefficient that imposes smooth constraints on the guidance map, and the value of this
coefficient is very small. The radiance of each pixel is also limited by the linear equation

∑
i

∑
j∈wi

[
Il(j)−mi Ih(j)− ni

]2
, which effectively maintains the image structure.
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3.1. Optimization and Implementation

It is difficult to minimize Formula (3) directly because it contains several unknowns.
For each group of linear coefficients mi and ni, the definitions exist only in a single window,
so the minimization problem of Formula (3) can be expressed as:

arg min
m, n, Il

f = arg min
Il

∑i argmin
mi , ni

fi ,

where fi =

{
∑j∈wi

[
Il(j)−mi Ih(j)− ni

]2
+ µc−2

i (mi − ci)
2
} (4)

Through this expression, by computing the partial derivatives of function fi for mi
and ni setting them to zero, we obtain the optimal summed solution and obtain the optimal
Îl after solving the linear equation. The calculation process is as follows:

∂ fi
∂pi

∣∣∣∣
mi=m∗i , ni=n∗i

= 2εc−2
i (m∗i − ci)− ∑

jεwi

2
[

Il(j)−m∗i Ih(j)− n∗i
]

Ih(j) = 0 (5)

∂ fi
∂qi

∣∣∣∣
mi=m∗i , ni=n∗i

= − ∑
j∈wi

2
[

Il(j)−m∗i Ih(j)− n∗i
]
= 0 (6)

Formulas (5) and (6) can be expressed as a linear relationship:

Ki · [m∗i n∗i ]
T = Wi (7)

where

Ki =

 εc−2
i + ∑

j∈wi

Ih(j)2 ∑
j∈wi

Ih(j)

∑
j∈wi

Ih(j) ∑
j∈wi

1



Wi =

 εc−2
i + ∑

j∈wi

Ih(j) · Il(j)

∑
j∈wi

Il(j)


By solving Formula (7), we can obtain:

[m∗i n∗i ]
T = K−1

i ·Wi =
1

mi · ∆i

[
1 −µi
−µi ∆i + µ2

i

]
·Wi (8)

where
mi = ∑

j∈wi

1

µi =
1
xi

∑
j∈wi

Ih(j)

∆i = σ2
i +

(
εc−2

i
mi

)
By taking the partial derivatives of the function f to Il(k) and setting them to zero,

we have:
∂ f

∂Il(k)

∣∣∣∣
Il= Îl

= ∑i|k∈wi
2[ Îl(k)−m∗i Îh(k)− n∗i ] = 0 (9)
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Combining (8) and (9), we can obtain:

∂ f
∂I l(k)

∣∣∣
I l= Î l

=

∑i|k∈wi

 Îl(k) 1
mi∆i

 εci
−1 Ih(k) + Ih(k)∑j∈wi

Ih(j) Îl(j)− µi Ih(k)∑j∈wi
Îl(j)

−µiεci
−1 − µi ∑j∈wi

Ih(j) Îl(j) +
(
∆i + µi

2)∑j∈wi
Îl(j)

 = 0
(10)

Because of the linearity of Formula (10), it can be simplified as follows:

D · Îl = B (11)

where

dkj =
∂2 f

∂Il(k)∂ Îl(j)
= ∑

i|{k,j}⊂wi

(
δkj −

1
mi∆i

[(
Ih(k)− µi

)(
Ih(j)− µi

)
+ ∆i

])

bk = ∑
i|k∈wi

ε

mi∆ici

[
Ih(k)− µi

]
δk j is a Kronecker delta. The optimal solution of Formula (3) is obtained by solving
Formula (11). The matrix D in (11) is symmetric and sparse. In each row i of D, the number
of nonzero elements reaches the area defined according to (11). Given an input image
including N pixels, where the size of the window wi is set to k × k, D has fewer than
N × (2k− 1)2 nonzero elements (a k = 5 example is shown in Figure 2). Mathematically,
the minimum possible window size is 2× 2, as there are three unknowns in each local
window, and at least three linear constraints are needed to make the problem well-posed.
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Figure 2. Illustration of the region containing pixel i. All windows w with size 5× 5 that have i must
be within the yellow part. Therefore, under the influence of the local window w, there are at most
80 pixels around pixel i. If the image has N pixels, the total number of nonzero elements in matrix D
is less than 80× N.

If the image has a medium resolution, we solve the linear system in (11) using sym-
metric LQ or the generalized minimum residual method. However, the above method
needs several minutes to converge to process an image with a resolution higher than
3024 × 4032. We use a multigrid method [32] to speed up the processing time, which is the
same as the method used in [33]. In our experiment, it took only a few seconds to produce
satisfactory Îl .

The size of the local window can be adjusted in the system. We set window sizes from
3× 3 to 11× 11 and found that a window size of 5× 5 could produce satisfactory results in
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terms of image clarity and visual effects. Considering the factors of edge definition and
computational complexity, we chose a 5× 5 window in our experiments.

The algorithm above operates on the brightness channel of the input image. After
obtaining the radiance map of the image, the RGB channel was reconstructed using the
algorithm mentioned in reference [34]:

Il
k(i) =

[
Ih
k (i)/Ih(i)

]s
× Îl(i), k ∈ {r, g, b}, (12)

where Il
k is one of the RGB color channels of the input image and Ih

k is one of the RGB
color channels of the output image. The parameter s represents the saturation factor. A
larger value of s produces a more saturated result. The introduction of (12) maintains the
ratios between the brightness and color channels so that the color of the output image can
be similar to that of the original image. In the experiment, we chose s ∈ [1, 3] to produce
images with natural color.

3.2. Guidance Map Configuration

In the linear optimization framework introduced before, the image processing quality
is determined by the guidance map c. We next mainly describe how to obtain an appropriate
guidance map c. The coefficient mi directly affects the local contrast of the image. To retain
the visual information in the image, we reduced the value of mi where the local contrast
was significant and increased the value of mi where the local contrast was slight. The
standard deviation σi of Ih is a measure of the local contrast of the image in each window.
However, ci is inversely proportional to σi, which has a bad effect on the results. We defined
the guidance map as:

ci =
(

σ
β2
i + κ

)−1
(13)

To improve the visual quality of the resulting image, we calculated the Gaussian
filtered image and the σi of the Gaussian filtered image to reduce noise. In Figure 3b,c show
the radiance map of Ih(i) and the radiance map of the mean value µ, respectively. Since the
local mean value µ and the radiance map Ih(i) represent the radiance information of the
image, we could see that the information contained in any one of the images was sufficient
to contain all the information from the original image completely. If the two factors are
added to the guidance image, the local contrast details of the image can be retained as
much as possible. We also found that the contrast of the local window radiance is related
to the absolute variance. Considering these factors, we add µ and Ih(i) to the guidance
map. We redefine ci as:

ci = [µ
β1
i σ

β2
i Ih(i)β3 + κ]

−1
(14)

where κ is a small weight coefficient. We set it to 0.5 in our experiments to prevent ci from
being divided by zero. Normally, β1 ∈ [0.4− 0.9], β2 ∈ [0.1− 0.4], β3 = 0.1.

Figure 3 shows the visual image of each parameter and the effect of our newly defined
guidance map ci on the output image. Figure 3a is the input image with a large extensive
exposure, in which background information can hardly be seen. Only the colors of some
personnel’s clothes can be seen in this picture, and the visual effect is inferior. Figure 3b,c
show the image brightness and mean radiance after performing 5 × 5 window processing,
respectively. Figure 3d shows our measure for the local contrast based on the standard
deviation of the radiance σi. This step can preserve and strengthen the gradients and edges
of the image. Figure 3h shows the image generated by the proposed algorithm, which
is produced by the guidance map generated by Formula (7); its visual image is Figure 3f.
We can see that compared with the output image produced by the standard deviation,
average value and average brightness of a single image, the visual image of the proposed
method contains all the information in the original image, which can significantly improve
the restoration quality of the image. Compared with Figure 3g generated by Formula (6),
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Figure 3h generated by our algorithm is better in terms of its color, visual effect and detail
processing. The detailed comparison is shown in Figure 3i–l.
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3.3. Parameter Settings

Our settings were based on the following two points. First, the sum of the three
βs affects the global dynamic compression of the input image; a large value makes the
resulting image smoother. Second, increasing the value β2 make the compressed edges
with higher contrasts more obvious such that more space is left for less prominent areas.

In fact, in our algorithm, minor changes to the sum do not greatly impact the results.
The values of these two parameters are small, and the ranges of the values are very small.
β3 is fixed at 0.1. For most test images, the default values are β1 = 0.6 and β2 = 0.2, and
most of the tested images can produce visually satisfactory results.

4. Comparative Analysis

To make the algorithm proposed in this paper closer to practical problems, we selected
multiple high-brightness license plate images as the processing objects, and we compared
our algorithm with several related algorithms proposed by Hui [35], Khan [36], Liang [21]
and Xin [37]. This section includes two parts: part one assesses the restored overexposed
images subjectively, and part two objectively compares the results produced by our method
and other algorithms.

The sizes of the processed images were 3024 × 4032 pixels in the experiment. To prove
the effectiveness of the proposed algorithm, all the algorithms were run on a computer
with an Intel Core i5-9400 CPU @ 2.9 GHz (Acer, Taiwan, China), and the compiler software
was MATLAB 2019b (9. 7. 0. 1190202, MathWorks, Natick, MA, USA, 2019). In this
configuration, the experiments could be completed within 240 seconds.

4.1. Subjective Analysis

In this part, we mainly analyze the experimental results. As shown in Figures 4–7, the
representative algorithms developed by Hui [35], Khan [36], Liang [21] and Xin [37] were
compared with the algorithm proposed in this paper on different images.

From the perspective of visual effects, as shown in Figures 6e and 7e, the algorithm of
Xin [37] also improved the high-brightness area. Still, our algorithm had greater advantages
in terms of the overall contrast of the image and the details of the scene. However, the
other algorithms could not effectively recover the information of the key area for all the
experimental images. The results showed that the effect of our algorithm regarding key
information recovery was pronounced. Although the image’s hue was slightly green,
especially as shown in Figure 7f (our algorithm made the vehicle tail lamp change from red
to green), the critical exposure area information was recovered. To the overall improvement
of the image, the visual effect was ideal, reaching expectations.

By observing the experimental results, we could find that the brightness of the original
image with much light was improved significantly, and the information of the local area
with much light was effectively restored. Compared with the image processed by the
algorithm, the information of the high-brightness area was not recovered well.
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4.2. Objective Analysis

We calculated four objective indicators, including the structural similarity (SSIM),
peak signal-to-noise ratio (PSNR), image information entropy (H) and executive time. The
bigger the first three indicators, the better. The specific values are shown in Tables 1–5
below. Table 1 shows the objective values of Figure 4. Table 2 shows the objective values of
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Figure 5. Table 3 shows the objective values of Figure 6. Table 4 shows the objective values
of Figure 7.

As shown in the tables, we can see that our algorithm ranked first, especially in terms
of the SSIM and PSNR. Our algorithm was also better than that of Xin [37] in terms of the
SSIM. SSIM is an index used to measure the similarity of two images. We got images with
different illumination intensity at different times from the video, including lossless images
and distorted images. We processed the high-brightness images through the proposed
algorithm. Comparing the resulting image with the lossless, we evaluated the quality of
image restoration. SSIM reflects the comprehensive similarity of two images in brightness,
contrast and structure. By averaging the objective indicators of the 50 high-brightness video
images, the average PSNR of our algorithm was 29.53, which was 7.22 higher than that of
the algorithm by Xin [37]. In terms of the PSNR, the proposed algorithm was better than
the algorithm of Xin [37]. This shows that after compression, the image quality was better
than that obtained by the algorithm of Xin [37]. The larger the PSNR value, the smaller
the image distortion. “H” reflects the average amount of information in the image and
demonstrates the richness of image information from the perspective of information theory.
Generally, the bigger the H value, the better. Our method ranked second in H. For the time
part, because the generation of a guidance map takes a long time, our algorithm was not
dominant in all comparative experiments. This will be our next optimization direction.

In summary, by combining a subjective evaluation and an objective analysis, we
can conclude that the proposed algorithm could effectively recover the exposure area
information from high-brightness video images with sound visual effects, and the objective
indicators were much better than those produced by the compared algorithms.

Table 1. Objective values of the images shown in Figure 4.

Methods H SSIM PSNR Time(s)

Hui [35] 7.08 0.38 10.91 123.5
Khan [36] 7.96 0.65 16.12 10.6
Liang [21] 7.61 0.56 14.36 50.2

Xin [37] 6.95 0.87 22.24 44.3
Proposed 7.66 0.95 30.05 225.3

Table 2. Objective values of the images shown in Figure 5.

Methods H SSIM PSNR Time(s)

Hui [35] 7.25 0.51 12.68 125.7
Khan [36] 7.92 0.65 15.58 10.7
Liang [21] 7.31 0.60 13.86 53.7

Xin [37] 6.84 0.89 24.32 45.2
Proposed 7.48 0.94 28.86 223.2

Table 3. Objective values of the images shown in Figure 6.

Methods H SSIM PSNR Time(s)

Hui [35] 7.34 0.65 14.14 125.8
Khan [36] 7.90 0.72 17.18 10.6
Liang [21] 7.41 0.67 14.69 50.6

Xin [37] 6.69 0.82 19.64 43.1
Proposed 7.51 0.95 29.65 221.8
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Table 4. Objective values of the images shown in Figure 7.

Methods H SSIM PSNR Time(s)

Hui [35] 7.26 0.39 10.76 126.3
Khan [36] 7.95 0.43 15.62 11.2
Liang [21] 7.33 0.42 11.70 54.3

Xin [37] 6.30 0.91 24.32 44.5
Proposed 7.48 0.93 29.76 224.1

Table 5. Average objective values of 50 high-brightness images.

Methods H SSIM PSNR Time(s)

Hui [35] 7.27 0.55 12.76 125.2
Khan [36] 7.93 0.66 15.89 10.9
Liang [21] 7.45 0.59 13.97 51.9

Xin [37] 6.75 0.87 22.31 44.8
Proposed 7.56 0.94 29.53 223.2

5. Conclusions

In this paper, we proposed a window algorithm based on tone mapping. In this
method, a local linear window is utilized to compress the image pixel values into a specific
range. While accurately recovering the information of the exposure area, our algorithm
could effectively enhance the local contrast and preserve the image details and struc-
tures. Global optimization genuinely suppresses artifacts. Therefore, our algorithm could
complete the restoration of high-brightness images.
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