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Abstract: This paper addresses a question difficulty estimation of which goal is to estimate the
difficulty level of a given question in question-answering (QA) tasks. Since a question in the tasks
is composed of a questionary sentence and a set of information components such as a description
and candidate answers, it is important to model the relationship among the information components
to estimate the difficulty level of the question. However, existing approaches to this task modeled
a simple relationship such as a relationship between a questionary sentence and a description,
but such simple relationships are insufficient to predict the difficulty level accurately. Therefore,
this paper proposes an attention-based model to consider the complicated relationship among the
information components. The proposed model first represents bi-directional relationships between
a questionary sentence and each information component using a dual multi-head co-attention,
since the questionary sentence is a key factor in the QA questions and it affects and is affected by
information components. Then, the proposed model considers inter-information relationship over
the bi-directional representations through a self-attention model. The inter-information relationship
helps predict the difficulty of the questions accurately which require reasoning over multiple kinds
of information components. The experimental results from three well-known and real-world QA
data sets prove that the proposed model outperforms the previous state-of-the-art and pre-trained
language model baselines. It is also shown that the proposed model is robust against the increase of
the number of information components.

Keywords: attention model; dual multi-head attention; inter-information relationship; question
answering; question difficult estimation

1. Introduction

Question-Answering (QA) is an important natural language processing task in which
a model understands questions and answers them based on its understanding of the ques-
tions. Several QA tasks such as ARC [1], SQuAD [2], and HotpotQA [3] were recently
proposed, and many QA models based on a pre-trained language model have been de-
veloped to solve these QA tasks [4–7]. In these QA tasks, the questions are in general
prepared without consideration of difficulty. Therefore, the QA models attacking the tasks
do not recognize the difficulty of each question even though the difficulty is important
information to answer the questions [8]. As a result, a difficulty level is tagged in new QA
tasks such as DramaQA [9] in conjunction with Piaget’s theory [10].

All QA tasks do not contain information about question difficulty, but the difficulty
exists latently in their questions. The questions in a QA task can be regarded as easy if they
are correctly answered by many answering models, and they can be considered as difficult
if few models give a correct answer for them. When investigating (This investigation was
done on 10 November 2020) the questions in the QuAC task with top three single models
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from the leaderboard of the task, we found out that only 10% of the questions are answered
correctly by all three models while about 50% are not answered correctly by any of the
models. Besides, some QA tasks have intrinsic question difficulty. For instance, the RACE
data set was collected by two subgroups of middle school examinations and high school
examinations, respectively. Thus, the questions from middle school examinations are easier
than those from high school examinations.

This paper deals with a question difficulty estimation of which goal is to estimate the
difficulty level of a given question. Predicting the difficulty level of the question helps
create adversarial QA datasets [11] or identify the way in which QA models challenges.
Most previous studies on this task extracted some difficulty features from questions and
then predicted the difficulty level of the questions with the features using machine learning
algorithms [12–16]. These features were designed to model the relationship between
a questionary sentence and associated information components such as a passage or
candidate answers. However, some recent QA studies have shown that inter-information
relationship is vital since many difficult questions can be answered through reasoning over
multiple kinds of information components [17]. For such an example, Figure 1 shows a
question in the RACE task. To answer this question, an answering model has to identify
the relationship between the passage and a candidate answer (marked in cyan) as well
as the relationship between the questionary sentence and the passage (marked in green).
As in the question answering, these relationships are important factors also in estimating
the question difficulty. Especially, the inter-information relationship should be considered
explicitly because they are directly related to the question difficulty, but no previous studies
made many efforts to consider the relationship.

Figure 1. An example question in the RACE data set that is difficult to answer without inter-information inference. The
inter-information clues are marked in green and cyan, and the underline in the candidate answers implies a correct answer.
(best view in color).

This paper proposes an attention-based model that estimates the difficulty of a ques-
tion. The proposed attention model is designed to consider the inter-information relation-
ship as well as the relationships between a questionary sentence and each information
component. To be specific, the proposed model represents each type of the relationships
consecutively and adopts the attention mechanism to capture both types of relationships.
That is, the relationships between a questionary sentence and each information component
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are first identified by the dual multi-head attention designed to capture a bi-directional
relationship with two multi-head attentions. Since a single directional relationship is not
sufficient for QA tasks [18], the proposed model captures bi-directional relationships be-
tween a questionary sentence and information components through the dual multi-head
attention. Note that the bi-directional relationships do not reflect an inter-relationship
among various information components fully. Thus, the proposed model represents the
inter-information relationship by applying a multi-head attention again to the outputs of
the dual multi-head attentions. That is, it first expresses the bi-directional relationships
between a questionary sentence and each information component, and then accumulates
the inter-information relationship onto the concatenation of the bi-directional relationship
representations using the transformer encoder. Finally, it determines the difficulty of
the question from the accumulated representation since the representation contains all
information about the question components and their relationships.

The proposed model is verified with three QA data sets of RACE, QuAC, and Dra-
maQA. Note that not all datasets are attached with the difficulty levels. DramaQA is
manually tagged with four difficulty levels but RACE and QuAC are not tagged. For
RACE dataset, we regard the middle school examinations as easy questions and high
school examinations as hard questions. For QuAC, the difficulty levels are tagged using
the results of multiple QA models [19]. The experimental results show the effectiveness
of the proposed model in two folds. One is that the proposed model outperforms current
state-of-the-art and pre-trained language models, and the other is that the performance of
question difficulty estimation is improved by considering inter-information relationship.
In particular, the proposed model achieves 68.37 of F1-score in QuAC. This is 8.5 higher
than the F1-scores of the state-of-the-art pre-trained language models. It is also shown
that the performance of the proposed model improves monotonically as the number of
information components increases. The major performance improvement of the proposed
model is made from difficult questions, since the proposed model is robust against the
increase of the number of information components.

The major contributions of this paper can be summarized as follows:

• We formally define the question difficult estimation as estimating the difficulty level
of a given question in question-answering tasks. The question difficult estimation for
any question answering tasks can be formulated using the proposed definition.

• We design an attention-based model for question difficulty estimation. The proposed
attention-based model captures the relationship among the information components
as well as the inter-relationships between a questionary sentence and each information
component.

• We examine the performance of the proposed model with intensive experiments on
three real-world QA data sets. The intensive experiments validate the effectiveness of
the proposed model.

• We empirically show that the performance of question answering is improved by
adding the difficulty level.

The rest of this paper is organized as follows. Section 2 reviews related studies on
question difficult estimation, and Section 3 presents the proposed model, the attention-
based question difficulty estimator. The experimental results and discussions are given in
Section 4. Finally, Section 5 draws some conclusions.

2. Related Work

Question answering is a task of answering a question where the question consists of a
questionary sentence written in the natural language and a set of information components.
Depending on the domain of the main information component, QA tasks are categorized
into text-based [2,3], table-based [20,21], image-based [22,23], video-based [8,24], and so on.
All QA tasks require an understanding of a question to answer it regardless of QA types.
One key factor for the question understanding is the difficulty of the question [8], so that
there have been many efforts to measure the difficulty of questions [14,16].
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The efforts for the question difficulty estimation can be clustered into two types. The
first type defines hand-crafted features from given QA materials. For instance, a question
and its associated passage are usually given in the reading comprehension, where the
passage provides background information of the question. Thus, the question difficulty
is estimated with the information residing in the question and the passage. Desai and
Moldovan defined, as such information, six features that are question length, cosine
similarity between a question and a passage, the nature of a question and its answer, the
number of clauses and prepositional phrases in a question, and existence of discourse
connectives in a question [12]. On the other hand, Ha et al. defined the features for
multiple-choice examinations [13]. Since they focused on medical examinations, they do
not include only lexical, syntactic, and semantic features from a question and candidate
answers, but also some cognitively-motivated features from a medical database. The main
problem of these studies is that it is extremely difficult to design the features without
profound knowledge about the reading materials.

The other type is to adopt a machine learning method to predict question difficulty
without manual features. Since every QA task has its own idiosyncratic circumstances,
the previous studies attacked question difficulty estimation by focusing on a specific task.
Huang et al. estimated question difficulty for standard English tests in which each problem
consists of a question, a reading passage, and candidate answers [14]. They proposed
a CNN-like architecture to represent all sentences in the question, the passage, and the
candidate answers as vectors, and adopted an attention mechanism to reflect the relevancy
of the sentences in the passage and candidate answers to the question. Qiu et al. estimated
question difficulty for multiple-choice problems at medical examinations [16]. Unlike
English tests, the problems of medical examinations do not have a passage, but a set
of documents related to a question. Thus, they measured two kinds of difficulties: the
difficulty of searching the documents for potential answers of a question and the confusion
difficulty among candidate answers. Then, the final difficulty of a question is determined by
their weighted sum. Xue et al. expressed a question and candidate answers as embedding
vectors by a pre-trained language model, ELMo, and then predicted the difficulty of the
question using a simple linear regression of which input is the embedding vectors [25].

Note that many QA tasks provide some information components of a question as
well as the question itself. Thus, the studies about representing inter-information have
been performed [26], and they are grouped into two types according to the approach to
expressing inter-information. One is to adopt a graph of which nodes are the entities
appearing at information components and edges are a relation between the entities. Cao et
al. expressed the relations among supporting documents in a multi-hop QA as a graph [27].
The nodes of this graph are the named entities in the documents and the edges are the
co-reference or same-matching relation between entities. Then, they represented the graph
as a vector reflecting the relations using the graph convolutional network. Song et al. also
expressed the named entities as the nodes of a graph [28], but they added the window
relation for the edges where two entities are regarded to have a window relation if they
both appear within a word window. After that, they represented the graph as a vector for
solving a multi-hop QA with the graph recurrent network.

The other approach to expressing inter-information is to obtain attention among infor-
mation components. In the multi-passage reading comprehension, the candidate answers
as well as the multiple passages can be regarded as information components. Thus, Wang
et al. represented the candidate answers as vectors and expressed the relationship among
all candidate answers as an attention matrix by applying an attention mechanism to the
vectors [29]. On the other hand, Zhuang and Wang represented the relationships between
a questionary sentence and its associated passages as vectors using Bi-DAF [17]. Then,
they expressed the relationship among the passage vectors with the proposed dynamic
self-attention. In the open-domain QA, Dehghani et al. used the universal transformer to
represent the inter-information among the documents related to a question [30]. In the
multi-evidence QA, Zhong et al. expressed the inter-information among a questionary
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sentence, candidate answers, and associated documents [31]. In this work, they adopted
the co-attention to express the relationship among the information components since the
co-attention allows the representation of bidirectional relationships.

3. Attention-Based Question Difficulty Estimation

This paper defines a question difficulty estimation as determining the optimal dif-
ficulty level y∗ ∈ Y of a given question, where Y is a set of difficulty levels. It assumes
that a question consists of a questionary sentence q and a set of information components
A = {a1, . . . , an}. An information component can be a passage associated with q, candidate
answers in multiple-choice QAs, or a video-clip description in video QAs. Then, the diffi-
culty estimation becomes a classification problem in which a classifier f (·; θ) parameterized
by θ determines y∗ given q and A. According to Figure 1, q is “Why did Mami experience
culture shock in Japan?” and the passage “A Japanese student ...” and five candidate
answers become the elements of information component set, A. Then, the classifier f
determines the question difficulty given q and A.

The proposed model of which architecture is given in Figure 2 implements f (·; θ) with
two kinds of attention modules. It takes q and A as its input and encodes them using a
pre-trained language model. Then, it represents the bi-directional relationships between q
and every ai ∈ A with the dual multi-head attention and the relationship among ai’s with
the transformer encoder. Indeed, the representation of the relationships are accomplished
in two steps, since the relationship among ai’s can be expressed after the relationships
between q and every ai ∈ A are all represented. After that, it predicts the difficult level of q
using the relationships.

Figure 2. The overall architecture of the proposed model for question difficulty estimation.

3.1. Encoding Question Components

The proposed model first encodes the questionary sentence q and a set of informa-
tion components A = 〈a1, . . . , an〉 into vector representations. As the first step of vector
representation, q and all ai’s are expressed in the standard format for BERT [32] using
special tokens of [CLS] and [SEP] (This paper assumes that all components in a question
are represented in a text form. The question difficulty estimation for the QAs that require
analysis of a video or audio stream is out of the scope of this paper). For instance, when
q is “Why did Mami experience culture shock in Japan?”, it is expressed as “[CLS] why
did ma ##mi experience culture shock in japan ? [SEP]”. Then, the formatted q and ai’s are
encoded into vector representations using the BERT-Base. That is,

Xp, Xs = BERT(q),

Ap
i , As

i = BERT(ai), (1)

where Xp and Ap
i are the pooled representations corresponding to the [CLS] token of q and

ai respectively, while Xs and As
i represent the sequence representations of the whole tokens
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in q and ai. This paper uses only Xs and As
i in the following steps because the individual

tokens deliver more information than the special token in solving QA tasks.

3.2. Representing Relationships Using Attention Model

The attention model is responsible for capturing the relationships between q and
A, and the model consists of two attention modules: a dual multi-head co-attention
and a transformer encoder based on the multi-head attention. The proposed model first
represents the relationships between q and every ai ∈ A directly since the questionary
sentence q is a key factor in the question-and-answering. Thus, all information components
should be represented in accordance with the questionary sentence. However, these
representations do not express the relationship among ai’s sufficiently. Although the
inter-information among ai’s is reflected indirectly and slightly through the relationships
between q and ai’s, a direct inter-information relationship plays an important role in
estimating the question difficulty and thus the second attention module is designed to
consider the inter-information relationship directly.

In order to identify the bi-directional relationship between q and ai (1 ≤ i ≤ n),
the proposed model adopts the dual multi-head co-attention (DUMA) [18]. DUMA is
composed of two multi-head attentions where each multi-head attention captures a single
directional attention representation. Thus, it captures both representations from q to ai and
from ai to q. Then, it fuses these two representations to obtain a final unified representation.
That is, the relationship between q and ai, denoted as Hi, is obtained by applying DUMA
to the representations of Xs and As

i in Equation (1).

Hi = DUMA(Xs, As
i ) (2)

= Fuse(MHA(Xs, As
i , As

i ), MHA(As
i , Xs, Xs)), (3)

where MHA(·, ·, ·) denotes a multi-head attention and Fuse(·, ·) is a function for fusing
two representations dynamically.

The multi-head attention MHA(·, ·, ·) is an attention mechanism to obtain a repre-
sentation by paying attention jointly to the information from different representations at
different positions [33], where the attention is obtained by applying the scaled dot-product
attention several times in parallel and then concatenating the results of the attention. For-
mally, the multi-head attention maps a sequence of query Q and a set of key-value pairs of
K and V to a representation by

MHA(Q, K, V) = Concat(head1, . . . , headh)WO

headi = Attention(QWQ
i , KWK

i , VWV
i ),

where WQ
i , WK

i , WV
i , and WO are all learnable parameters. Here, Attention(Q, K, V)

represents the scaled dot-product attention. It is a weighted sum of the values of which
weight is determined by the dot product of the query with all the keys. Thus, it is defined as

Attention(Q, K, V) = softmax

(
QK>√

dk

)
V,

where dk is a key dimensionality that works for a scaling factor.
Among several candidates of Fuse(·, ·) function in Equation (3), the performance of

using the concatenation is higher than that of using the element-wise summation according
to our experiments below (see Section 4.2). This result complies with the results of the
previous study by Zhu et al. [18], and thus the concatenation is used as a fuse function in
this paper.

After obtaining n Hi’s by applying Equation (3) to Xs and every As
i , the proposed

model applies a transformer encoder based on the multi-head attention [33] to them in
order to capture inter-information relationship directly. For this, all Hi’s are concatenated
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as H = [H1; . . . ; Hn], and then the transformer encoder is applied to H to produce the
direct representation G of inter-information relationship. That is,

G = TransEncoder(H), (4)

where TransEncoder denotes the transformer encoder. The transformer encoder is a stack
of transformer blocks. The l-th transformer block is composed of two layers of a multi-head
attention (MHA) and a feed-forward network (FFN). That is, the two layers of gl and hl are

gl = LayerNorm(MHA(hl−1, hl−1, hl−1) + hl−1),

hl = LayerNorm(FFN(gl) + gl),

where LayerNorm(·) is a layer normalization [34], and hl and hl−1 are the outputs of the
l-th and (l− 1)-th transformer block, respectively. The output of the 0-th transformer block
is set as H. That is, h0 = H.

Note that TransEncoder forces every Hi to consider all other Hj’s (i 6= j), since it is
based on the self-attention of which query is Hi, and both key and value are other Hj’s. As
a result, G gets able to reflect the inter-information relationship. Therefore, G becomes the
representation that does not reflect only the relationships between the questionary sentence
q and information components ai ∈ A, but also the inter-relationship among all pairs of
information components.

3.3. Difficulty Prediction and Implementation

After all relationships between q and A are represented as G ∈ R|hidden|×|n| where
hidden is the hidden dimension of TransEncoder in Equation (4), the difficulty of a question
is determined by a MLP classifier of which input is G. The classifier first summarizes G
into a single dense representation D. There are several operators for this summarization
such as max-pooling, average-pooling, and attention. This paper adopts max-pooling for
summarizing G because it is known to be effective in obtaining representative features [35]
and shows higher performance than others in our preliminary experiments. After obtaining
the final representation D, the MLP predicts the final difficulty level y∗ of q. The proposed
model is trained to minimize the standard cross-entropy loss.

The proposed model can be applied to most well-known question answering tasks.
In the machine reading comprehension tasks such as SQuAD, a question is composed of
a questionary sentence, an associated passage, and an answer span. The tasks meet our
problem formulation in that the questionary sentence is q, the associated passage is a1,
and the answer span is a2. Thus, the proposed model can be applied to this type of tasks
without any change. In the multiple-choice QAs such as RACE, a question is composed
of a questionary sentence, an associated passage, and multiple answer candidates. The
difference between the multiple-choice QAs and the machine reading comprehension is
that the multiple-choice QAs have multiple answer candidates instead of a single answer.
To encode the multiple candidate answers, the proposed model concatenates all candidate
answers into one sentence. That is, it regards the multiple candidate answers as one
information component. The rest is the same as the machine reading comprehension.

4. Experiments
4.1. Experimental Setting

Three QA tasks are used for the verification of the proposed model: RACE [36],
QuAC [37], and DramaQA [9]. RACE is a data set for the multiple choice QA where
a question is composed of a questionary sentence, an associated passage, and a set of
candidate answers. This data set was collected from English examinations designed for
12∼15-year-old middle school students and those for 15∼18-year-old high school students
in China. Thus, there are two subgroups in this data set with a difficulty gap: RACE-M
and RACE-H. RACE-M includes middle school examinations and RACE-H contains high
school ones. QuAC is a data set for the machine reading comprehension like SQuAD, and
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is designed to model information-seeking dialogues. Given a section (in a text form) from a
Wikipedia article, two annotators are involved to construct the data set as teacher-student
interactions. That is, one annotator (student) asks a sequence of questions to learn about
the article, and the other annotator (teacher) answers them by providing excerpts from
the article. Since it follows an interactional form, the questions are context-dependent and
open-ended so that it is more challenging than SQuAD. On the other hand, the DramaQA
data set is constructed for a video QA task to measure the level of machine intelligence
for video understanding. It is based on the South Korean television show ‘Another Miss
Oh.’ Each query in this data set consists of a sequence of video frames, a description of the
video frames to deliver background information of the frames, character utterances, and a
pair of a questionary sentence and candidate answers. Since this paper assumes that all
components in a question are texts, the video frames are excluded from the information
components. That is, a question in DramaQA is composed of a questionary sentence,
candidate answers, a description of the video frames, and the utterances of the characters.
Table 1 summarizes the simple statistics of these data sets.

Table 1. A simple statistics on the data sets used in the experiments.

Data Set No. of Questions No. of Information Components

RACE 97,687 2 (passage, candidate answers)
QuAC 7354 2 (passage, candidate answers)

DramaQA 16,191 3 (description, candidate answers, utterance)

DramaQA is manually tagged with four difficulty levels, but RACE and QuAC are not
tagged with a difficulty level. Recall that the RACE data set consists of RACE-M and RACE-
H. Since RACE-M is about middle school examinations, it is naturally regarded as easy
(level 1) questions. RACE-H is then considered as difficult (level 2) questions. For QuAC,
we followed the protocol by Gao et al. [19] to label the difficulty level of questions, where
the protocol is to assess the difficulty of a question with multiple QA models. This paper
employs top three single models (RoBERTa, BERT, and XLNet) from the leaderboard of the
QuAC task. A question is labeled as level 1 if at least one model answers it correctly, and is
labeled as level 2 if all models give a wrong answer for it. Figure 3 depicts the distributions
of difficulty levels in these tasks. In QuAC and DramaQA, the level-1 questions account
for about half of the whole questions. On the other hand, the ratio of the level-1 questions
is just approximately 20% in RACE.

(a) (b) (c)

Figure 3. Distributions of difficulty levels in each data set. (a) RACE. (b) QuAC. (c) DramaQA.

For the evaluation of the proposed model, the official data split is used for RACE
and DramaQA. In QuAC, the data set is split with the ratio of 80:10:10, where 80% are
used for training, 10% are for validation, and the remaining 10% are for test. All hyper-
parameters are searched using a grid search and the best hyper-parameters are selected
over the validation set. The hyper-parameters used in the experiments are given at Table 2.
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BERT-Base model is used for the encoder in Equation (1). The Fuse function in Equation (3)
is set as the concatenation function. Adam optimizer [38] with default settings is used to
train all models, and early stopping over the validation set is executed where 100 is the
maximum number of epochs.

Table 2. Parameter values used in the experiments.

Parameters RACE QuAC DramaQA

Encoder Model BERT-Base

DUMA

Hidden dim. 1536 1536 1536
No. head 8 6 6
dropout 0.2 0.2 0.2

Fuse concat

TransEncoder

Hidden dim. 3072 3072 4608
No. head 4 4 4
No. layers 6 6 6
dropout 0.2 0.2 0.2

The proposed model is mainly compared with TACNN [14] which is widely used
as a main baseline for question difficulty estimation. TACNN uses CNN [39] to obtain
the representations of a questionary sentence and a set of information components. Then,
it constructs the relationships between the questionary sentence and each information
component using a simple attention model, but does not consider the inter-information
among the components. Some pre-trained language models are also adopted as baselines
of the proposed model, since the language models achieve top performances in many QA
tasks. The baseline language models adopted are BERT [32], RoBERTa [40], and XLNet [41].
They concatenate a questionary sentence and all information components with a special
token [SEP] and then convert the concatenated sequence to the standard input format of
each language model. After that, the formatted sequence is encoded to embedding vectors
by each language model. Finally, the embedding vector for the [CLS] token is used to
predict the difficulty level in BERT and RoBERTa, while the embedding vector for the last
token is used in XLNet. All the models are evaluated with F1-score and accuracy.

4.2. Experimental Results

We first investigate the reliability of labeling the difficulty level on QuAC dataset. The
reliability is measured by the agreement between the labels tagged by multiple QA models
and the human-annotated labels. To do this, we first randomly sampled 50 data samples.
Then, two annotators labeled the difficulty level manually for each sample. The Kappa
coefficient [42] between the annotators is 0.52, which falls under the category of ‘Moderate’.
This implies that the annotators have an agreement to a degree. To obtain the final level of
a question from human annotations, we performed an additional procedure as done in the
automatic labeling protocol. That is, a question is labeled as level 2 if at least one annotator
labels it as level 2 and is labeled as level 1 if both annotators label it as level 1. We have
achieved 76% agreement which implies that the labeling of the difficulty level is reliable.

We also investigate the adequateness of the implementation options for Fuse(·, ·) in
Equation (3) and the direction of the relationships between a questionary sentence and
information components. Both have two options. That is, Fuse(·, ·) can be implemented by
the concatenation or the element-wise summation, and the direction of the relationships
can be single or dual. Table 3 summarizes the F1-scores according to the options. The
F1-score of the concatenation is generally higher than that of the element-wise summation.
Even if the F1-score of the concatenation is 0.26 lower in QuAC, it is much higher in both
RACE and DramaQA. Thus, the concatenation is used for Fuse(·, ·) in all the experiments
below for the sake of consistency.
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Table 3. The F1-scores according to the implementation options for Fuse(·, ·) and the direction of
relationships between a questionary sentence and information components.

Implementation Option RACE QuAC DramaQA

Fuse(·, ·) concat 89.56 70.13 89.15
summation 88.40 70.39 88.15

Relationship direction single (MHA) 89.26 69.74 88.45
dual (DUMA) 89.56 70.13 89.15

The effectiveness of the bi-directional relationships between a questionary sentence
and information components is investigated by replacing DUMA in Equation (2) with
a single directional multi-head attention (MHA). That is, Hi, the relationship between a
questionary sentence q and each information component ai, is computed by

Hi = MHA(Xs, As
i , As

i ).

As shown in Table 3, the F1-score of DUMA is higher than that of MHA for all data sets,
where the largest difference is 0.7 in DramaQA. This result implies that the bi-directional
relationships between a questionary sentence and information components are helpful in
improving the performance of question difficulty estimation.

Table 4 compares the performances of the proposed model and its baselines. The
first thing to note is that TACNN shows the worst performance in RACE and DramaQA.
This is because TACNN does not utilize any pre-trained contextual representation even
if the contextual representation is one of the key factors to improve the performance of
the natural language tasks. On the other hand, it achieves slightly higher F1-score and
accuracy than other pre-trained language models in QuAC. This is due to the fact that
TACNN considers the relationships between a questionary sentence and each information
component using an attention model explicitly, while the language models do not.

Table 4. Performances of question difficulty estimation.

Data Set
RACE QuAC DramaQA

Acc. (%) F1-Score Acc. (%) F1-Score Acc. (%) F1-Score

BERT 87.75 87.55 58.31 58.25 87.95 87.89
RoBERTa 89.82 89.84 58.72 58.34 88.81 88.73

XLNet 89.02 88.22 58.51 58.48 89.07 89.05
TACNN 87.27 87.12 60.71 59.87 84.46 84.72

Proposed model 89.81 89.84 68.23 68.37 89.53 89.59

Among the three pre-trained language models, BERT shows the worst performances
for all data sets. RoBERTa and XLNet report similar performances on average. Especially,
RoBERTa achieves the best performance in RACE with 89.82% of accuracy and 89.84 of
F1-score, respectively. XLNet is the best baseline with 89.07% of accuracy and 89.05 of
F1-score in DramaQA. However, the proposed model outperforms all the baselines in
QuAC and DramaQA, and achieves a similar performance to RoBERTa in RACE. The
F1-score of the proposed model is up to 8.5 higher than those of baselines in QuAC and
up to 0.5 higher in DramaQA. These results prove that the proposed model is effective in
estimating the difficulty of questions.

4.3. Ablation Study

We investigate the effectiveness of DUMA and TransEncoder in the proposed model.
Table 5 shows the result of an ablation study over the validation set. The F1-scores of
the proposed model over the validation sets of each task are 89.56 for RACE, 70.13 for
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QuAC, and 89.15 for DramaQA. The ‘–’ symbol in front of a module indicates exclusion
of the module. Thus, ‘– DUMA’ implies that DUMA is excluded from the proposed
model. Without DUMA, the F1-score drops up to 4.91 from that of the proposed model,
which implies that the bi-directional relationships between a questionary sentence and
information components represented by DUMA helps improve the performance of the
proposed model.

Table 5. Ablation study of the proposed over validation data.

Model Variations RACE QuAC DramaQA

Proposed model 89.56 70.13 89.15

– DUMA 88.54 65.22 86.77
– TransEncoder 88.94 68.81 88.58

– DUMA and TransEncoder 87.81 63.53 85.38

A similar phenomenon is observed with TransEncoder in Equation (4). ‘– TransEncoder’
implies that the concatenation H of bi-directional relationships Hi’s is directly used as an
input of the pooling layer of the final classifier. Its F1-score also drops up to 1.32 from that
of the proposed model, which proves the consideration of inter-information relationship is
helpful in boosting the performance of the proposed model. In order to take a close look at
this result, the F1-scores of each difficulty level are further investigated. Figure 4 depicts
the F1-scores for every difficulty level of the questions in DramaQA. When comparing
F1-scores of the proposed model with those without TransEncoder, the improvement in
difficult (level 3 and level 4) questions is larger than that in easy (level 1 and level 2)
questions. Especially at level 4, the proposed model achieves 97.40 of F1-score, but the
model without TransEncoder shows just 94.50. Finally, the model without both DUMA and
TransEncoder demonstrates the worst performance for all data sets. From these results, we
can conclude that the adoption of DUMA for bi-directional relationships and TransEncoder
for inter-information relationship are effective to predicting the level of question difficulty.

Figure 4. F1-scores for the difficulty levels of the questions in DramaQA.

4.4. Performance Change according to No. of Information Components

There are different numbers of information components depending on the QA tasks
and the proposed model is designed to consider a various number of information compo-
nents. Thus, one consequential question about the proposed model is how the performance
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of the proposed model changes as the number of information components increases.
Figure 5 depicts the performance changes according to the number of information com-
ponents. The X-axis of this figure denotes the information components used and the
Y-axis represents F1-score. In the QA tasks of our experiments, a description is the most
common and important information component. Thus, it is used as a base information
component for all models. The candidate answers and utterances are added consecutively
in DramaQA, while only the candidate answers are added in RACE and an answer span
is added in QuAC. The performances of all models in RACE increase monotonically as
new components of candidate answers are added. This result seems natural because a
questionary sentence (QS), a description, and candidate answers all provide somewhat
information for predicting the level of question difficulty. On the other hand, the perfor-
mances do not improve large in QuAC even though a new information component of an
answer span is added. This is because the answer span is extracted from a description so
that the information of the answer span might be already reflected by the description.

(a) (b) (c)

Figure 5. Performance change of the proposed model according to the number of information components. The X-axis
denotes the information components used where QS stands for a questionary sentence. (a) RACE. (b) QuAC. (c) DramaQA.

An interesting fact is found in DramaQA. As in RACE, when a description, candidate
answers, and utterances are added in order, the performances of the proposed model
and TACNN increase monotonically but those of the pre-trained language models do not.
Especially when utterances are newly added, the performances of the language models
rather decrease. This is because the language models regard all information components
as a single sequence, not as individual sequences. Although the sequence differentiates
each information component with a special token [SEP], some individuality among the
information components might be lost. Due to this loss of individuality, their performances
decrease though the utterances are considered. On the other hand, the proposed model and
TACNN treat every information component separately. Furthermore, the proposed model
is superior to TACNN because it utilizes the pre-trained contextual representations and
considers additional inter-information relationship. These results imply that the proposed
model predicts the difficulty of questions well even when the number of information
components increases.

4.5. Performance of Question Answering with Difficulty Level

In this section, we solve the question answering with a predicted difficulty level to
verify that the performance of question answering is improved with the difficulty level. We
choose the multi-level context matching model [9] as a question answering model, since
is currently the state-of-the-art model for the DramaQA QA task. The multi-level context
matching model is designed to understand the multimodal story of a drama. This QA
model consists of two streams for a vision and a textual modality. Each stream of modality
is combined with embeddings from a questionary sentence and information components
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using a context matching module and then predicts a score for each answer. Since it does
not adopt any difficulty level, we modify it to use the proposed difficulty level by regarding
the difficulty level as an additional modality of the question answering (There will be
several methods to utilize the difficulty level in the QA model. However, this experiment
focuses on showing that the difficulty level helps the QA model to get better performance
than the model without the level). That is, the modified QA model consists of three streams
including the difficulty level information.

Table 6 shows the question answering on the drama QA dataset is improved by adding
the difficulty level. The ‘+ Difficulty level’ indicates the inclusion of the difficulty level to
the multi-level context matching model. The QA model with the difficulty level achieves
better performance than the QA model without the level. With the difficulty level, the
accuracy rises to 73.83% which is higher up to 2.69% than that of the QA model. These
results imply that the question difficulty estimation helps the performance of question
answering tasks improved. Especially, the improvement in difficult (level 3 and level 4)
questions is larger than that in easy (level 1 and level 2) questions. This is because the
proposed method has achieved better performances on difficult questions than on easy
questions (refer to Section 4.3 and Figure 4). From these results, we verify the usefulness of
the question difficulty estimation.

Table 6. Accuracy of question answering with the question difficulty estimation.

QA Model Diff. 1 Diff. 2 Diff. 3 Diff. 4 Overall Diff. Avg.

Multi-level context matching model [9] 75.96 74.65 57.36 56.63 71.14 66.15

+ Difficulty level 76.12 74.82 59.12 57.33 73.83 66.85

4.6. Performance Change according to Data Ratio

The proposed model is based on the transformer encoder designed to consider the
relationships among all components in a question. It is known that a number of training
examples are required to train the transformer encoder. Thus, one possible question about
the proposed model is whether the training data in QA data sets are sufficient enough
to train it. Since the proposed model adopts a pre-trained language model, BERT-Base,
and fine-tunes it, it does not require too many training examples actually. This is proved
empirically by showing the performance change according to the ratio of data used to train
the proposed model.

Figure 6 depicts the performance changes, where the X-axis is the ratio of data used
to train the proposed model and the Y-axis represents F1-score. In all QA data sets, the
more the training data are used, the better the predictions of the proposed model are. In
QuAC and RACE, the performances of the proposed model converge after 90% data are
consumed. This implies that the proposed model is trained well for the data sets. However,
a different phenomenon is observed in DramaQA data set with which the performance
increases continually. This continual increase is believed to be affected by a larger number
of information components in DramaQA. The number of information components in
DramaQA is three, while it is two in other data sets. In addition, the F1-score is around
90 when 100% of data are used to train the proposed model. Thus, even if more data are
provided, the improvement by them would not be great.
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(a) (b) (c)

Figure 6. Performance change model according to the ratio of data sets. The X-axis denotes the ratio of data used to train
the proposed model and the Y-axis is F1-score. (a) RACE. (b) QuAC. (c) DramaQA.

5. Conclusions

In this paper, we have proposed an attention model for question difficulty estima-
tion. The proposed attention model first represents bi-directional relationships between
a questionary sentence and information components, and then accumulates the inter-
information relationship over the concatenated bi-directional relationships. As a result, the
proposed method can model complicated relationships among the questionary sentence
and information components.

The contributions of this paper are three folds. The first is that the proposed model
achieves the state-of-the-art performance in this task. It outperforms the existing model
and pre-trained language models. The second is that the proposed model predicts the
difficulty of high-level questions accurately. It is required to reason over multiple kinds
of information components to predict the difficulty of high-level questions. Since the
proposed model is designed to consider the complicated relationships among information
components, the reasoning is taken place properly in the proposed model. The last is that
the proposed method works efficiently and can be applied to any text-based QA tasks.
The proposed method is based on the simple attention model and does not require any
other pre-training models except the BERT. Furthermore, it is free from the number of
information components.

Through intensive experiments with three well-known QA data sets, it has been
shown empirically that the proposed model achieves higher performances than all the
previous study and pre-trained language models. Moreover, it is also shown that the
proposed attention is essential for accurate prediction of the difficulty level for more
difficult questions. Through these experiments, we have proven that the proposed model
is plausible for predicting the question difficulty and helps to improve the performances of
the question answering.
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