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Abstract: This paper deals with two modalities for stress detection and evaluation—vowel phonation
speech signal and photo-plethysmography (PPG) signal. The main measurement is carried out in
four phases representing different stress conditions for the tested person. The first and last phases are
realized in laboratory conditions. The PPG and phonation signals are recorded inside the magnetic
resonance imaging scanner working with a weak magnetic field up to 0.2 T in a silent state and/or
with a running scan sequence during the middle two phases. From the recorded phonation signal,
different speech features are determined for statistical analysis and evaluation by the Gaussian
mixture models (GMM) classifier. A database of affective sounds and two databases of emotional
speech were used for GMM creation and training. The second part of the developed method gives
comparison of results obtained from the statistical description of the sensed PPG wave together with
the determined heart rate and Oliva–Roztocil index values. The fusion of results obtained from both
modalities gives the final stress level. The performed experiments confirm our working assumption
that a fusion of both types of analysis is usable for this task—the final stress level values give better
results than the speech or PPG signals alone.

Keywords: stress detection and evaluation; GMM-based classification; photo-plethysmographic
wave analysis

1. Introduction

Magnetic resonance imaging (MRI) is used to visualize anatomical structures in
various medical applications. Apart from whole-body MRI, open-air and extremity MRI
also have wide usage. Every MRI scanner contains a gradient coil system generating three
orthogonal magnetic fields to scan the object in three spatial dimensions. All these devices
produce significant mechanical pulses during the execution of a scan sequence resulting
from rapid switching of electrical currents that accompany rapid change in the of direction
of the Lorentz force. This mechanical vibration is the source of the acoustic noise radiating
from the whole system with possible negative effect on the patients as well as the health
personnel [1] manifesting as a stress during or after MRI scanning.

MRI is also used to obtain vocal tract shapes during the articulation of speech sounds
for the articulatory synthesis [2]. An open-air MRI scanner can be used for this purpose
where the examined articulating person lies directly on the plastic cover of the bottom
gradient coil while a chosen MR sequence is run. Here the stress-evoking vocal cord
tension has an influence on the recorded speech signal [3] by modifying its suprasegmental
and spectral features, so it can bring about errors and inaccuracy in the calculation of 3D
models of the human vocal tract [4]. This physiological and mental stress can effectively be
identified by the parameters derived from the photo-plethysmography (PPG) signal, as
heart rate (HR), Oliva–Roztocil index (ORI) [5] pulse transit time [6], pulse wave velocity [7],
blood oxygen saturation, cardiac output [8], and others. The amplitude of the picked-up
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PPG signal is usually not constant, and it can often be partially disturbed or degraded [9].
The stress is associated with the autonomic nervous system and it can be expressed by
higher variability in interbeat intervals (IBI) assessed from the PPG wave as pulse rate
variability (PRV) and from the electrocardiogram (ECG) as HR variability (HRV). The
variety of frequency spectra determined from PPG and ECG signals can be used for more
precise determination of changes in the PRV and HRV values. They are in principle not
equivalent because they are caused by different physiological mechanisms. In addition,
the level of agreement between the PRV and HRV statistical results depends on several
technical factors, e.g., the used sampling frequency or the method of IBI determination [10].

In many people, exposure to acoustic noise and/or vibration causes negative psycho-
logical reaction that can be identified with negative emotional states of anger, fear, or panic.
Recognition of these negative affective states in the speech signal of the noise-exposed
speaker may be used as another stress indicator. All discrete emotions including the six
basic ones (anger, disgust, fear, sadness, surprise, joy) can be quantified by two parameters
representing dimensions of valence (pleasure) and arousal [11]. The valence dimension
reflects changes of the affect from positive (e.g., surprise, joy) to negative (e.g., anger, fear);
the arousal dimension ranges from passive (e.g., sadness) to active (e.g., joy, anger) [12]. For
emotion detection in the speech signal, various approaches have been used so far. Hidden
Markov models were used for performance evaluation of different features: log frequency
power coefficients, linear prediction cepstral coefficients, and standard mel-frequency cep-
stral coefficients (MFCC) [13]. The support vector machines (SVM) [14] employed features
extracted from cross-correlograms of emotional speech signals [15]. Another group of
speech emotion recognition methods uses artificial neural networks [16]. Recently, machine
learning and deep learning approaches have been utilized in this context [17,18]. However,
the technique using Gaussian mixture models (GMM) [19] remains the method of choice
when dealing with speech emotion recognition [20,21]. Much better scores are achieved
by a fusion of different recognition methods, e.g., GMM and SVM in speaker age and
gender identification [22] or in speaker verification [23], or SVM and K-nearest neighbour
in speech emotion recognition [24]. Another improvement may be achieved by multimodal
approach to emotion recognition using a fusion of features extracted from audio signals,
text transcriptions, and visual signals of face expressions [25]. In this sense, we use two
modalities for stress detection in this paper: the recorded speech signal and the sensed
PPG signal.

Our research aim is to detect and quantify the effect of vibration and acoustic noise
during the MR scan examination on vocal cords of an examined person. In the performed
experiments, the tested person articulated while lying in the scanning area of the open-air
low field MRI tomograph [26]. The levels of the vibration and noise in the MRI depend
on several factors [27,28]. At first, they comprise a class of a scan sequence based on
a physical principle of generation of the free induction decay (FID) signal by the non-
equilibrium nuclear spin magnetization precession (gradient or spin echo classes). Next,
they depend on the used methodology of MR image construction from received FID signals
(standard, turbo, hi-resolution, 3D, etc.). Finally, the basic parameters of MR scan sequences
(repetition time TR, echo time TE, slice orientation, etc.) and additional settings (number
of accumulations, number of slices, their thickness, etc.) are chosen depending on the
required final quality of MR images. All these parameters together with an actual volume
depending on a tested person’s weight have influence on the intensity of the produced
vibration and noise, on the time duration of the MR scan process, and finally on the
stimulated physiological and psychological stress in the examined persons. In previous
research [29,30] the measured PPG signals together with the derived HR have already
been used to monitor the physiological impact of vibration and acoustic noise on a person
examined inside the MRI scanning device.

This paper describes the current experimental work focused on stress detection and
evaluation from speech records of vowel phonation picked up together with PPG signals.
The whole experiment consists of four measurement phases representing different stress



Appl. Sci. 2021, 11, 11748 3 of 20

conditions for the tested person. The PPG and phonation signal measurement of the first
and the fourth phases is realized in the laboratory conditions; in the second and third
phases the tested person lies inside the MRI equipment; the third measurement phase is
realized after exposure to vibration and noise during scanning in the MRI device. The
first part of the proposed method for stress detection and evaluation uses the recorded
phonation signal. From this signal, different speech features are determined for statistical
analysis and evaluation with the help of a GMM classifier. For GMM creation and training,
one database of affective sounds and two databases containing emotional speech are used.
The second part of the stress evaluation method gives comparison of the results obtained
from the statistical processing of HR and ORI values determined from the PPG signal. This
is supplemented by comparison of energetic, time, and statistical parameters describing
the sensed PPG waves. The fusion of the results obtained from both types of stress analysis
methods gives the final stress level.

2. Description of the Proposed Method
2.1. Detection and Evaluation of the Stress in the Phonation Signal Based on the GMM Classifier

The GMM-based classification works in the following way: the input data investigated
are approximated by a linear combination of Gaussian probability density functions. They
are used to calculate the covariance matrix as well as the vectors of means and weights.
Next, the clustering operation organizes objects into groups whose members are similar in
some way. The k-means algorithm determining the centers is used for GMM parameters
initialization. This procedure is repeated several times until a minimum deviation of the
input data sorted in k clusters S = {S1, S2, . . . , Sk} is found. Subsequently, the iteration algo-
rithm of expectation-maximization determines the maximum likelihood of the GMM [19].
The number of mixtures (NMIX) and the number of iterations (NITER) have an influence on
the execution of the training algorithm—mainly on the time duration of this process and
on the GMM accuracy. The GMM classifier returns the probability/score (T, n)—for the
model SMn (n) corresponding to each of N output classes using the feature vector T from
the processed signal. The normalized scores (in the range from 0 to 1) obtained in this way
are further processed in the classification/detection/evaluation procedures.

The proposed method uses partially normalized GMM scores obtained during the
classification process for three output classes:

• C1N for the normal speech represented by a neutral state and emotions with positive
valence and low arousal,

• C2S for the stressed speech modeled by emotions with negative pleasure and high
arousal,

• C3O comprising the remaining two of six primary emotions (sadness having negative
pleasure with low arousal and joy as a positive emotion with high arousal).

The developed stress evaluation system analyzes the input phonation signal of five
basic vowels (“a”, “e”, “i”, “o”, and “u”) obtained from voice records together with the PPG
signal sensed in M measuring phases MF1, MF2, . . . MFM. During the GMM classification
we obtain M output matrices of normalized scores with dimension P × N, i.e., for P
processed input frames of the analyzed phonation signal and for each of N output classes—
see the block diagram in Figure 1. Then, the relative occurrence parameters ROC1N, C2S, C3O
[%] are calculated as partial winners of C1N, C2S, C3O classes (with maximum probability
scores) separately for each of the analyzed vowels recorded in the MF1 to MFM measuring
phases. Then, summary mean values of the C1N and C2S class occurrence percentage
(ROC1N, ROC2S) quantify differences between measuring phases. The stress factor in [%] is
defined as

LSTRESS (n) = ROC2S (n)–ROC2S (1) for 1 ≤ n ≤ M (1)
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This practically corresponds to the mean percentage occurrence for the C2S class
relative to the first recording phase as the baseline—which means LSTRESS (1) = 0. The same
methodology is used for LNORMAL [%] calculation

LNORMAL (n) = ROC1N (n)–ROC1N (1) for 1 ≤ n ≤ M, (2)

which expresses changes corresponding to the normal speech type. While the sum of occur-
rences of ROC1N, C2S, C3O parameters is always 100%, actual values of LSTRESS/LNORMAL
depend not only on C2S/C1N classes but also on the current distribution of the class C3O—
compare graph examples in Figure 2.
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Figure 2. Example of the GMM classification and stress evaluation: (a) sequences of obtained partial
winner classes C1N (“1”), C2S (“2”), and C3O (“3”) of a vowel “e”, (b) bar-graph of relative class
occurrences ROC1N, C2S, C3O.
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The desired functionality of the proposed evaluation method expects that the phona-
tion signal produced in the stressed conditions is marked by higher values of ROCS2
parameter together with lower ROCN1 values. For more significant comparison, the differ-
ence ∆LS-N between the stress (LSTRESS) and normal (LNORMAL) factors is calculated for MF2
to MFM phases. The negative value of ∆LS-N difference corresponds to the LNORMAL value
higher than the LSTRESS value. Sufficiently great differences of ∆LS-N between the stressed
and normal phonation signals are necessary for proper evaluation processes. While the
∆LS-N in the first phase is principally equal to zero, the ∆LS-N for the last measuring phase
is typically non-zero with lower absolute value and possible opposite polarity compared
with previous phases. The LSTRESS, LNORMAL, and ∆LS-N are used as the GMM classification
parameters (SPGMM) and they are used together with the PPG signal analysis parameters
(SPPPG) to form the input vectors for further fusion operation (see the block diagram in
Figure 3). The final stress evaluation rate RSFE is given as

RSFE(n) =
Q

∑
i=1

(wGMM(n, i)·SPGMM(n, i)) +
S

∑
j=1

(wPPG(n, j)·SPPPG(n, j)), 2 ≤ n ≤ M, (3)

where Q is the number of GMM parameters, S is the number of PPG parameters, and
wGMM/wPPG are their importance weights.
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2.2. Determination of Phonation Features for Stress Detection

For stress recognition in the speech, spectral properties such as MFCC together with
prosodic parameters (jitter and shimmer) and energetic features such as Teager energy
operators (TEO) are mostly used [31,32]. In the frame of the current experiments, we use
four types of parameters for analysis of the phonation signal:

1. Prosodic features containing micro-intonation components of the speech melody F0
given by a differential contour of a fundamental frequency F0DIFF, absolute jitter Jabs
as an average absolute difference between consecutive pitch periods L measured in
samples, shimmer as a relative amplitude perturbation APrel from peak amplitudes
detected inside the nth signal frame, and signal energy EnTK for P processed frames
calculated as

EnTK = abs

(
1

P − 2

P−2

∑
n=1

TEO(n)

)
, (4)

where the Teager energy operator is defined as TEO = x(n)2 − x(n − 1)·x(n + 1).
2. Basic spectral features comprising the first two formants (F1, F2), their ratio (F1/F2)

and 3-dB bandwidth (B31, B32) calculated with the help of the Newton–Raphson
formula or the Bairstow algorithm [33], and H1–H2 spectral tilt measure as a difference
between F1 and F2 magnitudes.

3. Supplementary spectral properties consisting of the center of spectral gravity, i.e., an
average frequency weighted by the values of the normalized energy of each frequency
component in the spectrum in [Hz], spectral flatness measure (SFM) determined as a
ratio of the geometric and the arithmetic means of the power spectrum, and spectral



Appl. Sci. 2021, 11, 11748 6 of 20

entropy (SE) as a measure of spectral distribution quantifying a degree of randomness
of spectral probability density represented by normalized frequency components of
the spectrum.

4. Statistical parameters that describe the spectrum: spectral spread parameter repre-
senting dispersion of the power spectrum around its mean value (SSPREAD = ∑2),
spectral skewness as a 3rd order moment representing a measure of the asymmetry
of the data around the sample mean (SSKEW = E(x − µ)3/σ3), and spectral kurtosis
being a 4th order moment as a measure of peakiness or flatness of the shape of the
spectrum relative to the normal distribution (SKURT = E(x − µ)4/σ4 − 3); in all cases µ
is the first central moment and σ is the standard deviation of spectrum values x, and
E(t) represents the expected value of the quantity t.

2.3. PPG Signal Decsription, Analysis, and Processing

The PPG signal together with its derived parameters (particularly HR and ORI)
describe the current state of the human vascular system and, in this way, they can be
used for detection and quantification of the stress level [7]. Generally, in a PPG cycle, two
maxima (systolic and diastolic) provide valuable information about the pumping action of
the heart. For description of signal properties of the sensed PPG waves the energetic, time,
and statistical parameters are determined.

The sensed PPG signal representation is typically in the absolute numerical range
ANR given by the used type of an analog-to-digital (A/D) converter, e.g., output values
of the 14-bit A/D converter have a relative unipolar representation in the range from 0 to
16,192 (=214 = ANR). First, from this absolute PPG signal, the local maximum LpMAX and
local minimum LpMIN levels of the peaks corresponding to the heart systolic pulses are
determined to obtain the mean peak level LpMEAN. Then, the mean signal range PPGRANGE
is calculated from the global minimum (offset level LOFS) and ANR by the equation

PPGRANGE = (LpMEAN − LOFS)/ANR·100 [%]. (5)

Finally, we calculate the actual modulation (ripple) of heart pulses in percentage
(HPRIPP) as

HPRIPP = (LpMAX − LpMIN)/LpMAX·100 [%]. (6)

The determined LpMIN, LpMAX, LOFS together with calculated PPGRANGE and HPRIPP
values are visualized in Figure 4.

The used methodology of heart rate values determined via PPG wave has been
described in more detail in [30]. In principle, the procedure works in three basic steps:
(1) systolic peaks are localized in the PPG signal, (2) heart pulse periods THP in samples
are determined, (3) HR values are calculated using the sampling frequency f s by a basic
formula

HR = 60·f s/THP [min−1]. (7)

The obtained sequence of HR values is next smoothed by a 3-point median filter and
the linear trend (LT) is calculated by the mean square method. For LT < 0 the HR has a
descending trend, for LT > 0 the HR values have an ascending trend. The resulting angle ϕ
of LT in degrees is defined as HRϕ LT = (Arctg(LT)/π) 180. For the final stress evaluation
rate determination in the fusion process, the relative parameter HRϕ REL [%] for the qth

measurement phase is calculated in relation to the HRϕ LT of the 1st phase

HRϕ REL (q) = ((HRϕ LT(q) − HRϕ LT(1))/HRϕ LT(1))·100 [%] for 2 ≤ q ≤ M. (8)

After the mean value HRMEAN and LT removal of the smoothed HR sequence a relative
variability HRVAR based on the standard deviation HRSTD is calculated as

HRVAR = (HRSTD/HRMEAN)·100 [%]. (9)
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For the purpose of this study, we use the ORI parameter which can also quantify the
pain and/or stress in the human cardio-vascular system [6,34]. The typical ORI range lies
in the interval of <0.1, 0.3> for healthy people in a normal physiological state [10]. This
parameter normalizes the width of the systolic pulse WSP to the heart pulse period THP [35]

ORI = WSP/THP, (10)

where WSP is determined typically at the height of two-thirds from the basis (one-third
from the top—see Figure 5).
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Figure 5. An example of the PPG signal with localized systolic heart peaks, determined heart pulse
periods THP, and widths WSP of systolic peaks at the threshold level LTRESH.

For the final fusion process, the relative parameter ORIREL [%] is calculated in a similar
manner as HRϕ REL in (8)—using the mean value ORIMEAN determined for the phase MF1

ORIREL(q) = ((ORIMEAN(q) − ORIMEAN(1))/ORIMEAN(1)) · 100 [%] for 2 ≤ q ≤ M. (11)

For the current research, we analyze changes (increase/decrease/stationary state
and/or polarity±) of the mentioned parameters determined from the processed PPG
signal. We expect raised PPG ripple and range parameters, higher HRϕ LT values, higher
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HR variability, and smaller ORI (due to narrowed systolic peaks) as indicators of the
stress state (equivalent to the C2S class detected during the GMM classification of the
phonation signal). In the normal non-stressed state of the tested person, opposite changes
are reflected—see a detailed description in Table 1. All these five parameters are used
to obtain the final stress evaluation rate. The SPPPG values become inputs to the fusion
procedure in a similar way as the SPGMM evaluation parameters. Practically, only SPPPG
(MF2–4) are applied because the baseline SPPPG (MF1) is of a zero value.

Table 1. Corresponding changes of PPG signal properties for stressed and normal states.

Parameter Stressed State Normal Condition

PPGRANGE [%] Increase Decrease or constant
HPRIPP [%] Increase Decrease

HRϕ REL [%] Higher positive (+) Negative (–) or small
HRVAR [%] Higher Smaller
ORIREL [%] Smaller Higher

3. Experiments
3.1. Basic Concept of the Whole Measurement Experiment

The whole experiment is practically divided into four measurement phases (MF1,2,3,4)
preceded by the initial phase IF0—see the principal measurement schedule in Figure 6.
The phase IF0 serves as preparation and manipulation of the measurement instruments—
testing the wireless connection between the PPG sensor and the data-storing device, setting
audio levels on the mixer device for phonation recording, etc. Prior to each experiment,
the air in the room was disinfected by a UV germicidal lamp for 15 min to minimize risk
of COVID-19 infection—the phonation signal recording must be performed without any
protective face shield or respirator mask.
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Figure 6. Principal measurement schedule applied in all measurement experiments.

In the case of the measuring phases MF1 and MF4, the tested person sits at the desk in
the MRI equipment control room, while for the measurement in the phases MF2 and MF3,
the person lies on the bed inside the shielding metal cage of the MRI device. Each of the
measuring phases starts with PPG signal recording—the operation called PPGx1 (where “x”
represents the number of the current measuring phase) with duration TDUR equal to 80 s.
Then, the phonation signal is recorded with the pick-up microphone. The signal consists
of stationary parts of the vowels a, e, i, o, and u with a mean duration of 8 s interlaced by
pauses of 2~3 s. Each vowel phonation was repeated three times, so 5 × 3 = 15 records per
person were obtained altogether in every individual measuring phase (total of 55 in the
whole experiment). The active measurement is finished by the second PPG signal sensing
(operation PPGx2—also with TDUR = 80 s, so the summary duration of all the measuring
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phases is about 5–7 min. Between each two consecutive measurement phases, a working
time delay (WTD1–3) with time duration 5–10 min is applied. Therefore, the expected
experimental duration is about 50 min in its entirety (without the IF0 phase). During
WTD1, the tested person moves from the desk to the MRI device and adapts to the space
of the scanning area to stabilize physiological changes in the cardiovascular system after
changing body position from sitting to lying. Some people can also have a negative mental
feeling inside the MRI tomograph. Both types of changes can evocate the stress that can
be detected by the PPG and phonation signals. It holds mainly for WTD2 when the tested
person is exposed by negative stimuli consisting of mechanical vibration and acoustic noise
generated by the running MRI device during execution of the MR scan sequence. The last
WTD3 delay part is planned for movement of the tested person to the desk in the control
room and short relaxation after changing position from lying to sitting and returning to
the “normal” laboratory conditions. Importance weights for input parameters SPGMM and
SPPPG entered to the fusion process were set experimentally as shown in Table 2.

Table 2. Weight settings for parameters entered to the fusion process.

Parameter No. Phonation Type Weight [-] PPG Type Weight [-]

1 LSTRESS wGMM1 = 0.75 PPGRANGE wPPG1 = 0.25
2 LNORMAL wGMM2 = −0.5 HPRIPP wPPG2 = 0.5
3 ∆LS-N wGMM3 = 0.25 HRϕREL wPPG3 = 0.5
4 – – HRVAR wPPG4 = 0.75
5 – – ORIREL wPPG5 = −1

In this study, two small databases of the phonation and PPG signals from eight healthy
voluntary non-smokers were collected and further processed. The examined persons were
the authors themselves and their colleagues: four females (F1, F2, F3, and F4) and four
males (M1, M2, M3, and M4). The age and body mass index (BMI) composition of the
studied persons is listed in Table 3. During the experiments in the control room as well as
inside the MRI device, the room temperature was maintained at 24 ◦C and the measured
humidity was 30%.

Table 3. Age and BMI parameters of the persons included in our study.

Parameter/Person M1 M2 M3 M4 F1 F2 F3 F4

Age (years) 59 53 42 36 59 20 30 58
BMI (kg/m2) 24.9 22.2 22.5 23.1 18.3 21.8 19.0 21.2

3.2. Used Instrumentation and Recording Arrangement
3.2.1. Phonation Signal Recording

In the measurement phases MF2 and MF3, the tested person lay in the scanning area
of the open-air, low-field (0.178 T) MRI tomograph Esaote E-scan Opera [36] located at
the Institute of Measurement Science, Slovak Academy of Sciences in Bratislava (IMS
SAS). In this tomograph, a static magnetic field is formed between two parallel permanent
magnets [36]. Parallel to the magnets, there are two internal planar coils of the gradient
system used to select slices in three dimensions. In the magnetic field, a tested object is
placed together with an external radio frequency receiving/transmitting coil. The whole
MRI scanning equipment is placed in a metal cage to suppress high-frequency interference.
The cage is made of a 2-mm thick steel plate with 2.5-mm diameter holes spaced periodically
in a 5-mm grid to eliminate the propagation of the electromagnetic field to the surrounding
space of the control room.

For the phonation signal recording inside the shielding metal cage of this device, the
pick-up condenser microphone Mic1 (Soundking EC 010 W) was placed on the stand at the
distance DX = 60 cm from the central point of the scanning area to inhibit any interaction
with the MRI’s working magnetic field. Its height was 75 cm from the floor (in the middle



Appl. Sci. 2021, 11, 11748 10 of 20

between both gradient coils) and its orientation was 150 degrees from the left corner near
the temperature stabilizer. The Behringer XENYX Q802 USB mixer and a laptop used
for recording were located outside the MRI shielding metal cage—see an arrangement
photo in Figure 7. Another microphone Mic2 (Behringer TM1) was connected to the second
channel of the XENYX Q802 mixer for the phonation signal pick-up in the recording phases
MF1 and MF4 with the tested person sitting at the desk in the MRI equipment control
room. Both professional studio microphones are based on the electrostatic transducer with
a 1-inch diaphragm and they have very similar cardioid directional patterns as well as
frequency responses at 1, 2, 4, 8, and 16 kHz.
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Figure 7. An arrangement of the phonation and PPG signal recording in the MRI Opera (for measure-
ment phases MF2 and MF3): (1) pick-up microphone Mic1, (2) noise SPL meter, (3) recording devices
outside the shielding cage, (4) electronic part of the wearable PPG sensor, (5) reflection optical pulse
sensor on the forefinger of the left hand, (6) door of the shielding cage.

Between the measurement phases MF2 and MF3, the scan sequence 3D-CE (with
TE = 30 ms, TR = 40 ms; 3D phases = 8) was run with a total time duration of about 8 min.
This type of our most used MR sequence produces a noise with a sound pressure level (SPL)
of about 72 dB (C); the background SPL inside the metal shielding cage is produced mainly
by the temperature stabilizer and reaches about 55 dB (C) [29]. In this case, the physiological
effect of the noise and vibration on the human organism and auditory system is small but
still measurable and detectable [30]. During the phonation signal pick-up in the MF1 and
MF4 measurement phases, the control room background level was up to 45 dB (C). In all
cases, the SPL values were measured by the sound level meter Lafayette DT 8820 mounted
on the holder at the same height from the floor as the recording microphone (75 cm). For
purpose of this study, we are not interested in MR images that are automatically generated
by the MRI control system after finishing the currently running scan sequence [36]. To
prevent their creation and storage, it is possible to manually interrupt passing of the
running scan sequence from the operator console. This approach was practically applied
in all our experiments, so no MR images of the tested persons were collected or stored.

The phonation/sound signal was analyzed by a pitch-asynchronous method with
a frame length of 24 ms and a half-frame overlap. For calculation of spectral properties,
the number of fast Fourier transform (FFT) points was NFFT = 1024; for estimation of
the formant frequencies and their bandwidths, the complex roots of the 18th order LPC
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polynomial were used. In contrast with our first-step work [26] and with the aim to
obtain results with higher precision, computation of the full covariance matrix [19] and
512 mixtures were finally applied. The length of the input feature vector for GMM creation,
training, and classification was set experimentally to NFEAT = 32, and NITER = 1500 iterations
were used. The phonation signal processing as well as implementation of basic functions
for the GMM classifier was currently realized in the Matlab environment (ver. 2019a).

3.2.2. PPG Signal Recording

Generally, two principles of optical sensors (transmission or reflection) can be utilized
in the PPG signal measurement. Both types consist of two basic elements: a transmitter
(light source—LS) and a receiver (photo detector—PD). In the transmission mode, the LSs
and PDs are placed on the opposite sides of the measured human tissue. In the reflection
PPG sensor, the PDs and LSs are placed on the same skin surface. In this research, the
optical sensors working on the reflection principle were used and the PPG signals were
picked up from fingers [37]. For practical PPG signal recording, a previously developed
wearable PPG sensor, PPG-PS1, was used. This also operates in a weak magnetic field
with radiofrequency disturbance (in the scanning area of the running MRI device during
patient examination) [38]. This PPG sensor realization is fully shielded, assembled only
from non-ferromagnetic components, and based on the reflection optical pulse PPG sensor
(Pulse Sensor Amped—Adafruit 1093 [39]). For data transmission to the control device,
the wireless communication based on Bluetooth standard is utilized. Due to the 10-bit
A/D converter implemented in the microcontroller of the whole PPG sensor, the absolute
unipolar PPG signal representation lies in the range from 0 to 1024 (ANR = 1024). This
wearable sensor enables real-time PPG wave sensing and recording for the sampling
frequencies from 100 to 500 Hz.

The typical PPG cycle frequency corresponding to the HR of healthy adults is in the
range 1 to 1.7 Hz (from 60 to 106 min−1) [37], so the f S about 150 Hz is sufficient to fulfil the
Shannon sampling theorem. In addition, the commercial wearable PPG sensors use typical
sampling frequencies between 50 and 100 Hz. Using different f S from the investigated
range does not change the subsequently detected pulse period and the finally determined
heart rate; only the precision of the systolic and systolic peaks decreases in the case of
lower f S. For the purpose of this study the precise shape of peaks is less relevant, only
the detected THP and WSP parameters are necessary for HR and ORI calculation. As we
statistically analyze the obtained HR and ORI values for final comparison in the fusion
block, the statistical stability and credibility is most important for us. From the previously
performed analysis, it follows that a decrease in the number of detected HR periods as
a consequence of higher used f S brings an incorrectness to the results of the statistical
analysis due to too small a number of the processed values—the PPG signal is sensed in
real-time by the data block samples from the internal memory of a wearable PPG sensor
with sizes from 1 to 25 k [38]. This is the main reason why we use the f S = 125 Hz for
sensing of the PPG signal in our experiments.

The optical part of the PPG sensor is fixed on a forefinger of the left hand by an elastic
ribbon. The PPG signal pick-up is begun just before the start of the human voice phonation
and the PPG sensing is finished immediately after the end of the phonation recorded by
the microphone Mic2—see an arrangement photo in Figure 8 obtained during the MF1
measurement phase.
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Figure 8. An arrangement of the phonation recording and PPG signal measurement in the laboratory
conditions (for MF1 and MF4 phases): (1) a pick-up microphone Mic2, (2) the analogue mixer XENYX
Q802, (3) a control and recording device, (4) body of the wearable PPG sensor with BT data transfer,
(5) a reflection optical pulse sensor mounted on the forefinger of the left hand.

3.3. Used Databases for GMM-Based Stress Detection and Evaluation in the Phonation Signal

Three different audio corpora were used to create and train the GMM models for the
classes of the normal and stressed speech. Our first corpus (further called DB1) was taken
from the International Affective Digitized Sounds (IADS-2) [40] comprising 167 sound and
noise records with duration of 6 s. The database is standardized and rated using Pleasure
and Arousal (P-A) parameters in the range of <1~9>. The second created corpus (DB2)
was extracted from the emotional speech database Emo-DB [41]. It contains sentences of
the same content with six acted emotions and a neutral state by five male and five female
German speakers with time durations from 1.5 s to 8.5 s. We used sentences in a neutral
state and a surprise for the C1N class; a fear, an anger, and a disgust for the C2S stress
class, and a sadness with a joy for the C3O class—separately for both genders (234 + 306
in total). The third audio corpus (DB3) was extracted from the audiovisual database MSP-
IMPROV [42] recorded in English. This database has sentences also evaluated in the P-A
scale but in the range from 1 to 5. For compatibility with the DB1, all the applied speech
records were resampled at 16 kHz and the mean P-A values were recalculated to fit the
range from 1 to 9 of the DB1. We have used only declarative sentences with acted speech in
a neutral state by three males and three females, in total 2 × 250 sentences (separately for
male and female voices) with duration from 0.5 to 6.5 s.

Applied P-A ranges and mean values for basic emotions are shown in Table 4. For
the class C1N, the records with P = {3.5~5.5}, A = {4~6} corresponding to the neutral state
and joy were finally used. The sound/noise records with P ≤ 3, A ≥ 6 corresponding
to the anger, disgust, and fear emotions were used for the stressed class C2S. The class
C3O represented negative emotions of sadness (with both P and A parameters low) and a
positive emotion joy (both P and A parameters high)—compare the 4th and the 7th line in
Table 4. These three described audio databases were used because their records are freely
accessible without any fee or other restrictions.
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Table 4. Ranges and mean values of P-A parameters related to discrete basic emotions.

Emotion Pleasure
Range/Mean

Arousal
Range/Mean

Emotion Location in the P-A
Space

Anger 2 (1.0~ 3.0)/2.40 (6.0~8.0)/6.04
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4. Discussion of Obtained Results

Obtained results are structured by the applied stress evaluation methods: at first, using
the GMM-based classification parameters SPGMM from the phonation signals, next the
statistical parameters SPPPG determined from the PPG signals (both for MF1–4 measuring
phases), and finally the stress evaluation rates for MF2 to MF4 phases are calculated by the
fusion of the SPGMM and SPPPG parameters. Summary results are next divided by gender
of a tested person—values for groups of males, females, and for all participating persons
are subsequently visualized and compared.

Within the GMM classification part, an auxiliary analysis was also performed to
evaluate an influence of the database used for GMMs creation and training. Comparison
of LSTRESS, LNORMAL and ∆LS-N values in Table 5 shows that all three tested databases are
usable for this purpose. As shown in the last column, the greatest differences between
LSTRESS and LNORMAL values are obtained when the Emo-DB speech database was used.
Therefore, in further analysis, the GMMs were created and trained with the help of the
database DB2. Next, we analyzed the percentage distribution values of the output classes
C1N, C2S, and C3O per each vowel of the phonation signal. The representative results from
this analysis performed on the recorded vowels are shown in detail in Figure 9, where a
non-uniform class distribution can be seen for vowels recorded in the measuring phases
MF1–4. However, the summary comparison in Figure 10 demonstrates the expected trends
of LSTRESS and LNORMAL values being in correlation with mean ROC1N, C2S, C3O values
calculated for all five vowels together—ROC2S values are increased in MF2,3 phases in
comparison to MF1,4 phases. This trend is accompanied with parallel decrease of ROC1N
values in MF2,3 phases and increase in MF1,4 phases.

Table 5. Influence of different databases used for GMM creation and training on stress evaluation—
male speaker M1, NMIX = 512, full covariance matrix, summarized for all five vowels.

Database Type LSTRESS [%] 1

(MF2,3,4)
LNORMAL [%] 1

(MF2,3,4)
∆LS-N [%] 1

(MF2,3,4)

DB1 (sounds-IADS-2) 8.09, 11.2, −2.09 −29.6, −38.9, 4.41 37.7, 50.1, −6.51
DB2 (speech-Emo-DB) 56.6, 75.2, −9.76 −2.88, 13.9, 14.60 53.7, 89.1, 4.87

DB3 (speech-MSP-IMPROV) 15.4, 20.2, 2.23 −30.3, −36.6, 0.08 45.7, 56.7, 2.15
1 for MF1 are LSTRESS/LNORM/∆LS-N = 0 in all cases.
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signal recording within all four measuring phases (MF1–4); from the speech signal by male M2 (upper graph) and female F2
(lower graph), NMIX = 512, full covariance matrix.
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Figure 10. Summary GMM-based comparison parameters for male M2 (upper graph) and female F2 (lower graph):
(a) visualization of mean ROC2S values per each vowel phonated in the measuring phases MF1–4, (b) bar-graphs of mean
ROC1N, C2S, C3O values, (c) visualization of LSTRESS, LNORMAL, and ∆LS-N values calculated relative to the baseline MF1;
NMIX = 512, full covariance matrix.

The results obtained by the second evaluation approach confirm our assumption that
the stress level evoked by scanning in the tested MRI device is identifiable and measurable
using HR values determined from the PPG signal. From the detailed analysis of filtered HR
values concatenated for the recording phases PPG11–42 together with their LT parameter
follows that, in the measuring phases MF2 and MF23, there is a pronounced increase in
the mean HR with a positive LT, while the last phase MF4 has typically lower mean HR
and negative LT. This increase of mean HR values is accompanied by higher variation
of discrete HR values. In the first measuring phase MF1, lower HR with positive LT is
observed. In addition, there are visible differences in HR values determined from the
recording phases PPG11 and PPG12. This was probably due to the load effect of speech
(vowels) production by a tested person manifested by a small increase of the mean HR
determined from PPG signals recorded after phonation. Figure 11 shows concatenated
sequences of HR values for two distinct cases that occurred in a male person M2 (upper
graph with minimum changes of HR and LT values) and in a female person F3 (lower
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graph with maximum increase of HR and LT values in MF2,3 phases). In summary, the
mentioned increase of HR as well as its variance is more pronounced in females. It is also
documented by a graphical comparison in Figure 12. During the stress phase MF3, the
maximum mean HR = 92 min−1 occurred in the case of the female F1, while during the
final phase MF4 the minimum mean HR = 61 min−1 was achieved for the male M4, and
these mean HR values lie within the HR range for healthy adults [37]. On the other hand,
the absolute maxima can be locally higher as documented by HR values in PPG31,32 phases
for the female F3 showed in Figure 11.
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Contrary to our expectations, the observed changes in PPGRANGE and HPRIPP param-
eters do not follow the trends presented in Table 1, and they do not seem to be useful
for detection of the stress level. The LT (or HRϕ REL) and HRVAR parameters partially
exhibit the expected increase in the MF2,3 phases, but these changes are not significant and
stable. This effect is similar for male as well as female tested persons, as demonstrated by
the graphs in Figure 12. In the case of the ORI parameter, its changes are not consistent,
probably as they are more individual, or because the chosen time duration of the measuring
phases as well as the length of working time delays were not set properly. As follows
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from the definition of ORI in (10) the resulting value depends on the width of the systolic
pulse and the heart pulse period. These two parameters can be affected in synergy or in
antagonism. In consequence of this state, we cannot obtain any credible statistical result
for precise comparison—see box-plot graphs of basic statistical parameters of ORI values
for one male and one female person in Figure 13. Therefore, in this stage of our research,
we can only state that in one case of a male person the ORI values start to decrease in the
MF3 phase, and this trend continues also in the final MF4 phase, while the changes of HR
values fulfill our experimental premise—in MF3 they are higher, in MF4 they substantially
decrease. Next, for one female person during measurements inside the MRI device, the HR
and ORI changed in the opposite manner—this was probably caused by her adaptation
to the changed position (from standing to lying) and, at the same time, by being rather
nervous in a foreign environment inside the shielding cage of the MRI scanning area per-
ceived as somewhat unfriendly. In other cases, some effect of stress on the ORI parameter
could also be observed but it was not concentrated in the monitored phases MF2,3.
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The process of fusion—calculation of the final stress evaluation rate—is described by
a numerical example in Table 6. This shows the entered input parameters from the GMM
and PPG stress evaluation parts together with the applied importance weights. In the right
part of this table, there are the corresponding partial sums for MF2,3,4 phases together with
the final RSFE values. Application of the SPPPG parameters brings greater difference in
the final RSFE values between MF2–3–4 phases by 26% (for ∆MF2–3) and 45% (for ∆MF3–4)
in comparison with using SPGMM alone (∆MF2–3 = 10%, ∆MF3–4 = 43%). Visualization of
partial and summary results obtained during the fusion process depending on gender (male,
female, and all persons) is presented in Figure 14. These graphical results correspond to
numerical values shown in Table 6, i.e., the partial sums calculated from SPPPG parameters
are smaller in comparison to the sums from SPGMM ones. This trend can be seen especially
for female tested persons in a graph in Figure 14b. The bar-graph of the final RSFE values
obtained for all tested persons in Figure 14c practically confirms our working hypothesis
about the negative stress effect after examination by the running scan sequence of the MRI
device—the RSFE value for the MF3 phase is the highest. However, merely lying in the
non-scanning MRI device can evoke a non-negligible stress as documented by about 40%
increase of the RSFE value in the MF2 phase in comparison with the zero-normalized RSFE
in the starting phase MF1. Our working presupposition about the human physiological
parameters returning to the baseline in the last measuring phase MF4 was not completely
confirmed. In most cases, the RSFE value was greater than zero in this phase (SPGMM and
SPPPG stress parameters determined in MF4 were higher than those in MF1), but there
was also a situation with stress parameters lower than in the initial phase, yielding a
negative value of RSFE in MF4. The return to the person’s initial state could be facilitated
by the increase of the working time delay WTD3—a longer pause before the last measuring
phase. Nevertheless, it was practically unacceptable to the experimenter as well as to the
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examined testing persons with respect to a relative long duration of about 50 min for the
whole measurement experiment.

Table 6. Example of calculation process of the final stress evaluation rate for the male M1.

Parameter Type SPGMM/PPG (MF2,3,4) Partial Sum (MF2,3,4) Final RSFE (MF2,3,4)

SPGMM1 8.1, 11.2, −2.1
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5. Conclusions

The current article is an extension of our previous work [26], where experiments
with sensing and analyzing of a PPG signal have been described. The main limitation
of this study lies in the fact that only a small group of tested persons participated in the
measurement of phonation and PPG signals. This was caused mainly by a bad COVID-
19 situation in our country at the time of the recording experiments. Since the tested
persons could not put on any mask during the phonation signal recording, only healthy
vaccinated people participated (authors themselves and their colleagues from IMS SAS) for
collecting the speech and PPG signal databases. The second limitation lies in the fact that
the testing open-air MRI device is the standard equipment for use in medical practice, but
our institute is not certificated for work with real patients, so it can be used for non-clinical
and non-medical research only.

Nevertheless, the obtained experimental results confirm our hypothesis about the
negative influence of the vibration and noise during MRI execution expressed by increased
an stress level in the recorded phonation signal as well as increased heart rate and its
variation determined from the PPG signal. In addition, the performed experiments confirm
our working assumption that both types of analysis are usable for this task—the final stress
level values obtained by a fusion of bimodal results are more differentiable. On the other
hand, the results obtained in this way cannot be fully generalized, only special and typical
cases that occurred during our experiments are described and discussed. Due to processing
of a relatively small number of phonation and PPG signal records, it was very difficult to
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obtain results with good statistical credibility—so only basic statistical parameters were
calculated and compared.

In future, we plan to perform a detailed analysis of speech features applied for
GMM-based classification to obtain greater differences in the detected normal and stress
classes. We would also like to test this stress detection approach with the help of well-
known databases consisting of stressed speech either simulated or recorded under real
conditions, the speech under simulated and actual stress (SUSAS) database in English [43],
the experimental speech corpus ExamStress in Czech [44], etc. which are not free or have
a limited access. In the PPG signal sensing, processing, and analysis we will try to find
other parameters for better description of changes in a human cardiovascular system
caused by a stress factor. We also plan to test another type of PPG sensor working on the
transmission principle (as an oximeter device) enabling measurement and recording of
blood oxygen saturation, heart rate, and perfusion index values to the control device via BT
connection. In this case, the realization requirement to operate in a low magnetic field must
be fulfilled—the PPG sensor must consist of non-ferromagnetic components and all parts
must be shielded due to strong RF disturbance in the scanning area of the MRI device.
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