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Abstract: Polycyclic aromatic hydrocarbons (PAHs) and nitro-aromatic compounds (NACs) are two
classifications of environmental pollutants that have become a source of health concerns. As a result,
there have been several efforts towards the development of analytical methods that are efficient
and affordable that can sense these pollutants. In recent decades, a wide range of techniques has
been developed for the detection of pollutants present in the environment. Among these different
techniques, the use of semiconductor nanomaterials, also known as quantum dots, has continued
to gain more attention in sensing because of the optical properties that make them useful in the
identification and differentiation of pollutants in water bodies. Reported studies have shown great
improvement in the sensing of these pollutants. This review article starts with an introduction on two
types of organic pollutants, namely polycyclic aromatic hydrocarbons and nitro-aromatic explosives.
This is then followed by different quantum dots used in sensing applications. Then, a detailed
discussion on different groups of quantum dots, such as carbon-based quantum dots, binary and
ternary quantum dots and quantum dot composites, and their application in the sensing of organic
pollutants is presented. Different studies on the comparison of water-soluble quantum dots and
organic-soluble quantum dots of a fluorescence sensing mechanism are reviewed. Then, different
approaches on the improvement of their sensitivity and selectivity in addition to challenges associated
with some of these approaches are also discussed. The review is concluded by looking at different
mechanisms in the sensing of polycyclic aromatic hydrocarbons and nitro-aromatic compounds.

Keywords: detection; sensors; polycyclic aromatic hydrocarbons; nitro-aromatic explosives

1. Introduction

The contamination of water sources has become a global concern due to the increas-
ing production of different chemical products, particularly organic species [1]. Organic
pollutants occur in the form of sediments of different groups, such as polycyclic aromatic
hydrocarbons (PAHs) and explosive residues [2,3]. These pollutants are introduced into
water bodies through two major ways: industrial activities and human activities. The
regular detection of these pollutants continues to be paramount because there is clear
evidence of the health implications caused by the consumption of water contaminated by
these species. Therefore, the U.S. Environmental Protection Agency (EPA) has decided to
include them in the priority list of pollutants [1]. Priority pollutants are pollutants that
have been identified to be very toxic, even at low levels or concentrations. Furthermore,
these pollutants have been identified as potential causes of cancer. Some of the PAHs that
occur in mixtures have been shown to exhibit higher toxicity than individual species [2].
One of the major challenges with monitoring these pollutants is that they can occur at very
low levels. Despite their occurrence in low concentrations, continuous exposure to them
can result in adverse effects. This shows a necessity for the development of sensitive and
selective methods for detecting these species [4,5].
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Techniques such as Raman scattering, infrared absorption spectroscopy, high-
performance liquid chromatography (HPLC), gas chromatography–mass spectrometry
(GC), quartz crystal microbalance, ion mobility spectroscopy (IMS) and metal detectors
have been reported for the analysis of PAHs and explosive residues [6]. Though these
methods have been successfully used to analyze PAHs, nitro-aromatic compounds and
other organic contaminants in water, there are major drawbacks associated with many
of them. These include relatively expensive instrumentation, highly skilled personnel
necessary for their operation and difficult sample pre-treatment [7] to mention a few. These
demerits have led to the search for other detection methods. One of the promising al-
ternatives for the monitoring of organic pollutants in water is the group of techniques
called optical methods, which include photoluminescence spectrometry and absorption
spectrometry. The optical methods are characterized by a change in the emission intensity,
peak position, and absorption of the fluorescent probe due to the interaction between the
fluorescent probe and the target analyte. Optical detection techniques have been applied for
the sensing of several organic pollutants, such as nitro-aromatic compounds (explosives),
PAHs, pesticides and so on, with good sensitivity and selectivity being reported [8,9].
The widely used fluorescent probes are molecularly imprinted polymers (MIP), surface-
enhanced Raman scattering (SERS)-based nanoparticles, non-conjugated polymers, etc.
SERS methods have been widely employed in the detection of PAHs and NACs; however,
their use in sensing is limited because of the weak interaction between PAHs’ rings and
the surfaces of SERS-based nanoparticles [10,11]. Polyurethanes (PUs) are a very versatile
class of non-conjugated polymers with tunable properties, and have been used exten-
sively in the sensing of explosives [5]. However, polyurethanes are insoluble in water;
therefore, the reaction usually occurs in organic media, leading to further pollution of the
environment [12]. Recently, small nanomaterials known as quantum dots have emerged
as promising materials due to their superior optical properties, which can enhance the
sensitivity and selective determination of PAHs and nitro-aromatic pollutants [4,13]. In this
review, the sensing of organic pollutants, namely polycyclic aromatic hydrocarbons and
nitro-aromatic explosives, using different types of quantum dots was discussed. Different
studies on the comparison of water-soluble quantum dots and organic soluble quantum
dots on fluorescence sensing mechanism were also presented. Furthermore, different
approaches on the improvement of their sensitivity and selectivity as well as challenges
associated with some of these approaches were also discussed.

2. Quantum Dots in Sensing Applications

An attractive and promising approach for the sensing of environmental pollutants
involves using an optical method, which offers many advantages over other standard detec-
tion techniques, including cost-effectiveness, good portability and high sensitivity as well
as selectivity [14]. Among different materials used in sensing organic pollutants, QDs have
appeared to be the most promising materials because of their unique properties. Quantum
dots (QDs) are zero-dimensional nanostructured materials with excellent optoelectronic
properties [14]. Zero-dimensional nanostructured materials exist in different groups, such
as semiconductor quantum dots, carbon quantum dots and graphene quantum dots. These
materials are characterized by optoelectronic properties such as broad excitation spectra,
narrow bandwidth emission spectra, high resistance to photo-bleaching and good stability
as well as biocompatibility [15,16].

2.1. Semiconductor Quantum Dots

Semiconductor QDs are generally divided into different groups, such as binary and
ternary QDs. These QDs are prepared through two approaches, namely organic and
aqueous. Studies have shown that organic-soluble QDs have a higher affinity for organic
pollutants than water-soluble QDs do [17]. However, there are environmental concerns
with organic-soluble quantum dots, and so the focus is being shifted to water-soluble
QDs [18]. These QDs have been recently used as chemical sensors for aromatic compounds
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in fluorescence and electrochemical methods. These quantum dots exist in different classes,
such as binary and ternary. Binary QDs may consist of different periodic table elements such
as ZnSe, ZnS, CdTe, CdS, AgS, etc. [19–22]. Among these compositions, cadmium-based
sensors have been mostly reported for the application of sensing aromatic compounds.
In 2019, Cao et al. synthesized cucurbit-modified CdTe QDs for the fluorescence sensing
of p-nitroaniline. In 2010, Yang et al. detected PAHs using TiO2-nanotube-modified CdTe
QDs. The detection of PAHs was observed via the intensity enhancement, which occurs
as a result of fluorescence resonance energy transfer between PAHs and TiO2-nanotube-
modified CdTe QDs [23]. In 2016, Qian et al. functionalized CdTe with an amino acid
for the determination of trace TNT explosive. L-cysteine served as a stabilizer, which
enhanced the interaction between the functional groups of TNT and the QDs’ surface [24].
However, this type of chemical sensor is being limited by the intrinsic toxicity of cadmium.
Recently, binary cadmium-free QDs have been used as chemical sensors for nitro-aromatic
explosives. In 2021, Sharma et al., synthesized blue, fluorescent, zinc selenide QDs for the
recognition of nitro-aromatic compounds. The sensing was performed via fluorescence
techniques. The quenching of mercaptopropanoic-acid-capped QDs has been shown to
occur via the inner filter effect (IFE) [25]. The IFE mechanism can be observed through
spectral overlapping between the absorption spectrum of 2,4,6 TNP and the excitation
spectrum of ZnSe (Figure 1).
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Ternary QDs exist in different groups, such as CdSeTe, CdZnSe, CuInX2 (X = S, Se
and Te) AgInX2 (X = S, Se and Te), etc. However, current research is being focused on
cadmium-free ternary QDs because of their low toxicity [16,26]. Ternary QDs can be
synthesized in two ways, namely an organic route and an aqueous route (which can be
further divided into two approaches: direct synthesis and ligand exchange). However,
there have been challenges in synthesizing ternary QDs due to the uncontrolled reactivity
of the cationic precursors of In3+ and Ag+ or Cu+, which can lead to the formation of
undesired products such as indium sulfides. Different studies on their synthesis have
shown that this challenge can be overcome by (1) the use of dual stabilizers and (2) the
use of a single precursor (that can produce both In and Cu or Ag) [27]. Furthermore, the
reactivity of the cationic precursors in an organic medium can be balanced through the
use of either single stabilizer or dual stabilizers [28]. Their optical properties are said to be
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dependent on the optimization of different parameters, including (i) the type of stabilizers,
(ii) refluxing time, (iii) type or amount of dopants [29] and (iv) the type of synthetic
method [30]. Apart from being environmentally friendly, these fluorescent probes exhibit
two major outstanding properties: direct bandgaps and absorption coefficients as large as
10−5 cm−1 [16,31]. However, these semiconductors suffer from surface defects, which are
undesirable in sensing applications since they result in self-quenching. This challenge can
be addressed by coating the core semiconductor with another semiconductor referred to as
the shell [32]. While QDs have great potential as fluorescent probes in the sensing of organic
molecules, the affinity of their surfaces for the target molecules must be improved. Recently,
a few studies on the improvement of their affinity for aromatic compounds have been
reported. In 2021, Maluleke et al. reported the synthesis of graphene oxide (GO)-modified
CuInS/ZnS QDs for the sensing of PAHs. The addition of different concentrations of PAHs
to the GO-modified QDs has shown enhancement of photoluminescence (PL) intensity.
This enhancement was ascribed to the π-π stacking between the chemical sensor and the
PAHs [33].

2.2. Carbon Quantum Dots

Carbon quantum dots are generally carbon-based nanoparticles that exhibit optoelec-
tronic properties due to the quantum confinement effect [34]. Carbon quantum dots (CQDs)
have attracted much attention in many applications because of their advantages, such as
water solubility, fluorescence, low toxicity, cheap scale-up production, abundance and ease
of modification [35]. CQDs can be prepared from different carbon sources, such as food
waste [36], waste biomass sources [37], corncobs [38] and weak organic acids [39]. Carbon
dots are typically prepared via chemical methods and physical methods. Chemical methods
include electrochemical synthesis, combustion/thermal/hydrothermal/acidic oxidation,
supported synthesis, microwave/ultrasonic and solution chemistry methods. Physical
methods include arc discharge, laser ablation/passivation and plasma treatment [40,41].
These materials have been investigated for the fluorescence sensing of aromatic com-
pounds due to their fluorescence properties. However, they have not been investigated
for PAHs such as phenanthrene, naphthalene, pyrene, anthracene, etc. Recently, Hu et al.
synthesized CQDs for the fluorescence sensing of para-nitrophenol. The sensor and the
phenol interacted through the IFE mechanism. This mechanism was proven via spectral
overlap [42]. In 2015, Cheng et al. also prepared CQDs for the fluorescence sensing of
2,4,6-trinitrophenol. The quenching of the CQDs by the phenol was suspected to be due
to the IFE [43]. Fan et al. reported the fluorescence detection of 2,4,6-trinitrophenol (TNP)
using manganese (Mn)-doped CDs. The probe showed fluorescence quenching with an
increasing concentration of TNP and high selectivity in the midst of other nitroaromatic
compounds [41].

2.3. Graphene Quantum Dots

Graphene quantum dots are zero-dimensional (0D) nanomaterials that are prepared
by converting 2D graphene. The particles of these materials are non-quasi-spherical, which
is the feature that makes them different from CQDs [44]. These QDs can be synthesized
from different sources, such as coal [45], natural graphite [46], rice husk biomass [47], etc.
Recently, GQDs have also emerged as fluorescent probes because of their advantages, such
as a large surface area, biocompatibility, lower toxicity and ease of surface modification [48].
These QDs are prepared via two types of methods, namely the “top-down” approach and
the “bottom-up” approach. The “top-down” approach involves breaking down large-scale
macroscopic carbon-based materials such as natural graphite, carbon fibers, graphene
oxide, and metal–organic frameworks and so on. The “bottom-up” method involves the
growing of GQDs from different sources, such as plant extracts [49,50], rice husks [47],
wood charcoal [51], rice grains [52], coffee grounds [53], etc. Chen et al. explored the
synthesis of GQDs through a “bottom-up” route using starch as the precursor [54]. Though
these QDs have been mostly investigated for the fluorescence sensing of PAHs and NACs,
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there are few reports on their use in sensing PAHs. Furthermore, these materials’ sensitivity
and selectivity have been shown to depend on size and shape, surface modification and
heteroatom doping [55]. Kaur et al. explored the fluorescence detection of trinitrophenol
(TNP) based on nitrogen-doped GQDs [56]. The doping with nitrogen atoms enhanced
the interaction between the QDs and the phenol. Fluorescence quenching was observed
owing to the transfer of energy from N-GQDs, which act as a donor to TNP, which is
electron-deficient due to nitro-groups (Figure 2). Chen et al. also did a similar study
using creatinine-capped nitrogen-doped GQDs (Figure 3) [57]. Recently, Nsibande et al.
synthesized ferric-ion-modified GQDs for the recognition of pyrene in an aqueous medium.
The ferric ions have been reported to turn off the fluorescence intensity of the QDs, while
pyrene turned on the intensity [58].
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3. Effect of Surface Chemistry on Sensitivity and Selectivity

The versatile surface chemistry of semiconductor QDs provides a platform for mod-
ification through different strategies. This has enabled researchers to anchor and tailor
various receptors for specific target analytes, thereby enhancing their sensitivity. QDs can
therefore work as signal transducers and receptors in composite materials. It is expected
that changes in the surface charge or ligand components of the QDs would affect the
efficiency of the core electron–hole recombination and consequently the luminescence
efficiency. Therefore, a chemical sensing system based on QDs can be developed by us-
ing fluorescence changes, which are induced by either the direct physical adsorption or
chelating of ions and small molecules on the surface of the QDs activated by the exchanged
ligand [60,61].

Reports have shown that the selectivity and sensitivity of sensors can be enhanced
through surface modification, which can be done by functionalizing the material or conju-
gating it to a material that has an affinity for the pollutants of interest [62]. The effective
detection and differentiation of pollutants can be done by conjugating QDs to differ-
ent molecules such as graphene derivatives, polymers, proteins, enzymes, nucleic acids,
etc. [27]. Peveler et al. studied the multi-channel detection and differentiation of explo-
sives [63]. The functionalization of QDs’ surfaces has been reported to affect the recognition
properties, which have an effect on the sensitivity and selectivity [63]. Recently, Aswathy
et al. exploited the quenching efficiency of sulfur-containing amino acids such as L-cysteine
and L-methionine. The modified QDs were found to be selective and more sensitive to-
wards picric acid. The energy transfer between the QDs and the TNP is ascribed to the
acid–base reaction. From Figure 4, it was observed that L-cysteine-capped ZnS-Mn2+ QDs
gave a higher quenching efficiency than those that were L-methionine-capped. However,
the cause of this difference was not explained. These results could mean that the quenching
efficiency is dependent on the structure of the functionality or the surface chemistry of the
amino acids [64].
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Surface-modified QDs have been extensively employed as fluorescent probes for the
detection of organic pollutants. This detection takes place through two basic photo-physical
mechanisms: fluorescence resonance energy transfer (FRET) and quenching. The concen-
tration of the nitroaromatic substrates on QDs’ surfaces through donor–acceptor complexes
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leads to the quenching of QDs’ luminescence. In 2012, Freeman et al. reported the use of
chemically modified CdSe/ZnS to detect nitro-aromatic explosives such as trinitrotoluene
(TNT) and trinitrotriazine (RDX). They observed that the luminescence of the mercapto
(MPA)-functionalized CdSe/ZnS could not be quenched by nitro-aromatic compounds,
and this observation has been attributed to a lack of donor units. In order to optimize the
quenching efficiency, MPA-functionalized QDs were covalently linked to different elec-
tron donors, such as tyramine, dopamine, 5-hydroxydopamine and 6-hydroxydopamine.
The fluorescence quenching of the QDs modified with these capping ligands followed
the order tyramine < dopamine < 5-hydroxydopamine < 6-hydroxydopamine. This or-
der demonstrated that the quenching efficiency is dependent on the donating properties
of the capping ligands. Another aspect to consider when modifying QDs is the pH of
the medium. Freeman et al. demonstrated that the luminescence of the electron-donor-
modified QDs decreases as the pH of the medium increases [65]. Another study on the
detection of PAHs by semiconductor QDs was carried out by Baslak et al. in 2014. In their
study, different PAHs—2-hyroxy-1-naphthaldehyde (2H–1N), 9,10-phenanthraquinone
(PQ), 9-anthracenecarboxaldehyde(9-AC) and quinolone (Q)—showed different quenching
effects, and this has been attributed to the molecular structure or functional groups of the
PAHs [66]. The interaction of the surface-modified QDs, PAHs and NACs is schematically
illustrated in Schemes 1 and 2.
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Scheme 1. Fluorescence detection of different polycyclic aromatic hydrocarbons by surface-modified
QDs [33].

Surface modification is also believed to improve the lifetime of a sensor. Mitra et al. (2016)
explored the effect of lifetime on the sensing of organic pollutants such as bisphenol A,
1-napthol, phenol and picric acid (Figure 5) [67]. Apart from the functionalization and
conjugation, reaction parameters were said to cause an effect on the sensing of the pollu-
tants. Liu et al. (2016) investigated the effect of pH in the reaction between AgInZnS and
Cu ion [68]. Furthermore, the sensitivity of the sensors is also dependent on the types of
functional groups of the sensors in addition to the functionalization approaches [69,70].
Different results on sensitivity of different sensors towards PAHs and NACs are shown
in Table 1. Apart from surface functional groups, the sensitivity of fluorescent probes has
been shown to be dependent on the type of synthetic method. Recently, Nsibande et al.
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prepared GQDs using GO and citric acid via the “top-down” approach and “bottom-up”
approach, respectively. The as-prepared materials successfully detected pyrene in an aque-
ous medium. The GQDs prepared via the “bottom-up” route gave a better limit of detection
(LOD) as compared to the result obtained by the GQDs synthesized through the “top-down”
route. Furthermore, the two types of GQDs exhibited different optical properties, and this
can be observed from their emission spectra (Figure 5) [58]. QD-based sensors can also be
modified through doping with a metal or non-metal. Surface doping with a metal has been
reported to enhance the electrochemical properties of QD sensors; however, there have been
few reports on the doping of fluorescent probes and electrochemical sensors [56,58,71,72].
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Table 1. Effect of different materials on the limit of detection of polycyclic aromatic hydrocarbons and nitro-aromatic compounds.

Semiconductor Sensor Modifier Detection
Technique

LOD
(mol L−1)

Detection Range
(mol L−1) Pollutant/Analyte References

GO-CdSeTeS/ZnS L-cysteine Fluorescence 2.26 × 10−9 µM 0.1–0.5 × 10−6 PAHs [4]
GO-CdSeTe/ZnSe/ZnS L-cysteine Fluorescence 0.19 mg/L 0.1–0.5 × 10−6 PAHs [60]

CuInS2 BSA Fluorescence 28 nmol/L 5.0 × 10−8–3 × 10−6 Nitro-aromatics [61]
CdTe L-cysteine [41]

Fluorescence 1.1 nM Nitroaromatics [73]
CdS lysozyme Fluorescence 0.1 5 × 10−7–1.5 × 10−5 Nitro-aromatics [48]

CdTe(S) polyacrylamide Fluorescence 2.1 nmol/L 0–7.0 × 10−9 Nitro-aromatics [74]
CdTe (TGA)/CD Fluorescence 0.085 µM 5 × 10−7–7.5 × 10−5 PAHs [40]
CdSe oleylamine Fluorescence 2.1 × 10−8 mol/L Nitro-aromatics [75]

CdSe/ZnS 1,4-dihydro-nicotinamide
adenine dinucleotide (NADH) Fluorescence 0.1 nM RDX [76]

CQDs -NH2
0.4 µM
27 nM 1.0 × 10−7–1.58 × 10−5 [75]

CdSe PAMAM-G4 dendrimer 5.5 × 10−8–5.5 × 10−7 [76]
CQDs -NH2 2.13 × 10−7 0–1.0 × 10−6 [77]
GQDs Sulfur 9.3 × 10−8 1.0 × 10−7–9.9 × 10−5

4. Nanocomposite as Sensors

A nanocomposite can be defined as a material that is composed of two or more
nanomaterials, with enhanced chemical properties and physical properties. The purpose of
a composite is to achieve a synergy effect in the sensing process. Nanocomposites present an
alternative approach to overcome the current limitations of individual nanomaterials [78].

4.1. Mesoporous-Silica-Coated-QD Composites

The phrase “mesoporous materials” refers to solids based on either ordered or disor-
dered networks with a broad or narrow distribution of pores within the range of 20 to 50 nm,
which is good for the incorporation of QDs. These materials have the potential to be used
in surface modification for both fluorescence sensing and electrochemical sensing [79,80].
The porous structure of mesoporous silica is known for its large surface area and volume.
These properties make it easy for the QDs to be embedded into the mesoporous silica for
the formation of a nanocomposite with enhanced properties of QDs. There have been
few reports on the development of mesoporous-silica-coated QDs for the detection of
pollutants. For instance, a chiral nematic mesoporous-silica-encapsulated CdS film was
used for the detection of trace TNT [81].

4.2. QD–GO Composites/Hybrids

Graphene and its derivatives have attracted much attention in different areas of
research because of their good physical and chemical properties [82]. Graphene oxide
(GO) can be best described as a single-layer planar hexagonal array of carbon atoms
to which different functional groups such as carboxylic acid, hydroxyl and epoxy are
attached [83]. These carbon-based materials are emerging as the most promising platform
for the preparation of nanocomposites for different sensing of NACs and PAHs [84].

Graphene, graphene oxide (GO) and reduced graphene oxide (rGO) can be easily
combined with semiconductor QDs to form composites with enhanced sensitivity and selec-
tivity towards the detection of organic pollutants [85]. Graphene, GO and their composites
have been widely used for wastewater treatment because of their high adsorption capacity.
The π-electron system of graphene and its derivative make them suitable modifiers of
QDs for the fluorescence detection of π-electron-rich organic pollutants. Mitra et al. (2016)
explored rGO-based sensors for the fluorescence detection of both PAH analytes and NACs.
The results of their study showed an enhancement of PL intensity of the sensor by the
pollutants (Figure 6) [67]. In 2016 and 2017 Adegoke et al. investigated the selectivity and
sensitivity of a QD–GO composite for the detection of PAHs [4,60]. Their study showed
that PAHs could be detected by a QD–GO composite through an enhancement mecha-
nism. Recently, Liu et al. synthesized CuInS2 quantum dot (QD) and graphene oxide (GO)
nanocomposites as a fluorescent sensor for the detection of kanamycin [82].
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5. Detection Mechanisms

Different approaches based on surface modification with different molecules or ligands
are said to cause different detection mechanisms. For instance, mechanisms of fluorescence
detection are not only based on quenching but also based on mechanisms such as fluores-
cence turn-on, spectral shift, lifetime and anisotropy [5]. A study on the determination
of 2,4,6-trinitrophenol (TNP) by Liu et al. demonstrated that the quenching mechanism
for the detection of electron-deficient NACs occurs through acid–base pairing between
amino functional groups and the electron-deficient rings [61]. The quenching mechanism
can occur in two ways: static and collisional quenching. These are differentiated through
time-resolved measurements of fluorescence lifetime. In the static quenching process, the
fluorescence lifetime of the sensor remains unchanged as the concentration of the quencher
is increased. In the collisional quenching, the fluorescence lifetime becomes shorter as the
concentration of the quencher increased. The quenching mechanism is normally triggered
by the transfer of electrons from electron donors to electron-deficient compounds [73,86].
Theoretically, it means that the fluorescence enhancement, also known as fluorescence
“turn-on” is encountered for the detection of explosive residues or pollutants that are not
electron-rich [79]. The detection of PAHs also occurs through fluorescence “turn-on” [40].
This type of mechanism is said to be triggered by energy transfer between the sensor and
the species. Energy transfer of this nature can be due to different factors, such as hydrogen
bonding and π–π interaction [58].

6. Conclusions

The continuous discharge of PAHs and NACs into the environment through man-
made and natural processes suggests that there should be regular monitoring of these
pollutants in water sources. Fluorescence detection has turned out to be an important
technique for monitoring PAHs and NACs. Semiconductor nanocrystals have shown better
sensitivity and selectivity due to their versatile surface chemistry. Reports from several
studies have shown that binary quantum dots (QDs) have attracted much more attention
in sensing applications and the detection of PAHs. However, these have been based on the
use of heavy-metal-based QDs. Furthermore, the literature has also shown that there are
challenges in detecting PAHs without substituents because many modifiers cannot react
with their π-π system. As far as the environment is concerned, we suggest developing
fluorescent probes or chemical sensors based on ternary QDs for monitoring PAHs and



Appl. Sci. 2021, 11, 11580 11 of 14

nitro-aromatics (explosives). Ternary QDs and carbon-based QDs are emerging as the better
alternative for sensing aromatic organic pollutants, due to their low toxicity. Furthermore,
different modification approaches have been shown to enhance the sensitivity of the
fluorescent probes. This review of different studies has also shown that organic-soluble QDs
exhibit better properties for sensing applications. However, aqueous-synthesized QDs will
be preferred due to environmental concerns based on the toxicity of organic-soluble ternary
QDs. Conjugation of the ternary QDs with a good selection of appropriate ligands or carbon-
based material conjugates has emerged as the better way for the improvement of stability
and sensitivity. This is due to their excellent optical properties, such as narrow emission
peaks, high quantum yield (QY), large stokes shift and tunable emissions from short
wavelengths (visible region) to longer wavelengths (near-infrared region). Nevertheless,
group I-III-VI ternary quantum dots (QDs) are emerging as alternative fluorescent probes
or chemical sensors for the monitoring of nitroaromatics (explosives). However, there is
no report on the sensing of PAHs using these fluorescent probes. Furthermore, the proper
selection of conjugate may enhance the selectivity and sensitivity of the probes. Although
group I-III-VI QDs are potential environmentally friendly sensors, their surface defects are
a challenge in FRET-based studies. Nevertheless, different sensing mechanisms derived
from surface modification of these materials can improve their efficiency for energy transfer,
which is an essential part of sensing organic pollutants.
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