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Abstract: Lobelia chinensis Lour. (L. chinensis) has traditionally been used as a treatment for snake bites,
high fever, jaundice, edema, and diarrhea, and modern studies have reported its anti-inflammatory,
antioxidant, and antiviral activities. L. chinensis contains various compounds, such as flavonoids
and coumarins, and its flavonoid components have been identified in many studies. In this study,
a high-performance liquid chromatograph equipped with a photodiode array (PDA) detector and
an Aegispak C18-L reverse-phase column (4.6 mm × 250 mm i.d., 5 µm) was used to simultane-
ously analyze four marker components in L. chinensis for standardization purposes. HPLC-PDA
(detection at 340 nm), performed using a 0.1% formic acid-water/0.1% formic acid-acetonitrile
gradient, separated the four marker compounds: luteolin-7-O-β-D-glucuronopyranosyl (1→2)-O-
β-D-glucuronopyranoside, clerodendrin, chrysoeriol-7-O-diglucuronide, and diosmin. The devel-
oped analytical method showed excellent linearity values (r2 > 0.9991), limits of detection (LODs:
0.376–2.152 µg/mL), limits of quantification (LOQs: 1.147–6.521 µg/mL), intra- and inter-day preci-
sions (RSD < 1.96%), and analyte recoveries (96.83–127.07%; RSD < 1.73%); thus, it was found to be
suitable for the simultaneous analysis of these four marker compounds in L. chinensis.

Keywords: Lobelia chinensis Lour.; luteolin-7-O-β-D-glucuronopyranosyl (1→2)-O-β-D-glucuronopy
ranoside; clerodendrin; chrysoeriol-7-O-diglucuronide; diosmin; HPLC-PDA

1. Introduction

Lobelia chinensis Lour. (L. chinensis), a perennial herb of the Campanulaceae family, is
distributed mainly in Indochina, Taiwan, Japan, China, and Korea. It is popularly known
as “Aze-mushiro” or “Mizo-kakushi” in Japan, “Ban-bian-lian” in China, and “Su-yeom-ga-
rae-kkot” in Korea. Dried whole L. chinensis is widely used in traditional Chinese medicine
(TCM). According to the records of the TCM book “Ben Cao Gang Mu”, it has been used
to treat snake bites, diarrhea, jaundice, edema, and high fevers due to malaria [1]. In
addition, pharmacological studies have reported that L. chinensis has anti-inflammatory [2],
anti-oxidative [2,3], anti-viral [4,5], anti-obesity [6], anti-tuberculosis [7], anticancer [8], and
antitumor [9,10] activities.

The chemical components isolated and identified were flavonoids (luteolin, apigenin,
apigenin 7-O-rutinoside, diosmin, diosmetin, linarin, wogonoside, 3′-methoxyl-linarin, and
lobelitin A-G), alkaloids (lobeline, norlobelanine, lobelanine, lobechinenoids A-D, lobechi-
dine A-C, 8,10-diethyllobelidione, 8,10-diethyllobelidiol, 8-propyl-10-ethyllobelionol, and 8-
ethyl-10-propyllobelionol), coumarins (6,7-dimethoxycoumarin, 5-hydroxy-7-methoxycou
marin, 5,7-dimethoxy-6-hydroxy-coumarin, scoparone, and citropten), terpenoids (phy-
tol, phytenal, cycloeucalenol, and 24-methylene-cycloartanol), and polyacetylenes (lo-
betyolinin, lobetyolin, and isolobetyol) [2,4,8,11–15]. Of the compounds in L. chinensis,
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diosmin, diosmetin, linarin, lobetyolinin, and lobetyolin are considered to be the main
active components [8,12,13]. Biologically, the flavonoids diosmin, diosmetin, and linarin
have been confirmed to have hepatoprotective [16,17], anti-inflammatory [18–23], anti-
oxidative [19,24–26], and anti-atopic [27,28] activities, and the polyacetylene lobetyolin has
been reported to have anti-inflammatory [29,30] and antioxidant [31] activities.

In previous studies on L. chinensis, pattern analysis, chemical profiling, and qualitative
and quantitative analysis have been performed [32,33]. Using high-performance liquid
chromatography combined with a diode-array detector and coupled with electrospray
ionization with ion-trap time-of-flight mass spectrometry (HPLC-DAD-ESI-IT-TOF-MS),
11 compounds were identified from L. chinensis by comparing their retention times and
MS spectra with those of standards or literature data [32,33]. However, no report has
yet been issued on the simultaneous multicomponent analysis or quality evaluation of
L. chinensis using HPLC-PDA. The formulation of systematic quality evaluation criteria
is necessary because qualitative and quantitative analysis results depend on varieties,
cultivation conditions, and harvesting seasons used. Therefore, in this study, for qual-
ity control purposes we developed and validated a simultaneous analysis method for
luteolin-7-O-β-D-glucuronopyranosyl (1→2)-O-β-D-glucuronopyranoside, clerodendrin,
chrysoeriol-7-O-diglucuronide, and diosmin (major components of L. chinensis extract) us-
ing HPLC-PDA (high-performance liquid chromatography performed using a photodiode
array detector).

2. Experimental
2.1. Plant Material

Whole Lobelia chinensis Lour. (Campanulaceae) plants were collected from The Institute
of Medicinal Plants at Kolmar BNH Co., Ltd. (Jecheon, Chungbuk Province, Korea) in
November 2020 and authenticated by Hyuk Joon Kwon (Ph.D. in Agriculture, The Institute
of Medicinal Plants at Kolmer BNH Co., Ltd.). A voucher specimen (PNU-0036) was
deposited at the College of Pharmacy, Pusan National University, Busan, Republic of Korea.

2.2. Chemicals and Reagents

The diosmin (DSM, purity ≥ 98%) reference compound was purchased from Chem-
Faces (ChemFaces Biochemical Co., Ltd., Wuhan, China). Luteolin-7-O-β-D-glucuronopyra
nosyl (1→2)-O-β-D-glucuronopyranoside (L7GC, purity ≥ 98%), clerodendrin (CDR, pu-
rity ≥ 96%), and chrysoeriol-7-O-diglucuronide (C7dGlu, purity ≥ 98%) were isolated
from L. chinensis, identified in our laboratory, and used as reference compounds [34–36].
The chemical structures of the four reference compounds are shown in Figure 1. For the
HPLC-PDA analysis, HPLC-grade water and acetonitrile were purchased from Honey-
well Burdick & Jackson (SK Chemicals, Ulsan, Korea) and HPLC-grade formic acid and
dimethyl sulfoxide (DMSO) were purchased from Daejung Chemicals (DAEJUNG Chemi-
cals & Metals Co., Ltd., Siheung-si, Korea) and Junsei Chemical (Junsei Chemical Co., Ltd.,
Tokyo, Japan), respectively.

2.3. Equipment

HPLC was performed using the Waters Alliance e2695 system (Waters Corpora-
tion, Milford, MA, USA) equipped with a 2998 photodiode array (PDA) detector and an
Aegispak C18-L column (4.6 mm × 250 mm I.D., 5 µm, Young Jin Biochrom Co., Ltd.,
Seongnam, Korea).
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Figure 1. Chemical structures of four compounds (luteolin-7-O-β-D-glucuronopyranosyl (1→2)-
O-β-D-glucuronopyranoside, L7GC; clerodendrin, CDR; chrysoeriol-7-O-diglucuronide, C7dGlu;
diosmin, DSM).

2.4. Chromatographic Conditions

Chromatographic analysis was performed using a C18 column maintained at 30 ◦C.
The mobile phase used for the chromatographic separation consisted of (A) 0.1% formic
acid–water (v/v) and (B) 0.1% formic acid–acetonitrile (v/v), and gradient elution was
performed using a linear gradient of 15–20% (B) over 0–5 min; 20–22% (B) over 5–11 min;
22–24% (B) over 11–15 min; 24–30% (B) over 15–20 min; 30–55% (B) over 20–23 min;
isocratic elution with 55% (B) over 23–29 min; and then returned (29–29.01 min) to 15%
(B). The flow rate used was 1.0 mL/min, and the sample injection volume was 10 µL. The
detection wavelength range was set from 190 to 400 nm, and data collection and processing
were performed using the Empower version 3 software (Waters Corporation, Milford,
MA, USA).

2.5. Preparation of Crude Extracts and Sample Solutions

Cold, air-dried (29–31 ◦C), whole (1 g) L. chinensis was extracted twice by heat reflux
extraction at 90 ◦C for 3 h in 10 mL of distilled water. After paper filtration (Advantec
No. 2, Tokyo, Japan), the extract was concentrated in vacuo and freeze-dried to obtain the
powder extract.

Sample solutions (concentration: 20 mg/mL) were prepared by accurately weighing
powder extract and dissolving it in water. This solution was filtered through a 0.45 µm
PTFE syringe filter (13HP045AN, Advantec, Tokyo, Japan) before being injected into the
HPLC system.

2.6. Preparation of Standard Solutions

Stock standard solutions of L7GC (concentration: 900 µg/mL), CDR (concentration:
1800 µg/mL), C7dGlu (concentration: 900 µg/mL), and DSM (concentration: 1500 µg/mL)
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were prepared by accurately weighing standards and diluting it in DMSO-methanol-water
solutions (5:4:1, v/v/v). Working standard solutions were prepared by dilution in DMSO-
methanol-water solutions (5:4:1, v/v/v) at the appropriate concentration ranges specified
for validation, then filtered through a 0.45 µm PTFE syringe filter (13HP045AN, Advantec,
Tokyo, Japan) before HPLC injection.

2.7. Validation of the HPLC-PDA Method

The simultaneous analysis method was validated as described by the International Con-
ference on Harmonisation (ICH) guidelines [37] for specificity, linearity, limit of detection
(LODs), limit of quantification (LOQs), precision, analyte recovery, and solution stability.

Specificities were determined to confirm that L7GC, CDR, C7dGlu, and DSM were
selectively separated from other compounds in the crude extract and determined using the
retention times and absorbance wavelengths of the chromatograms obtained by analyzing
samples and standard solutions with HPLC-PDA.

To assess linearity, stock solutions of L7GC, CDR, C7dGlu, and DSM were diluted
with six target concentration ranges (1%, 10%, 50%, 80%, 100%, and 120%) to obtain
L7GC and C7dGlu at six target concentrations—i.e., 3.00, 30.00, 150.00, 240.00, 300.00, and
360.00 µg/mL. CDR and DSM were obtained at 5.00, 50.00, 250.00, 400.00, 500.00, and
600.00 µg/mL. Samples were injected six times (n = 6). Calibration curves were subjected
to linear regression analysis according to the equation y = ax + b, where y is the peak area,
x is the sample concentration, a is the slope, and b is the y-intercept of the regression line.
Linearity was established when the correlation coefficients (r2) were >0.999.

The limits of detection (LODs) and limits of quantification (LOQs) were calculated
using the standard deviations (SDs) of y-intercepts and slopes of calibration curves and the
equations LOD = 3.3 × σ/S and LOQ = 10 × σ/S (σ = SD of y-intercept, S = slope of the
calibration curve).

Intra- and inter-day tests were performed at three concentrations (low, medium, and
high) in linear ranges—i.e., L7GC at 10.00, 100.00, and 250.00 µg/mL; C7dGlu at 5.00,
50.00, and 125.00 µg/mL; and CDR and DSM at 12.50, 125.00, and 312.50 µg/mL. Intra-
day precision was determined by analyzing three concentrations of each compound in
quintuplicate in one day, and inter-day precision was measured by analyzing the same three
concentrations five times (n = 5) on days 1, 3, and 5. Precisions were defined as relative
standard deviations (%RSD), and %RSD was calculated using the standard deviation
(SD)/mean × 100.

Analyte recoveries were calculated to confirm the percentage recoveries of analytes
from L. chinensis extracts. Recovery experiments were performed by spiking L. chinensis ex-
tract with L7GC, CDR, C7dGlu, and DSM standards at three concentrations (low, medium,
and high) and testing them in triplicate. Recovery % was calculated using (amount of
analyte in spiked sample − amount of analyte in the sample)/amount of spiked standard
× 100.

Solution stabilities of L7GC, CDR, C7dGlu, and DSM were checked by storing stock so-
lutions at room temperature or 4 ◦C for 0, 6, 24, 48, and 72 h. The analysis was repeated five
times (n = 5), and the % difference in the areas of each peak in the obtained chromatograms
was calculated.

3. Results and Discussion
3.1. Development of HPLC-PDA analysis conditions

To develop a simultaneous analysis method for the L7GC, CDR, C7dGlu, and DSM
of L. chinensis using HPLC-PDA, the solvent composition ratio (e.g., 0.1% formic acid–
water/0.1% formic acid–acetonitrile, and 0.1% trifluoroacetic acid–water/0.1% trifluo-
roacetic acid-acetonitrile), column temperature (e.g., 25, 30, 35, and 40 ◦C), and flow rate
(e.g., 0.5, 0.7, 0.8, and 1.0 mL/min) of the mobile phase were optimized. As a result, the
four analyte peaks were separated under optimized conditions, and the total area of the
four separated peak areas was confirmed to be at least 50% or more of the sum of the total
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peak areas. Retention times were as follows: L7GC, 7.445 min; CDR, 9.445 min; C7dGlu,
10.121 min; and DSM, 15.034 min (Figure 2).
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Figure 2. Chromatogram of L. chinensis extract at 340 nm (A); chromatogram of the standard mixture
of L7GC, CDR, C7dGlu, and DSM at 340 nm (B).

3.2. HPLC-PDA Method Validation
3.2.1. Specificity

The specificity was evaluated by confirming the retention times (tR) and absorption
spectra from HPLC-PDA chromatograms. For L. chinensis extract and the standard solu-
tions, the retention times (tR) were 7.445 min for L7GC, 9.445 min for CDR, 10.121 min for
C7dGlu, and 15.034 min for DSM. In addition, a comparative analysis of the absorption
spectra was performed in the range 190–400 nm. The PDA absorption maxima (λmax) were
the same at 254.4 nm and 347.4 for L7GC, 266.2 nm and 336.6 nm for CDR, 252.0 nm and
347.4 nm for C7dGlu, 252.0 nm and 346.2 nm for DSM. Thus, we chose an absorption
wavelength of 340 nm for the simultaneous analysis of L7GC, CDR, C7dGlu, and DSM
(Figure 3).
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3.2.2. Linear Range, Linearity, Limits of Detection (LODs), and Limits of
Quantification (LOQs)

Linearity was analyzed in the concentration range 3.00–360.00 µg/mL for L7GC and
C7dGlu and 5.00–600.00 µg/mL for CDR and DSM. The correlation coefficients (r2) of all
curves were >0.999, which showed that the established analysis range showed a good
linearity. The LOD and LOQ results were 2.152 and 6.521 µg/mL (for L7GC), 1.927 and
5.840 µg/mL (for CDR), 0.379 and 1.147 µg/mL (for C7dGlu), and 0.901 and 2.732 µg/mL
(for DSM), respectively. These results suggest that the minimum detection concentrations of
L7GC, CDR, C7dGlu, and DSM in L. chinensis extract lay in the range 0.379 to 2.152 µg/mL
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and that quantitative analysis was possible from 1.147 µg/mL. The results are summarized
in Table 1.

Table 1. Retention times, linear ranges, regression equations, coefficients of determination (r2), limits of detection (LODs),
and limits of quantitation (LOQs) of L7GC, CDR, C7dGlu, and DSM for the developed HPLC-PDA method (n = 6).

Compound a Retention Time
(min)

Linear Range
(µg/mL) Regression Equation b r2 LOD

(µg/mL)
LOQ

(µg/mL)

L7GC 7.445 ± 0.02 3.00–360.00 y = 11,715.29x − 5916.88 1.0000 2.152 6.521
CDR 9.445 ± 0.01 5.00–600.00 y = 5316.01x − 10,240.04 0.9999 1.927 5.840

C7dGlu 10.121 ± 0.02 3.00–360.00 y = 5487.39x − 15,317.53 0.9996 0.379 1.147
DSM 15.034 ± 0.03 5.00–600.00 y = 1783.97x − 12,666.06 0.9991 0.901 2.732

a Luteolin-7-O-β-D-glucuronopyranosyl (1→2)-O-β-D-glucuronopyranoside, L7GC; clerodendrin, CDR; chrysoeriol-7-O-diglucuronide,
C7dGlu; diosmin, DSM. b y = ax + b, y: peak area (AU), x: concentration (µg/mL).

3.2.3. Intra-and Inter-Day Precisions

For intra-day measurements of L7GC at 10.00, 100.00, and 250.00 µg/mL; C7dGlu
at 5.00, 50.00, and 125.00 µg/mL; and CDR and DSM at 12.50, 125.00, and 312.50 µg/mL
produced relative standard deviations (%RSD) of 0.11–1.93%. Similarly, inter-day mea-
surements of L7GC at 10.00, 100.00, and 250.00 µg/mL; C7dGlu at 5.00, 50.00, and
125.00 µg/mL; and CDR and DSM at 12.50, 125.00, and 312.50 µg/mL produced relative
standard deviations (%RSD) of 0.63–1.95%. The %RSD values for the intra- and inter-day
precisions were all <2%, indicating a good precision and accuracy (Table 2).

Table 2. Inter- and intra-day precision of L7GC, CDR, C7dGlu, and DSM at low, medium, and high concentrations for the
developed HPLC-PDA method.

Compound a Conc. (µg/mL)

Precision

Intra-Day (n = 5) Inter-Day (n = 5)

Measured Conc. (µg/mL) RSD (%) Measured Conc. (µg/mL) RSD (%)

L7GC
10.00 8.26 0.42 8.19 1.31

100.00 100.46 0.20 97.95 1.96
250.00 244.08 0.18 245.49 0.87

CDR
12.50 12.28 0.56 12.32 1.69

125.00 119.56 0.54 118.95 0.77
312.50 300.17 0.11 297.71 0.63

C7dGlu
5.00 5.06 0.92 5.08 1.29
50.00 48.74 0.13 49.27 1.41

125.00 122.60 0.32 123.86 1.65

DSM
12.50 11.33 1.93 11.35 1.41

125.00 123.97 0.24 125.73 1.17
312.50 305.70 1.02 301.60 1.95

a Luteolin-7-O-β-D-glucuronopyranosyl (1→2)-O-β-D-glucuronopyranoside, L7GC; clerodendrin, CDR; chrysoeriol-7-O-diglucuronide,
C7dGlu; diosmin, DSM.

3.2.4. Analyte Recoveries

The recovery results for L7GC, CDR, C7dGlu, and DSM using the standard addition
method were as follows. For C7GC, the recoveries from the 5.00, 50.00, and 125.00 µg/mL
solutions were 106.04%, 99.24%, and 105.62%, respectively; the CDR recoveries from the
6.25, 62.50, and 156.25 µg/mL solutions were 113.18%, 99.55%, and 104.80%, respectively;
the C7dGlu recoveries from the 5.00, 50.00, and 125.00 µg/mL solutions were 119.35%,
96.83%, and 104.01%, respectively; and the DSM recoveries from the 6.25, 62.50, and
156.25 µg/mL solutions were 127.07%, 103.07%, and 109.68%, respectively. The %RSD
values for recovery ranged from 0.14 to 1.73% (Table 3).
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Table 3. Recoveries of L7GC, CDR, C7dGlu, and DSM for the developed HPLC-PDA method (n = 3).

Compound a Original Conc.
(µg/mL)

Spike Conc.
(µg/mL)

Found Conc.
(µg/mL)

Recovery b ± SD
(%)

RSD
(%)

L7GC
0.81 5.00 5.70 106.04 ± 1.29 1.22

50.00 49.89 99.24 ± 0.35 0.35
125.00 130.02 105.62 ± 0.18 0.17

CDR
4.16 6.25 10.42 113.18 ± 0.87 0.77

62.5 64.63 99.55 ± 0.54 0.54
156.25 161.07 104.80 ± 0.23 0.22

C7dGlu
18.81 5.00 23.75 119.35 ± 1.84 1.54

50.00 67.44 96.83 ± 0.84 0.86
125.00 145.75 104.01 ± 0.21 0.20

DSM
22.78 6.25 29.06 127.07 ± 2.20 1.73

62.50 87.85 103.07 ± 0.86 0.83
156.25 189.95 109.68 ± 0.15 0.14

a Luteolin-7-O-β-D-glucuronopyranosyl (1→2)-O-β-D-glucuronopyranoside, L7GC; clerodendrin, CDR; chrysoeriol-7-O-diglucuronide,
C7dGlu; diosmin, DSM. b Recovery (%) = (amount of analyte in spiked sample − amount of analyte in the sample)/amount of spiked
standard × 100.

3.2.5. Stabilities of Analyte Solutions

The stabilities of the analytes in solution were evaluated by calculating the %RSD and
%difference for the peak areas of L7GC, CDR, C7dGlu, and DSM after storage at room
temperature or 4 ◦C for 0, 6, 24, 48, and 72 h. The peak areas of L7GC, CDR, C7dGlu, and
DSM in solution decreased over time at both temperatures. The %difference values of
the four compounds after 72 h were as follows: L7GC, −10.89% (R.T.) and −7.65% (4 ◦C);
CDR, −5.65% (R.T.) and −6.15% (4 ◦C); C7dGlu, −5.80% (R.T.) and −7.86% (4 ◦C); DSM,
−39.80% (R.T.) and −5.66% (4 ◦C). DSM showed a greater decrease in peak area over
time at room temperature than the other compounds (RSD, 18.95%). In addition, at room
temperature CDR showed a low RSD of 2.42%, while under refrigerated conditions DSM
showed a low RSD of 2.13%. The %RSD values of the peak areas for the two conditions
(room temperature or 4 ◦C) fell in the range of 2.42–18.95% for the room temperature
condition and 2.13–3.66% for the 4 ◦C condition, respectively, indicating that solutions at
both room temperature and 4 ◦C were stable below 18.95%. However, we recommend
using sample solutions within 6 h of preparation (Table 4).

Table 4. Stabilities of L7GC, CDR, C7dGlu, and DSM in sample solutions at room temperature or 4 ◦C for 0, 6, 24, 48, and
72 h (n = 5).

Compound a Temp
Peak Area (Mean AU ± SD) RSD

(%)0 h 6 h 24 h 48 h 72 h

L7GC
R.T. 19,437 ± 193 18,357 ± 155 18,510 ± 127 17,857 ± 92 17,321 ± 238 4.03
4 ◦C 19,437 ± 193 18,314 ± 136 18,051 ± 109 17,542 ± 183 17,951 ± 138 3.66

CDR
R.T. 51,346 ± 340 49,122 ± 424 48,587 ± 181 48,438 ± 195 48,443 ± 615 2.42
4 ◦C 51,346 ± 340 48,789 ± 483 49,070 ± 334 48,710 ± 335 48,188 ± 270 2.38

C7dGlu
R.T. 95,923 ± 1816 90,583 ± 881 89,581 ± 441 88,643 ± 1548 90,358 ± 1121 3.12
4 ◦C 95,923 ± 1816 91,128 ± 650 89,458 ± 1438 88,591 ± 663 88,384 ± 830 3.35

DSM
R.T. 357,036 ± 1145 340,928 ± 1062 324,260 ± 5259 250,171 ± 4572 214,936 ± 637 18.95
4 ◦C 357,036 ± 1145 339,828 ± 1173 341,246 ± 1379 341,845 ± 1559 336,843 ± 1513 2.13

a Luteolin-7-O-β-D-glucuronopyranosyl (1→2)-O-β-D-glucuronopyranoside, L7GC; clerodendrin, CDR; chrysoeriol-7-O-diglucuronide,
C7dGlu; diosmin, DSM.
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3.3. Quantification of Four Marker Compounds in L. chinensis Extract

The contents of four compounds in L. chinensis were calculated from the corresponding
calibration curves and the precision was found to be less than 2%. As a result, the contents
of L7GC, CDR, C7dGlu, and DSM in the L. chinensis extract were 0.11 ± 0.001 mg/g,
0.58 ± 0.003 mg/g, 1.01 ± 0.017 mg/g, and 10.36 ± 0.032 mg/g, respectively. Out of
four compounds, DSM was the most abundant marker compound in L. chinensis extract
(Table 5).

Table 5. Contents of L7GC, CDR, C7dGlu, and DSM marker compounds in L. chinensis extract sample
(n = 5).

Compound a
Contents (mg/g)

Mean ± SD RSD (%)

L7GC 0.108 ± 0.001 0.76
CDR 0.579 ± 0.003 0.55

C7dGlu 1.014 ± 0.017 1.63
DSM 10.362 ± 0.032 0.31

a Luteolin-7-O-β-D-glucuronopyranosyl (1→2)-O-β-D-glucuronopyranoside, L7GC; clerodendrin, CDR; chry
soeriol-7-O-diglucuronide, C7dGlu; diosmin, DSM.

4. Conclusions

In this study, the HPLC-PDA analysis method was developed for the simultaneous
determination of four marker compounds (luteolin-7-O-β-D-glucuronopyranosyl (1→2)-
O-β-D-glucuronopyranoside, clerodendrin, chrysoeriol-7-O-diglucuronide, and diosmin)
in L. chinensis extract. The developed analytical method was validated by determining
its specificities, linearities, limits of detection (LODs), limits of quantification (LOQs),
precisions, analyte recoveries, and solution stabilities. The simultaneous measurement
method devised in the present study is believed to be suitable for quality control and
standardization studies on L. chinensis and related plant species.
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