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Abstract: This study conducts research on an architectural design based on energy harvesting tech-
nology. The research subject is a pergola-style structure to be built in a square in Arrecife, the Spanish
territory of Lanzarote Island. The architectural design based on the energy harvesting technology
developed in this research utilizes solar energy. To install a solar panel on the roof of the pergola, the
optimal tilt angle from January to December was derived by using a function that considered the
latitude and solar declination value of the study site, and the amount of renewable energy genera-
tion was calculated. The architectural design based on energy harvesting also utilizes wind power.
To transform wind power into renewable energy, piezoelectric materials that trigger renewable
energy with the micro-vibrations generated by wind power are applied to the architectural design.
The amount of energy generation was calculated considering the wind power and wind direction in
the location where the pergola should be built; in addition, this calculation used information from
prior studies on piezoelectric materials. This article is significant, as it has developed an architectural
design where hybrid energy harvesting technology that utilizes two types of natural energy (solar
and wind) is applied to a building façade.

Keywords: hybrid energy harvesting; energy-independent architecture; renewable energy; solar panel;
piezoelectric material; architectural design

1. Introduction

According to the US Energy Information Administration statistics, architecture con-
sumes 20.1% of the total energy consumption worldwide [1]. In particular, because an
architectural structure, once built, lasts more than forty years, it consumes energy over a
long period of time, and energy consumption increases over time due to problems such as
building decay [2].

Thus, the field of architecture must not only seek a solution to reduce its energy
consumption in the face of the serious problem of pollution but also actively respond to
the generation of renewable energy. The UK, an active player in energy policy, provided an
architectural model to maximize renewable energy generation with the completion of the
BedZED (Beddington Zero Energy Development) energy-independent housing complex in
Beddington, a town in south London, in 2002 [3]. Later, the UK government announced
that, by 2050, all the energy needed in the UK will be replaced by renewable energy [4].

Renewable energy is generated with energy harvesting technology, which transforms
natural energy sources into electric energy. Energy harvesting sources can be broadly
categorized into two groups: The first group comprises macro-energy sources, which
include wind, water, and solar energy. The second group comprises micro-energy sources,
which include vibrations, magnetic fields, and waves [5,6]. Architecture relies largely
on macro-energy sources to generate renewable energy, with solar energy being the best
known. Even though solar energy harvesting technology is widely utilized, the amount of
solar-generated electricity constitutes less than 0.4% of world electricity consumption [7].
Integrated energy harvesting technology should be developed through the diversification of
natural energy sources to improve the currently low level of renewable energy generation.
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In the field of architecture, a great deal of research has been carried out on renewable
energy generation. Some research works have planned a joint residential complex and a
college campus instead of a single building from an urban planning standpoint to maximize
the production of renewable energy from solar energy [8–11]. These papers selected a
specific site topic and analyzed the building layout for optimal installation of solar panels,
the amount of renewable energy, and its economic feasibility. As for research on a single
architectural structure, there is a study that applies the technology of energy harvesting to
the exterior design of architecture [12]. By installing solar panels three-dimensionally onto
the surface of a building, this technology not only produces renewable energy from the
solar source but also from the fluid vibration generated from the solar panels [13,14]. This
study is significant in that it proposes the micro-energy sources of tiny vibrations generated
by the airflow as a source of renewable energy in a reality where the main sources of
renewable energy in today’s architecture are solar and wind. In addition, microorganisms,
such as algae, are used as micro-energy sources for elements of architectural design [15].
In addition, diverse technological development is also needed to extend energy harvesting
technology, currently limited to macro-energy sources, such as solar and wind, to micro-
energy sources. Currently, for research on the utilization of renewable energy generated
from micro-energy sources in the field of architecture, active research is underway on
architectural facilities associated with wireless heating, ventilation, and air conditioning
(HVAC) in a building [16,17]. However, there is little research on architectural design based
on energy harvesting technology utilizing micro-energy sources [18–20]. Therefore, this
study aims to develop an architectural design that generates renewable energy using not
only macro-energy sources but also micro-energy sources. Piezoelectric materials that
generate renewable energy from micro-energy sources of tiny vibrations of wind power
are used as an element of architectural design. Ultimately, this study aims to calculate
the renewable energy yield that can be generated by the architectural design based on the
hybrid energy harvesting technology developed via this process and to investigate the
implications and application plans of the architectural design based on the hybrid energy
harvesting technology for future architectural design.

2. Research Scope and Subjects

The object of this study is Lanzarote Dynamic Square located in the city of Arrecife
(28.9◦ N, 13.4◦ E, UTC+1), the capital of the Spanish territory of Lanzarote island (this
research subject is a project with which the researcher has won the Honorable Mention at
the Lanzarote Dynamic Square Architecture Competition hosted by Cabildo de Lanzarote
in 2018 [21]). The location of the research object to be installed in the square is currently
used as a parking lot, and the goal is to create a versatile space where residents can freely
entertain themselves. The research object has the shape of a square with a side width
of 38 m. There is a four-story building to the south of the research object, a three-story
building to the east, and a three-story and a one-story building to the north (Figure 1).
Notably, there are roads on all sides of the study object, except for the east side, so it has
excellent accessibility. In the year of 2020, Lanzarote Island had the lowest temperature of
14 ◦C in January and the highest temperature of 24 ◦C in August.

The average annual temperature is 20 ◦C. The average annual rainfall is 16.25 mm,
with the precipitation in October, November, and December constituting 40% of the total
annual precipitation. The average annual wind speed is 6.6 m−1·s−1 [22]. An analysis of
the climate shows that the research area, surrounded by the North Atlantic and under the
influence of the oceanic climate, tends to have warm temperatures, low precipitation, and
high wind speeds throughout the year.

In recognition of the value of the magnificent natural environments of the island of
Lanzarote, it was registered as a World Heritage Site in 1993 by UNESCO. This study aims
to plan a green building design for future Lanzarote Dynamic Squares to preserve the
excellent natural environments of Lanzarote Island. Specifically, a green building design
applies energy harvesting technology to architectural design to generate renewable energy.
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This study attempts to create a new, future-oriented concept of a place. Since the energy
consumption of buildings accounts for 40% of the total energy consumption, it is a legal
requirement in the European Union to reduce the energy consumption of architectural
structures and to generate renewable energy with these buildings [23]. In that sense, this
study, which develops an architectural design based on the generation of renewable energy
in Europe, is a very timely piece for the reality of architecture in many European countries,
where buildings consume a high energy level.
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3. Design Concept
3.1. Plan of Open Space with Good Accessibility to the Square

The main purpose of Lanzarote Dynamic Square is to be a communal space where
citizens can freely take a rest. With the ultimate goal being to plan a space where all citizens
can freely gather around, this square design has the following specific concepts: First, the
square has to be an open square that induces free accessibility. There are buildings only to
the north of this place; easy accessibility is available to pedestrians from the south, west,
and north of the location with open roads. The ease of access from around the site must be
naturally connected to the site itself, and it was designed so that the new building being
constructed on the site would be organically connected to the surrounding traffic. This
architectural intention is reflected in the construction plan of the building to be built on the
square. Thus, 300 mm high piers are provided instead of a masonry structure (Figure 2).
A plaza without a wall separating the site’s surroundings will naturally direct traffic to the
plaza from all directions except the north, providing an open space for citizens moving
between the building’s columns. In addition, as an open space, the square fits well with
the climate of the island of Lanzarote, which is warm all year round, and will be a space
that any citizen can freely use at any time. Second, the beautiful natural landscape of the
island of Lanzarote is reflected in the architectural design. The square must play the role
of a refuge, where people can come at any time to take a break. In particular, the users of
the square must be protected from rain, wind, and sunlight, so it must have a roof. The
new building to be erected in the square is designed as a pergola, with a roof placed over
the pillars that generate traffic. The clouds above Lanzarote Island inspire the roof of the
pergola. The cloud-shaped roof that hovers over the square not only plays a functional role
but also becomes a landmark symbolizing Lanzarote Dynamic Square (Figure 3).

3.2. Plan of Energy Self-Sufficient Architecture

In the design of a new future space, different from the existing common spaces,
this study considers the energy consumption in the architectural space. As mentioned
in the Introduction, nowadays, in architecture, due to serious environmental problems,
it is obligatory to reduce energy consumption and to produce renewable energy again.
However, there is the limitation that more commercialization is needed for the currently
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limited renewable energy technology in architecture, and, as of now, renewable energy
technology is not widely applicable to architectural design. Therefore, the present study
aims to plan an energy self-sufficient community space with Lanzarote Dynamic Squares,
and the detailed planning objectives are as follows: First, to diversify renewable energy
sources to increase the energy self-sufficiency of the structure to be built in the square. This
study aims to utilize micro-energy sources, such as the tiny vibrations of wind, in addition
to macro-energy sources, such as solar energy, which are commonly used to generate
renewable energy. Second, this study develops an architectural design based on energy
harvesting technology. It attempts to go beyond using solar and wind from the roof of
a building as renewable energy sources and proposes an architectural design that uses
energy harvesting technology from the surface of a building. An architectural design with
energy harvesting technology proposes a creative model for architectural design. With
the increase in buildings with more creative and diverse architectural designs, the original
urban space would undergo a lot of changes, resulting in a novel urban landscape.
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4. Design Development
4.1. Architectural Design Based on Energy Harvesting Technology with Macro-Energy Sources

The public architectural structure to be installed in the research subject of this study
is a pergola with a square-shaped roof. A pergola with a minimal structure that can keep
out direct sunlight and rainfall was designed for the architectural structure that forms the
space to allow easy access to the research subject and easy mobility of citizens in the space.
The location with the low-roofed pergola and low buildings creates optimal conditions
for the generation of renewable energy through solar energy. This study takes advantage
of such a location and the shape of the building to install solar panels on the roof of the
pergola to generate renewable energy (Figure 4). The width of the panels is 1.5 m and the
length is 1 m. The basic module of 5 m × 2.5 m on the ground of the square is equipped
with six panels, and a maximum of 504 panels are installed on the roof, which is equivalent
to 1050 m−2. When installing solar panels on the roof of the pergola, it is important to
avoid shadow interference between the solar panels. To achieve this, this study analyzes
the meridian height of Lanzarote in 2018 and installs the solar panels considering that the
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average meridian height in July and December, when it is the highest and the lowest in
the year, is 85◦ and 39◦, respectively [24]. As a result, the rays of the sun directly reach
the solar panels throughout the year. Assuming that a certain level of sunlight reaches the
solar panels without any shadow interference on the roof of the building, this study, first,
analyzes the shadow interference generated by the surrounding buildings, which affects
the solar panels installed on the roof of the pergola, and, second, analyzes the optimal tilt
angle of the solar panels tilted from the surface of the roof when installed to maximize the
solar energy generation.
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4.1.1. Analysis of Shadow Inference Generated by the Buildings Surrounding Lanzarote
Dynamic Square

South of Lanzarote Dynamic Square stand a three-story building and a four-story
building. The pergola roof, designed to protect the square, is 9 m above the ground and
was designed to create an open space within the pergola, giving the effect of a floating roof.
In order to apply solar energy harvesting technology, a shadow analysis was performed
using Sketchup Pro 2018 software to learn what disturbance would be caused by the
shadows of the surrounding buildings when solar panels were installed on the pergola
roof [25]. The shadow simulation was performed for January, when the solar altitude is
lowest in Lanzarote (28.9◦ N, 13.4◦ E, UTC+1). Figure 5, a simulated image of the shadow
of the buildings from 9 a.m. to 3 p.m. on January 1, shows that when the roof is 9 m above
the ground, it is not affected by the shadow of the surrounding buildings. We decided
to cover the entire pergola roof with solar panels to maximize solar energy generation,
as the shadow simulation revealed that the pergola roof will be exposed to sunlight all
year around.
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4.1.2. Optimal Tilt Angle (βo) Setting for the Installation of Solar Panels

To improve the efficiency of solar energy, it is important to maintain a certain angle
between the solar panel and the ground surface. The angle that allows the maximum
efficiency of energy production of a solar module varies depending on the location and
the time of the installation of the module [26]. This study applies a function that yields the
optimal tilt angle of a solar panel using the latitude of the research subject and the solar
declination to calculate the optimal tilt angle (βo) of the solar panels to be installed in the
research subject location in Lanzarote (Equation (1)) [27].

βo = a1 + a2 ϕ (1)

In Equation (1), βo is the optimal tilt angle; ϕ is the latitude of the research subject,
Lanzarote (28.9◦ N); and a1 and a2 are the coefficients generated from the solar declination,
the precise figures of which can be found in Table 1. As such, when solar panels are
installed according to the optimal tilt angle (βo) from January to December, the generation
efficiency of the solar panels is at its maximum point.

Table 1. Coefficients (a1, a2) according to the solar declination and the optimal tilt angle (βo).

N. Month Solar Declination (deg)
Coefficients

Optimal Tilt Angle (deg) βo
a1 a1

1 January d1 = −21.269 31.33 0.68 51.0
2 February d2 = −13.289 16.25 0.86 41.1
3 March d3 = −2.819 6.80 0.84 31.0
4 April d4 = 9.415 −6.07 0.87 19.1
5 May d5 = 18.792 −14.95 0.87 10.2
6 June d6 = 23.314 −19.27 0.87 5.9
7 July d7 = 21.517 −15.65 0.83 8.3
8 August d8 = 13.784 −4.23 0.75 17.4
9 September d9 = 2.217 6.42 0.77 28.7

10 October d10 = −9.599 15.84 0.83 39.8
11 November d11 = −19.148 23.61 0.84 47.9
12 December d12 = −23.335 30.56 0.76 52.5

4.1.3. Calculation of Generation of Solar Energy According to the Optimal Tilt Angle (βo)

Solar energy generation is calculated with Revit 2019 and its plug-in program, Insight
by Autodesk [28,29]. Revit is representative software of Building Information Modeling
(BIM), digital software in the field of architecture. Revit can be implemented in a three-
dimensional virtual architecture under various environmental conditions, so it is used
especially for green building design in the field of architecture [30–33]. Figure 6 is an
example where the annual solar energy generation of 1254 Wh was calculated using Insight,
assuming a prototype of 1.5 m−2 solar panels and a tilt angle of 51◦ using Revit software.

For the solar panel model, the Hanwha Q. CELLS’ Q.PEAK.DUO L–G7.4 390-405 model
was chosen (Table 2). The reason is that the Hanwha Q. CELLS’ Q.PEAK.DUO model
occupies the first place in the US residential and commercial building sector in 2020 [34];
thus, the product performance was judged to be excellent. In addition, this model has
the advantage of its size (2.0 m × 1.0 m), is suitable for the production of the solar panel
module of this study, and has strong power generation efficiency (20.3%) and capacity
(390–405 Wp).

The 35 m × 30 m pergola roof to be installed in Lanzarote Dynamic Square with a
total of 504 solar panels (1 m × 1.5 m module) is simulated in three dimensions using the
Revit software. Then, to maximize solar energy generation, the optimal tilt angle (βo) value
from January to December is applied to the Insight software to generate the monthly solar
energy generation (Figure 7).
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Table 2. Solar panel, Hanwha Q. CELLS’ Q.PEAK.DUO L–G7.4 390-405 model.

Type Parameter Value

Solar panel module

Model Q.PEAK.DUO L–G7.4
Length (mm) 2000
Width (mm) 1000

Power capacity (kW/unit) 390–405 Wp
Efficiency (%) 20.3%
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Figure 7. An example of measurement of solar energy generation in June using Revit and plug-in
software, Insight.

Table 3 shows the optimal tilt angle (βo) from January to December and the monthly
generation amount of solar energy according to the optimal tilt angle (βo). In a year, the
solar energy generation is the highest in May at 140,935 kWh·m−2; in January, a total
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of 53,200 kWh·m−2 solar energy is generated, which is the lowest recording of the year.
Eventually, a total of 504 (756 m−2) solar panels to be installed on the pergola roof at the
research subject location will be able to generate 1,150,198 kWh energy in a year.

Table 3. Monthly solar energy generations by solar panels using the optimal tilt angle (βo).

N. Month Optimal Tilt Angle
(deg) βo

Solar Energy Generation
(kWh·m−2·Month−1)

1 January 51.0 53,200
2 February 41.1 60,728
3 March 31.0 105,107
4 April 19.1 115,625
5 May 10.2 140,935
6 June 5.9 125,662
7 July 8.3 132,661
8 August 17.4 116,094
9 September 28.7 105,767

10 October 39.8 84,129
11 November 47.9 54,844
12 December 52.5 55,446

Total 1,150,198

In this study, the optimal tilt angle (βo) for the solar panels to be installed on the
pergola roof from January to December was determined to maximize the generation of
solar energy by the solar panels in Lanzarote, and the annual generation of solar energy
corresponding to the optimal tilt angle (βo) of the solar panels was calculated. Figure 8
explains a system where the solar modules were flexibly installed according to the optimal
tilt angle (βo) for each month from January to December. This research methodology
could resolve the limitations of the existing buildings, in which solar panels are fixed on
the roof or another surface at a particular angle, such that energy generation cannot be
maximized. In addition, a flexible solar panel installation system allows for an installation
on the building surface. It can be used to develop a green building design based on the
generation of renewable energy.
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4.2. Architectural Design Based on Energy Harvesting Using Micro-Energy Sources

The definition of micro-energy generation technology, which generates renewable
energy from micro-energy sources, is broken down by the amount of electricity generated
and the unit of renewable energy generated in microwatts (µW). Furthermore, the meaning
of ‘micro’ is not limited to the unit of electricity. It means the size of the electricity pro-
duction facility: the size of micro-energy harvesters is measured in the unit of millimeters
or centimeters [35]. This study selects, among the various micro-energy sources, the tiny
vibrations of wind as a source of renewable energy. This is because, firstly, this study
aims to develop an architectural design that utilizes piezoelectric materials, which convert
minute vibrations into energy [36]. Secondly, the wind power in Lanzarote is sufficient
to generate renewable energy. A small-sized wind turbine, a typical energy harvesting
facility based on wind, requires a minimum of 3 m−1·s−1 cut-in speed to operate [37]. An
analysis of wind resources in the research subject location shows that the average wind
speed in 2020 in Lanzarote was 6.5 m−1·s−1, which is sufficient to generate wind-based
renewable energy. Moreover, an analysis of the wind direction in the study location shows
that the dominant wind direction tends to be north east (NE) and north–northeast (NNE)
from January to December (Table 4).

Table 4. Annual average wind speed in Lanzarote in 2020 [21].

N. Month Average Wind Speed
(m−1·s−1·month−1) Dominant Wind Direction

1 January 5.7 NE
2 February 6.6 NE
3 March 7.2 NNE
4 April 5.6 NNE
5 May 6.4 NNE
6 June 6.4 NNE
7 July 8.1 NNE
8 August 8.6 NNE
9 September 6.0 NNE
10 October 6.3 NE
11 November 5.3 NE
12 December 6.3 NE

There are prior studies related to this study that use wind as a source to produce
renewable energy and utilize piezoelectric materials. Studies on the relationship between
piezoelectric materials and wind direction focused on optimizing the energy generation
efficiency of wind when installing piezoelectric materials. It has been found that to maxi-
mize the energy production of piezoelectric materials, it is optimal to install them so that
they are perpendicular to the wind direction. The purpose of such an installation plan for
piezoelectric materials is to maximize the vibrations generated by wind to the piezoelectric
materials, thereby maximizing energy generation [38]. Research has also been carried out
on the development of fans that rotate by the wind and on the installation of piezoelectric
materials on the blades of these fans [39]. Piezoelectric materials are placed on the blades
of the fans. In order to measure the energy generation as a function of wind strength, three
piezoelectric materials (PVDF, polyvinylidene fluoride) with a length of 30 mm, a width of
12.5 mm, and a thickness of 0.02 mm are placed on three separate blades. They are made to
rotate by a certain level of wind power. As a result, when wind power of 14 m−1·s−1 is
applied, the rotation of the fan blade produces a maximum of 2566.4 µW output power.
When a higher level of wind power is applied, the output power drops precipitously [40].
Research has been conducted on the creation of piezoelectric flags. Piezoelectric flags are
created with the size of piezoelectric materials (LDT4-028 K/L) limited to 60 mm, 75 mm,
and 100 mm on each side and with the ratio between the width and the length (W−1·L−1)
set to 2, 1.5, 1, and 0.5. Each piezoelectric flag created is measured for the amount of energy
produced at varying wind speeds. As a result, when a piezoelectric material is 60 mm long,
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120 mm wide, and 0.2 mm thick, that is, when the ratio between the width and the length
(W−1·L−1) is 2, the energy generation efficiency is the highest. Energy is created from the
point where the wind speed is 4.2 m−1·s−1, and when the maximum wind speed is at
9 m−1·s−1, 5 µW·cm−3 energy is generated [41]. Prior studies showed that when installing
piezoelectric materials to convert minute vibrations created by wind power to renewable
energy, one should design piezoelectric materials such that the width is longer than the
length, and they must be installed in a way that is perpendicular to the wind direction
(Figure 9).
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4.2.1. Wind Direction Analysis of the Research Subject Location, Lanzarote Dynamic Square

To install piezoelectric materials on the pergola on Lanzarote Dynamic Square, it is
important to analyze the wind direction of the site. According to prior studies, piezoelectric
materials must be installed in a manner that is perpendicular to the wind direction to
maximize energy generation efficiency. Figure 10 is a visualization of the average annual
wind direction and wind speed of the study area using Autodesk’s Formit [42], wind
direction and speed analysis software. The analysis of the average annual wind direction
shows that the predominant wind direction at this site is north–northeast (NNE), north (N),
and northeast (NE), in that order. According to this analysis of wind direction and wind
speed, the piezoelectric materials to be installed on the pergola on Lanzarote Dynamic
Squares must run in their longitudinal direction from south to north and cover the entire
pergola roof.

4.2.2. Installation Plan for Piezoelectric Materials (PVDF, Polyvinylidene Fluoride)

The piezoelectric materials (PVDF, polyvinylidene fluoride) to be installed on the
pergola are of the model LDT4-028 K/L [43]. This model is a multi-purpose, piezoelectric
sensor for detecting physical phenomena, such as vibrations and impact. The piezo film
produces a useable electrical signal output when forces are applied to the sensing area.
For installation on the pergola, the piezoelectric materials (LDT4-028 K/L) are 60 mm
long, 120 mm wide, and 0.2 mm thick and are installed under the roof of the pergola. The
width of the PVDF is based on the prevailing wind direction of the study site, which is
north–northeast (NNE) and north (N), and the distance between the PVDFs is 0.25 m to
account for their radius of motion so that they do not bump into each other when vibrated
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by the wind. The basic module of a pergola roof (2.5 m × 2.5 m) can fit a total of ten PVDFs
(one prototype volume = 0.144 cm−3); therefore, 168 modules (14 × 12) constituting the
pergola roof fit a total of 1680 (241.92 cm−3) PVDFs (Figure 11).
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4.2.3. Measuring Energy Generation by Vibration of PVDF Driven by Wind

The wind speed in 2020 at Lanzarote Dynamic Square was the highest in July at
8.6 m−1·s−1 and the lowest in November at 5.3 m−1·s−1. One prototype of PVDF (LDT4-
028 K/L) is installed under the pergola roof at the research subject location. The energy
generated by the wind-induced vibration of the PVDFs from January to December is
derived from the research results of the wind simulation [41] (Table 5).

At the research location, the annual energy amount generated by one prototype of
PVDF (LDT4-028 K/L) is 27.8 µW·cm−3·year−1, adding all energy amounts generated by
different wind speeds from January to December. A total of 1680 (241.92 cm−3) PVDFs
have been planned under the roof of the planned pergola; therefore, it is estimated that
an annual total of 6725.376 µW·year−1 energy will be produced from all piezoelectric
materials. As the expected image of the pergola in Figure 12 shows, the PVDFs installed
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under the pergola roof will move with the wind, simulating a cloud; thus, they are a design
element that creates the effect of a floating pergola roof.

Table 5. Energy generation of a prototype (volume = 0.144 cm−3) of PVDF (LDT4-028 K/L), which is
(L) 60 mm × (W) 120 mm × (t) 0.2 mm, according to the monthly wind speed.

N. Month Average Wind Speed
(m−1·s−1·Month−1)

Energy Generation
(µW·cm−3·Month−1)

1 January 5.7 1.1
2 February 6.6 2.3
3 March 7.2 3.2
4 April 5.6 1.1
5 May 6.4 2.1
6 June 6.4 2.1
7 July 8.1 4.3
8 August 8.6 4.8
9 September 6.0 1.8

10 October 6.3 2.1
11 November 5.3 0.8
12 December 6.3 2.1

Total 27.8
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5. Results and Discussion

This study develops an energy self-sufficient architectural design for a building that
will be built in Arrecife, the capital of the Spanish territory of Lanzarote Island, to create
a square design. In order to improve the energy self-sufficiency of the building, energy
harvesting technology, which generates energy from natural energy sources, is used in
the architecture.

The architectural design based on energy harvesting technology developed in this
study primarily uses solar energy-based energy harvesting. To harvest energy from sun-
light, solar panels are installed on the roof of the pergola. In order to improve the efficiency
of the solar modules in energy harvesting, they are installed at a certain tilt angle to the roof
surface. In this study, the optimal tilt angle is calculated for each month from January to
December. A function that takes into account the latitude of the location of the research sub-
ject and the declination of the sun is used to select an installation angle for the solar panels.
Measuring all solar panels on the pergola roof to which each optimal tilt angle calculated is
applied using Revit and Insight for the total renewable energy produced yields the result
that a total of 504 (756 m−2) solar panels could generate a total of 1,150,198 kWh·year−1

energy. Furthermore, this study develops an architectural design based on wind energy.
To convert wind into renewable energy, this study uses piezoelectric materials to convert
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tiny vibrations caused by the wind into renewable energy. This study analyzes the monthly
wind speed and direction at the study site from January to December to collect data on
wind resources at the study site. Then, this study analyzes previous studies on piezoelectric
materials that convert tiny vibrations caused by the wind into renewable energy. Based
on prior studies, this study decides the wind direction and the location selection when it
comes to the form of the piezoelectric materials and their installation. As a result, when a
total of 1680 (241.92 cm−3) prototypes of piezoelectric materials (LDT4-028 K/L), which are
each 60 mm long, 120 mm wide, and 0.2 mm thick, are installed under the pergola roof, an
annual total of 6725.376 µW·year−1 energy is expected to be generated by the wind power
at the research subject location.

This study is significant, as the architectural design proposed here based on energy
production is a hybrid technology that uses two natural energy sources: the sun and wind.
Energy harvesting technology has been used as an important element in architectural
design. Solar panels flexibly installed according to the optimal monthly tilt angle to
maximize solar energy harvesting and piezoelectric materials installed on the building
surface to harvest energy from wind can be used as important elements in green building
design. Such hybrid energy harvesting technology applied to building surfaces can play
an important role in the development of diverse and creative architectural design and can
promote active research on architectural materials that aim to generate renewable energy
from the perspective of green building design.

The flexible solar panel mounting system is attached to building façades, unlike
traditional fixed solar panels, and can play an important role in developing diverse and
creative architectural designs. Moreover, in the case of piezoelectric materials, it can
stimulate active research in the field of building materials for building façade design.
Therefore, this study on hybrid energy harvesting technology is of great significance, as
it is different from previous studies that focus on energy harvesting with a single energy
source. Unlike existing green building design, this study’s novelty lies in the possibility of
using a kinetic roof and piezoelectric materials. However, this study did not assess the final
electricity production of renewable energy generation and its economic feasibility. This
aspect will need to be further investigated in collaboration with electric energy engineers.
In addition, computer science engineers should be involved to implement the kinetic roof.

The electricity produced in this study will be used for lighting around Pagoda Square,
giving direct benefits to citizens, and will also be used to supply power to the kinetic roof.

6. Conclusions

This study combined hybrid energy harvesting technology and architectural design
through the use of solar panels and piezoelectric materials. First, the energy harvesting
technology using solar energy is of significance, as it maximized the production efficiency
of renewable energy by proposing a flexible solar panel corresponding to the optimal
tilt angle every month. In addition, a flexible solar panel system is a kinetic element of
an architectural elevation; it can be developed into a creative architectural design that is
different from the existing fixed architectural elevation. Second, in this study, piezoelectric
material was applied to the building façade to use micro-wind power as an energy source.
Since this piezoelectric material not only produces renewable energy but is also used as an
element of building design, it can inspire creative architectural design and guide further
studies in the field of building materials.
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