
applied
sciences

Article

Towards Blockchain-Based Federated Machine Learning:
Smart Contract for Model Inference

Vaidotas Drungilas * , Evaldas Vaičiukynas, Mantas Jurgelaitis , Rita Butkienė and Lina Čeponienė

����������
�������

Citation: Drungilas, V.; Vaičiukynas,

E.; Jurgelaitis, M.; Butkienė, R.;

Čeponienė, L. Towards

Blockchain-Based Federated Machine

Learning: Smart Contract for Model

Inference. Appl. Sci. 2021, 11, 1010.

https://doi.org/10.3390/app11031010

Academic Editor: Donato Cascio

Received: 30 November 2020

Accepted: 20 January 2021

Published: 23 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Information Systems, Faculty of Informatics, Kaunas University of Technology, Studentų str. 50,
LT-51368 Kaunas, Lithuania; evaldas.vaiciukynas@ktu.lt (E.V.); mantas.jurgelaitis@ktu.lt (M.J.);
rita.butkiene@ktu.lt (R.B.); lina.ceponiene@ktu.lt (L.Č.)
* Correspondence: vaidotas.drungilas@ktu.lt

Abstract: Federated learning is a branch of machine learning where a shared model is created in a
decentralized and privacy-preserving fashion, but existing approaches using blockchain are limited
by tailored models. We consider the possibility to extend a set of supported models by introducing
the oracle service and exploring the usability of blockchain-based architecture. The investigated
architecture combines an oracle service with a Hyperledger Fabric chaincode. We compared two
logistic regression implementations in Go language—a pure chaincode and an oracle service—at
various data (2–32 k instances) and network (3–13 peers) sizes. Experiments were run to assess the
performance of blockchain-based model inference using 2D synthetic and EEG eye state datasets for
a supervised machine learning detection task. The benchmarking results showed that the impact on
performance is acceptable with the median overhead of oracle service reaching 2–4%, depending
on the dimensionality of the dataset. The overhead tends to diminish at large dataset sizes with the
runtime depending on the network size linearly, where additional peers increased the runtime by
6.3 and 6.6 s for 2D and EEG datasets, respectively. Demonstrated negligible difference between
implementations justifies the flexible choice of model in the blockchain-based federated learning and
other machine learning applications.

Keywords: distributed ledger; oracle service; chaincode; machine learning; model validation; run-
time benchmarking; system architectures; microservices

1. Introduction

Federated learning (FL) is a distributed machine learning (ML) approach that facilitates
model training on a decentralized network of individual data sources. Unlike traditional
ML, which relies on centralized data computing to develop machine learning models,
FL develops and uses a model across multiple decentralized devices [1]. Rather than
gathering all data samples to one server, decentralized devices hold local data samples
without exchanging them [2–4]. Despite the setting, it is advantageous if the generalization
abilities of the ML model (or models) are evaluated on a separate validation data, which
is agreed upon and available to all participants in the learning process. If some data gets
uploaded later, after model creation and sharing, these data records, when used for model
inference, could be considered as unseen or testing data. Both validation and testing
settings correspond to the ML model inference.

In recent years, a few novel solutions emerged which attempt to decentralize the
machine learning process using various techniques. Google uses cloud infrastructure
to distribute the Gboard (Google keyboard) [1] model among phone devices to improve
predictive typing. A single shared model is used and developed on the user’s data, then
changes are summarized and pushed as a model update to the cloud. A number of these
updates are integrated and used to improve the existing shared model. The basic principles
of this approach show that decentralization can be used in a manner which facilitates the
development of a single shared ML model. While the Google approach is quite novel, it

Appl. Sci. 2021, 11, 1010. https://doi.org/10.3390/app11031010 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1096-4351
https://orcid.org/0000-0003-2221-0765
https://orcid.org/0000-0002-6812-0215
https://doi.org/10.3390/app11031010
https://doi.org/10.3390/app11031010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031010
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1010?type=check_update&version=1

Appl. Sci. 2021, 11, 1010 2 of 21

supports a specific type of model and suffers from scalability since the training of a model
requires a substantial number of users.

Another novel solution by Nvidia proposes building robust ML algorithms, which
enable collaboration of different nodes in model training while preserving data privacy [5].
Nvidia implements a server-client approach, where a centralized server works as a man-
ager/facilitator of participating clients. The infrastructure allows the developers to share
their models and components and have control over the training process. Partial models
are trained on clients, then the partial model weights are shared, and the model is updated
based on weights and history of contributions. Even though the infrastructure supports
the usage of different models, it still is dependent on a centralized node to aggregate
weights and update the shared model, creating a bottleneck in terms of resources and
computational power.

FL can be useful in several aspects, including load-balancing (to distribute computa-
tions in the machine learning task) and privacy preservation (to contribute to the machine
learning task without revealing training data). To adapt infrastructure for several ML
models and distribute the computing power without relying on a centralized node, sev-
eral solutions using distributed ledger technology (DLT) [6] or blockchain [7–9], were
developed. Even though FL can be implemented without DLT, the introduction of DLT or
blockchain as a specific type of DLT can partially solve interoperability and heterogeneity
technical limitations, which are present in the traditional FL approaches. Data hetero-
geneity with respect to multivariate distribution could be alleviated by introducing the
possibility to donate some data for model validation purposes. Interoperability, in terms of
compatibility among network nodes, could be solved by providing a common architecture
for collaborative model sharing.

A solution combining machine learning and blockchain technologies is discussed
in [10], where possible integrations between blockchain and machine learning for pro-
cesses such as model training, validation, testing, deployment, and storage are analyzed.
Blockchain infrastructure holds potential to improve transparency and trust in the machine
learning process and resulting models by logging everything into a distributed ledger
permanently. As the model is public, and the history is recorded, the blockchain stores not
only the current model but all the evolutions, which can be traced back. Some blockchains
also support smart contracts which could expand capabilities to develop an infrastructure
for hosting heterogenous ML models, as well as to customize the workflow of some parts
of the machine learning process. Smart contracts not only facilitate iterative development
but also provide flexibility to implement custom FL solutions. Federated learning can
benefit from blockchain infrastructure since decentralization is inherent in both. While
ML and blockchain can be combined, the solutions still come with few key concerns that
need to be addressed such as scalability, smart contract vulnerabilities, and complicated
testing. Blockchain-based ML solutions could further be customized by integrating external
ML libraries implemented using blockchain oracles [11–13]. Oracles act as decentralized
web services, which extend the capabilities of blockchain smart contract implementations.
Oracles introduce flexibility in blockchain-based ML implementations by enabling the
usage of virtually any programming language, which does not need to be compatible
with the language supported by the smart contract. This way the existing solutions for
ML can be reused in blockchain while simultaneously benefiting from DLT functionality,
which allows storing transactions, keeping a distributed exchange of ML models, and data
transparent and auditable.

The paper is related to research on the specification of blockchain-based scientific pro-
cesses [14] in terms of smart contract development for federated learning decentralization.
Since blockchain technology solutions are quite innovative and complex, visual representa-
tion techniques can help describe the implementation logic. Both in [14] and in this paper,
unified modelling language (UML) [15] diagrams are used to outline the proposed solution
details and to demonstrate the behaviour and structure of the implemented smart contract.

Appl. Sci. 2021, 11, 1010 3 of 21

In our research, a blockchain architecture for the ML model inference is implemented
for experimental evaluation. We use Hyperledger Fabric blockchain [16] as a platform
of choice, as Hyperledger supports smart contract calls to external APIs, and features
a modular infrastructure by adopting the microservice ecosystem. Hyperledger Fabric
enables the implementation of smart contracts, which are referred to as chaincodes in the
Hyperledger infrastructure. It also supports existing programming languages such as
Go, Javascript, Java, and service-based architecture. In our experiments, we implement
a chaincode dedicated to the logistic regression model inference using Go. The logistic
regression was chosen as a proof of concept due to its simplicity and popularity for the ML
detection task [17].

We develop two experimental implementations: A model inference chaincode, and a
model inference oracle service. The execution logic implemented in the chaincode and the
oracle service is identical. To test the performance of these blockchain implementations we
conduct two experiments where we benchmark the ML model validation performance on
generated synthetic 2D dataset [18] and real-world EEG (electroencephalogram) eye state
data [19]. In the experiments, we compare the runtime of functions which were executed
using either the chaincode or oracle service.

As existing approaches implementing the FL using blockchain are limited in scope
with respect to the available models, the goal of our work is to expand the set of ML models
which could benefit from decentralization using blockchain technologies and to facilitate
the development of such solutions. Therefore, we have to determine whether there is a
substantial difference in the model inference runtime between chaincode variants, where
the code is encapsulated entirely into a smart contract, and a standalone microservice,
which is used as a trusted oracle inside a smart contract. Various ML models are adapted
for FL purposes [20,21] and attempts exist to train heterogenous local models of varying
complexity for producing a single powerful global inference model [22]. Chaincode would
be more suitable for basic ML models with a lightweight internal structure and low compu-
tational load, for example, various regression variants, linear discriminant analysis, naive
Bayes, decision tree, etc. The calculation transfer to the oracle service from the chaincode
would be beneficial for complex ML models with a complicated internal structure and
high computational load, for example, support vector machine, random forest, gradient
boosting ensemble, etc. The experimental results can be used to determine whether the
oracle service is a viable solution to extend the possibilities of blockchain-based ML.

The rest of the paper is structured as follows. Section 2 presents related research on
the combination of machine learning and blockchain technologies. Section 3 depicts the
implemented blockchain-based architecture and the developed smart contract for machine
learning. In Section 4, experiment setting is introduced, and experiment findings are
presented. Section 5 discusses the main contributions, limitations, and possible applications
of our research. Section 6 concludes the research results and outlines future work.

2. Related Work

The combination of federated learning and blockchain technologies is applied in
various domains, such as Internet of things [6,23,24], healthcare [7,25], privacy and secu-
rity [26,27], etc. Some researchers propose utilizing a public blockchain [23] while others
believe that distributed ledger technologies [6–8], are more suited for federated learning.
As proof-of-work consensus algorithms are considered redundant, since computational
resources could be exploited to execute ML processes, some authors propose novel consen-
sus algorithms [8,25]. Research employing already existing blockchain solutions suggests
that improved federated learning approaches could bring an increase in transparency and
model accuracy [8,28].

Research on blockchain and federated learning for privacy-preserved data sharing in
an industrial IoT [24] proposed a system architecture made from two main components—
permissioned blockchain component and federated learning component. The blockchain
component is used to store transactions for data retrieval from IoT devices and data sharing

Appl. Sci. 2021, 11, 1010 4 of 21

among peers, which facilitates the auditing of data flows. The authors also implement
a proof of training quality consensus algorithm, that combines data model training with
the consensus protocol. To evaluate the proposed data sharing architecture, the authors
conducted experiments on two real-world text-based datasets. The proposed federated
learning mechanism achieves a high diagnostic ability reaching an average AUC (area
under the receiver operating curve) value of 0.918. The experiment also shows that the
proposed architecture is scalable as the AUC value varies slightly depending on the number
of data providers. The runtime statistics from three peers up to nine peers’ averages to
880 ms using various datasets, and this runtime reaches a higher average as the number of
data providers increases.

D. Preuveneers et al. [6] proposed the permissioned blockchain-based federated learn-
ing method for the detection of intrusions in IoT networks. The blockchain implementation,
more specifically MultiChain, provided transparency and auditability to the federated
learning process with a negligible runtime overhead of 5–15%. Authors note that the
performance overhead caused by the blockchain is closely tied to the complexity of the
ML model (autoencoder with three hidden layers totaling 3000 weights), which is a direct
consequence of weight sharing and the averaging approach in federated learning.

Hyesung Kim et al. [23] proposed a BlockFL federated learning architecture improved
by blockchain that allows participating members to exchange devices’ local model updates
while verifying and providing rewards for participation. The BlockFL enhances federated
learning by introducing decentralization and providing a monetary incentive for members
of the blockchain network. Authors evaluated the accuracy of their proposed solution and
proved that as the number of iterations increases, the BlockFL achieves almost the same
accuracy as traditional federated learning.

T.-T. Kuo and L. Ohno-Machado [25] presented the decentralized privacy-preserving
healthcare predictive modelling framework. The framework allows model storing in a
private blockchain, as well as introduces the proof-of-information consensus algorithm. Au-
thors also describe how models should behave if new data are committed to the blockchain
network, where the provided rules determine whether a model should be updated or not.

J. Weng et al. [8] presented DeepChain—a decentralized platform for a secure collabo-
rative deep training through gradient sharing. The solution encourages blockchain peers
to participate in the learning process by providing an incentive in the form of DeepCoin.
Authors speculate that a well-trained model could be profitable in the future as a form
of a paid service. Experiments with 4–10 peers show that the more parties participate in
collaborative training the higher the training accuracy is achieved, but it is an expected
result since each new party brings a fixed-sized batch of training data. Authors also ex-
perimented by increasing the number of participating parties revealing that the gradient
sharing time increased with a higher number of participating parties.

G. J. Mendis et al. [28] proposed a cooperative decentralized deep learning architecture.
The contributors can train deep learning models with private data and share them with
the cooperative data-driven applications. Shared models are fused to produce a higher
quality model. Authors proposed two approaches to performing federated learning. The
first approach involves an initiator that proposes the model and contributors that train the
proposed model. The second approach enables contributors to train their models which
are then merged to create a complete model. The authors present that the model accuracy
has increased while using the merging technique rather than just developing a model
proposed by the initiators. In their research, the authors evaluate the impact of model
fusion techniques such as Federated Averaging and propose alternatives to the model
accuracy. Fusion strategies that authors have proposed show promising results. Another
experiment that authors performed was the evaluation of the effect on model accuracy
comparing their proposed solution to the solution proposed by H. B. McMahan et al. [3].
Both solutions used the MNIST database to evaluate the accuracy of their models. The
model classification accuracy was tested in two scenarios, producing a lower accuracy
in the first one and higher in the second one. As experiments presented a similar model

Appl. Sci. 2021, 11, 1010 5 of 21

classification accuracy result, the authors favoured the blockchain solution for its increased
security and lower communication cost.

Nelson Kibichii Bore et al. [7] extended the Hyperledger Fabric endorsement policy
by implementing a validation mechanism for machine learning. The validation mechanism
was created as a blockchain network component responsible for sending recompilation calls
to selected peers called endorsers. Endorsers recompute models, and if the deviation from
the initial computation is within a defined acceptable tolerance, models are endorsed and
committed to the blockchain. Authors performed an analysis on the detection of faulty or
anomalous workers using this validation engine. Research suggests that machine learning
using blockchain technologies is relevant and achievable since the authors extended the
machine learning process by using a smart contract (chaincode) to ensure a decentralized
trust between the parties involved.

The smart contract used in various implementations of blockchain-based machine
learning [7,9,28], is a type of software engineering artefact which could be developed using
software engineering principles [29]. While blockchain usage is continuing to grow, no
common tools and methods for the specification of either blockchain technology-based
engineering solutions, or smart contracts, exist. Some authors use formalized specification
languages, such as BPMN [30], Petri nets [31], or simple nonformalized notations, such
as flowcharts [28,32]. Since UML is commonly used in traditional software development,
it can be successfully employed for the specification of blockchain-based systems and
smart contract behaviour [33]. In this paper, UML diagrams are used for both outlining
the blockchain architecture and specifying the smart contract structure and behaviour.
The smart contract is represented using UML class and sequence diagrams which are
closely related to the smart contract code and could even be used for code generation
purposes. The presented smart contract specification (in Section 3) extends research [14] on
the specification of blockchain-based business and scientific processes.

The comparison of overviewed blockchain-based FL solutions with respect to various
technological aspects is summarized in Table 1. We can notice that the fields of application
are quite broad and implementation details (DLT type, consensus used, support for smart
contracts) are diverse. As most existing blockchain frameworks and their application to
FL are in the early stages of development, no common trends and state-of-the-art can
be distinguished.

Table 1. Comparison of overviewed federated learning (FL) solutions employing blockchain. Abbreviations: PoQ: Proof
of Training Quality; RR: Round-robin-based; PoW: Proof-of-Work; PoI: Proof-of-Information; PoS: Proof-of-Stake; PoA:
Proof-of-Authority; BFT: Byzantine Fault Tolerance.

Ref. Consensus
Algorithm Incentive DLT Type Smart

Contracts Field of Application Access Type

[24] PoQ No Custom No Industrial IoT Permissioned

[6] RR No MultiChain No Cyber security Permissioned

[23] PoW Yes Custom No Universal Public

[25] PoI No MultiChain Undefined Healthcare Permissioned

[8] Algorand 1 Yes Corda Yes Deep learning Permissioned

[28] PoW, PoS, PoA Yes 2 Ethereum Yes Universal Public

[7] BFT 3 No Hyperledger Fabric Yes Disease modelling Permissioned
1 Modified version; 2 partially; 3 assumed.

Our approach differs from the aforementioned research in a combination of several
important aspects: (a) Our solution could be extended to include several different model
types, and could be customized for various model or data acceptance strategies by tweaking
smart contracts; (b) we measure the runtime of model inference entirely implemented as a
Hyperledger Fabric chaincode solution; (c) we measure the runtime of blockchain oracle

Appl. Sci. 2021, 11, 1010 6 of 21

service implementation, to determine whether it can be used to include the wide range of
ML approaches on blockchain technology; (d) we compare the runtime differences between
chaincode and oracle service implementations for the ML model inference. Additionally,
the proposed solution is specified using UML diagrams, whereas other authors mostly use
non-formalized notations, such as flowcharts.

3. Methods

The environment for experiments was implemented using the Hyperledger Fabric
technology, which features modular architecture and allows developing of smart contracts
in Go or Java languages. The choice of Hyperledger Fabric over other blockchain frame-
works was due to its ability to perform calls to external endpoints from the inside of a smart
contract. The smart contract for model inference was implemented using Go language
and two variants were developed with respect to logistic regression ML model inference
calculations: (1) Model inference is implemented as a pure chaincode solution; (2) the
model inference part is outsourced to the local oracle service implemented as a RESTful
microservice running at each peer. Logistic regression as a proof-of-concept was chosen
due to the fast runtime since most other ML models are more computationally demanding.
A faster inference runtime is expected to make network communication overheads more
noticeable in benchmarking experiments.

ML models were prepared by training them beforehand since this stage of ML lies
in the responsibility of participants and is not encompassed by our approach due to a
privacy-preserving aspect. The experiments performed evaluate only the model inference
stage, which in ML terms would correspond to validation (if a model is uploaded after
data are shared) or testing (when new data are shared, triggering inference for existing
on-chain models).

3.1. Implemented Blockchain Architecture

Using Hyperledger Fabric technology, ML solutions can be implemented in two varia-
tions: (a) By entirely relocating the training, evaluation, and usage to the blockchain, using
the smart contracts (or chaincode as they are called in Hyperledger), or (b) by utilizing
blockchain oracles [12,13], (decentralized web services) since Hyperledger supports a lim-
ited set of programming languages for implementing the chaincode. These oracle services
can be integrated into smart contracts developed using Hyperledger Fabric technology. In
this research, we implemented both (a) and (b) variations in the model inference prototype
application to compare them and find differences between the two.

The architecture of the solution components is presented in Figure 1. The prototype im-
plementation is composed of Hyperledger Fabric components and Model Inference Service,
which communicates with each other through APIs. The Hyperledger Fabric chaincode
was developed using the Go programming language and is responsible for model inference
computations. Additionally, an oracle model inference web service was developed using
Go. The oracle web service is essentially responsible for the same execution logic.

Appl. Sci. 2021, 11, 1010 7 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21

Figure 1. The utilized blockchain architecture: Unified modelling language (UML) component
diagram. Chaincode Shim API provides access to data stored in the chaincode state database.

3.2. Smart Contract Implementation Details
In our model inference prototype, two types of stakeholders exist (Figure 2). The data

owner (A1) can upload evaluation data (UC1) to the prototype application, which is used
for new model validation and testing of already existing models. The model owner (A2)
can upload the model (UC3), which once validated is committed to the blockchain. Addi-
tionally, Hyperledger Fabric (A3) participates in all use cases (UC1-4), as an external net-
work, which is responsible for transaction recording. Either type of user acts as a partici-
pant during the data or model upload processes, and only after the majority of partici-
pants approve the transaction, it is committed to the blockchain.

Figure 2. The main functionality of the blockchain-based model inference application: UML use
case diagram.

Figure 1. The utilized blockchain architecture: Unified modelling language (UML) component
diagram. Chaincode Shim API provides access to data stored in the chaincode state database.

3.2. Smart Contract Implementation Details

In our model inference prototype, two types of stakeholders exist (Figure 2). The
data owner (A1) can upload evaluation data (UC1) to the prototype application, which is
used for new model validation and testing of already existing models. The model owner
(A2) can upload the model (UC3), which once validated is committed to the blockchain.
Additionally, Hyperledger Fabric (A3) participates in all use cases (UC1-4), as an external
network, which is responsible for transaction recording. Either type of user acts as a
participant during the data or model upload processes, and only after the majority of
participants approve the transaction, it is committed to the blockchain.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21

Figure 1. The utilized blockchain architecture: Unified modelling language (UML) component
diagram. Chaincode Shim API provides access to data stored in the chaincode state database.

3.2. Smart Contract Implementation Details
In our model inference prototype, two types of stakeholders exist (Figure 2). The data

owner (A1) can upload evaluation data (UC1) to the prototype application, which is used
for new model validation and testing of already existing models. The model owner (A2)
can upload the model (UC3), which once validated is committed to the blockchain. Addi-
tionally, Hyperledger Fabric (A3) participates in all use cases (UC1-4), as an external net-
work, which is responsible for transaction recording. Either type of user acts as a partici-
pant during the data or model upload processes, and only after the majority of partici-
pants approve the transaction, it is committed to the blockchain.

Figure 2. The main functionality of the blockchain-based model inference application: UML use
case diagram.

Figure 2. The main functionality of the blockchain-based model inference application: UML use
case diagram.

In the model inference solution, federated learning participants can contribute their
data and off-chain computed machine learning models for evaluation using the chaincode,
which is responsible for the data and model storage.

Appl. Sci. 2021, 11, 1010 8 of 21

The data upload procedure (UC1) starts as the user provides a data file. The data file
is then checked for the .csv data file format and whether the provided data columns are of
the expected format and correspond to the outlined data structure. If the provided file is
valid, the data is inserted into the Hyperledger’s data storage by recording each data row.
After the evaluation data are uploaded, the models already committed to the blockchain
are tested (UC2). Since the model is already uploaded, it is safe to assume that the model
during this process gets tested, as the possibility that the model was trained on the newly
uploaded data is quite low. After the testing, the ML model results are appended according
to the new model inference computations for newly inserted data records.

The model upload procedure (UC3) starts in the same way, but rather than a data file,
a user is asked to provide the ML model file. It is important to note, that the ML model
is trained by the model owner and is not included in the scope of the model inference
prototype application. The submitted file contains logistic regression coefficients, these
again are checked whether the data are of an appropriate format and structure. Afterwards,
an ML model validation process is initiated (UC4). We present chaincode specification
fragments of the ML model validation process in more detail. The provided class and
sequence diagrams (Figures 3 and 4) describe the essential parts which should be recorded
in the smart contract execution code. The class diagram (Figure 3) outlines the smart
contract functions, their parameters, and types. The classes that participate in the smart
contract execution are presented as lifelines in the sequence diagram (Figure 4). Using the
behaviour and the structure recorded in these diagrams, a source code can be produced
which would facilitate the process of development. Several specification patterns are
described in UML diagrams (Figures 3 and 4) and were used to produce the source code
(Figure 5) for this federated learning solution.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 21

In the model inference solution, federated learning participants can contribute their
data and off-chain computed machine learning models for evaluation using the
chaincode, which is responsible for the data and model storage.

The data upload procedure (UC1) starts as the user provides a data file. The data file
is then checked for the .csv data file format and whether the provided data columns are
of the expected format and correspond to the outlined data structure. If the provided file
is valid, the data is inserted into the Hyperledger’s data storage by recording each data
row. After the evaluation data are uploaded, the models already committed to the block-
chain are tested (UC2). Since the model is already uploaded, it is safe to assume that the
model during this process gets tested, as the possibility that the model was trained on the
newly uploaded data is quite low. After the testing, the ML model results are appended
according to the new model inference computations for newly inserted data records.

The model upload procedure (UC3) starts in the same way, but rather than a data
file, a user is asked to provide the ML model file. It is important to note, that the ML model
is trained by the model owner and is not included in the scope of the model inference
prototype application. The submitted file contains logistic regression coefficients, these
again are checked whether the data are of an appropriate format and structure. After-
wards, an ML model validation process is initiated (UC4). We present chaincode specifi-
cation fragments of the ML model validation process in more detail. The provided class
and sequence diagrams (Figures 3 and 4) describe the essential parts which should be
recorded in the smart contract execution code. The class diagram (Figure 3) outlines the
smart contract functions, their parameters, and types. The classes that participate in the
smart contract execution are presented as lifelines in the sequence diagram (Figure 4).
Using the behaviour and the structure recorded in these diagrams, a source code can be
produced which would facilitate the process of development. Several specification pat-
terns are described in UML diagrams (Figures 3 and 4) and were used to produce the
source code (Figure 5) for this federated learning solution.

Figure 3. Smart contract structure: UML class diagram representing the main structures and func-
tions of the class LRModelFLModelInference.

Figure 3. Smart contract structure: UML class diagram representing the main structures and functions
of the class LRModelFLModelInference.

Appl. Sci. 2021, 11, 1010 9 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

Figure 4. Smart contract behaviour during model validation: UML sequence diagram.

Figure 5. Validate model function: Chaincode fragment of the smart contract.

Model validation (Figure 2 UC4) begins after the model is uploaded to the blockchain
(Figure 2—UC3). Once the validateModel function is called, a new instance of the DataW-
rapper array is created. Afterwards, the JSON data (in the form of a byte array) from the
ledger are selected (Figure 4—messages 2–3, Figure 5—lines 2–3), and if the selection is
successful the validation continues. Otherwise, once the error object is populated, the val-
idateModel function returns a failure message (Figure 4—opt fragment, message 4, Figure

Figure 4. Smart contract behaviour during model validation: UML sequence diagram.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

Figure 4. Smart contract behaviour during model validation: UML sequence diagram.

Figure 5. Validate model function: Chaincode fragment of the smart contract.

Model validation (Figure 2 UC4) begins after the model is uploaded to the blockchain
(Figure 2—UC3). Once the validateModel function is called, a new instance of the DataW-
rapper array is created. Afterwards, the JSON data (in the form of a byte array) from the
ledger are selected (Figure 4—messages 2–3, Figure 5—lines 2–3), and if the selection is
successful the validation continues. Otherwise, once the error object is populated, the val-
idateModel function returns a failure message (Figure 4—opt fragment, message 4, Figure

Figure 5. Validate model function: Chaincode fragment of the smart contract.

Model validation (Figure 2 UC4) begins after the model is uploaded to the blockchain
(Figure 2—UC3). Once the validateModel function is called, a new instance of the DataWrap-
per array is created. Afterwards, the JSON data (in the form of a byte array) from the ledger
are selected (Figure 4—messages 2–3, Figure 5—lines 2–3), and if the selection is successful
the validation continues. Otherwise, once the error object is populated, the validateModel

Appl. Sci. 2021, 11, 1010 10 of 21

function returns a failure message (Figure 4—opt fragment, message 4, Figure 5—lines
4–6). Afterwards, the JSON data and structure are mapped using the JSON library package
function (Figure 4—message 5, Figure 5—line 7). Then, one more instance is instantiated—
an array of float type (Figure 4—message 6, Figure 5—line 8). Once the required variable
instance is constructed, a prediction is calculated for each validation data record and the
model parameters. Considering that the prediction is calculated for each data validation
record, a loop fragment is used. Inside a loop, a separate method for the prediction calcu-
lation is used and each calculated prediction is appended to the previously instantiated
float type array (Figure 4—loop fragment, messages 7–8, Figure 5—lines 9–12). Once all
the predictions for all DataWrapper records are calculated, the calculated predictions for a
specific model are saved in the blockchain ledger using the shim library [34], and finally,
the success message is returned (Figure 4—message 9–10, Figure 5—lines 13–14).

The test models function (Figure 2—UC2), which is called during the data upload
process, is based on the same principles as the model validation function. The test function
differs from the model validation in several aspects. During the testing, the models
are selected from the ledger, and new prediction results are calculated (similar as in
Figure 4—loop fragment, message 8) and updated accordingly. During the testing, the
model and the data records remain unchanged, only the results are appended to the
blockchain ledger. Both testing and validation functions calculate the prediction results,
and the only difference is the number of models that passed to the function. The following
experiment sections cover the runtime benchmarking results of the validateModel function.

The execution of the validateModel function relies heavily on the calculatePrediction
function, where the logic of model inference resides. The running example of the logistic
regression inference is demonstrated in Figure 6, which depicts how prediction is obtained
for a single data row using a pre-trained model. As it can be noticed, the prediction got
very close to the ground truth.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 21

5—lines 4–6). Afterwards, the JSON data and structure are mapped using the JSON library
package function (Figure 4—message 5, Figure 5—line 7). Then, one more instance is in-
stantiated—an array of float type (Figure 4—message 6, Figure 5—line 8). Once the re-
quired variable instance is constructed, a prediction is calculated for each validation data
record and the model parameters. Considering that the prediction is calculated for each
data validation record, a loop fragment is used. Inside a loop, a separate method for the
prediction calculation is used and each calculated prediction is appended to the previ-
ously instantiated float type array (Figure 4—loop fragment, messages 7–8, Figure 5—
lines 9–12). Once all the predictions for all DataWrapper records are calculated, the calcu-
lated predictions for a specific model are saved in the blockchain ledger using the shim
library [34], and finally, the success message is returned (Figure 4—message 9–10, Figure
5—lines 13–14).

The test models function (Figure 2—UC2), which is called during the data upload
process, is based on the same principles as the model validation function. The test function
differs from the model validation in several aspects. During the testing, the models are
selected from the ledger, and new prediction results are calculated (similar as in Figure
4—loop fragment, message 8) and updated accordingly. During the testing, the model and
the data records remain unchanged, only the results are appended to the blockchain
ledger. Both testing and validation functions calculate the prediction results, and the only
difference is the number of models that passed to the function. The following experiment
sections cover the runtime benchmarking results of the validateModel function.

The execution of the validateModel function relies heavily on the calculatePrediction function, where the logic of model
inference resides. The running example of the logistic regression inference is demonstrated in Figure 6, which depicts

how prediction is obtained for a single data row using a pre-trained model. As it can be noticed, the prediction got
very close to the ground truth.

Figure 6. Running example of the calculatePrediction function featuring the logistic regression inference. The shown data
instance corresponds to the ground-truth class label, in this case, the target class instance (Data.class = 1), which is not
used in the calculations.

Figure 6. Running example of the calculatePrediction function featuring the logistic regression inference. The shown data
instance corresponds to the ground-truth class label, in this case, the target class instance (Data.class = 1), which is not used
in the calculations.

4. Benchmarking Experiments

The goal of the experiments is to evaluate the impact of the introduction of oracle
service on the performance of blockchain-based model inference. We have developed the
oracle service for the model inference, which was integrated into the blockchain-based
prototype application to enable a comparison of model validation runtimes between the
chaincode and oracle service.

4.1. Experimental Setup

The experiments were performed using the architecture described in Section 3.1 on a
server powered by an 8 Intel Xeon Silver 4114 CPU running at 2.20 GHz and featuring 16 GB
of RAM with data stored on the SSD storage. The server was running an Ubuntu 18.04

Appl. Sci. 2021, 11, 1010 11 of 21

operating system and using Docker 19.03.6 containers as an environment for Hyperledger
Fabric 1.4.9 with CouchDB 2.3.1 as the state database. All peers existing in the blockchain
network were required to execute the chaincode to reach a consensus. Experiments were
conducted with peers configured as a single organization.

Chaincode was developed using Go, and the oracle was implemented as a RESTful
service API endpoint using the Go net/http library [35], encapsulating the benchmarked
function, with the code content identical to the chaincode implementation.

The deployment architecture of the model inference prototype is presented in Figure 7.
The main components were hosted on a Linux Ubuntu server using Docker [36] containers.
Hyperledger Fabric CLI (command-line interface) was deployed into a node, which was
used to experiment by calling chaincode functions. The CLI was linked to the Orderer
service and Certificate authority, which issues certificates. The Orderer regulates the
transaction, commits among peers, and controls the chaincode execution order. Each of the
peer nodes had a Hyperledger solution deployed, which consisted of a model inference
chaincode and local ledger copy. Alongside the Hyperledger Fabric solution, a model
inference web service was deployed to each node to accurately judge the performance of
the oracle web service against the entirely blockchain-based solution.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21

4. Benchmarking Experiments
The goal of the experiments is to evaluate the impact of the introduction of oracle

service on the performance of blockchain-based model inference. We have developed the
oracle service for the model inference, which was integrated into the blockchain-based
prototype application to enable a comparison of model validation runtimes between the
chaincode and oracle service.

4.1. Experimental Setup
The experiments were performed using the architecture described in Section 3.1 on a

server powered by an 8 Intel Xeon Silver 4114 CPU running at 2.20 GHz and featuring 16
GB of RAM with data stored on the SSD storage. The server was running an Ubuntu 18.04
operating system and using Docker 19.03.6 containers as an environment for Hyperledger
Fabric 1.4.9 with CouchDB 2.3.1 as the state database. All peers existing in the blockchain
network were required to execute the chaincode to reach a consensus. Experiments were
conducted with peers configured as a single organization.

Chaincode was developed using Go, and the oracle was implemented as a RESTful
service API endpoint using the Go net/http library [35], encapsulating the benchmarked
function, with the code content identical to the chaincode implementation.

The deployment architecture of the model inference prototype is presented in Figure
7. The main components were hosted on a Linux Ubuntu server using Docker [36] con-
tainers. Hyperledger Fabric CLI (command-line interface) was deployed into a node,
which was used to experiment by calling chaincode functions. The CLI was linked to the
Orderer service and Certificate authority, which issues certificates. The Orderer regulates
the transaction, commits among peers, and controls the chaincode execution order. Each
of the peer nodes had a Hyperledger solution deployed, which consisted of a model in-
ference chaincode and local ledger copy. Alongside the Hyperledger Fabric solution, a
model inference web service was deployed to each node to accurately judge the perfor-
mance of the oracle web service against the entirely blockchain-based solution.

Figure 7. Physical view of the utilized blockchain architecture: UML deployment diagram. All
components were hosted on the same physical server, using Docker [36] containers.
Figure 7. Physical view of the utilized blockchain architecture: UML deployment diagram. All
components were hosted on the same physical server, using Docker [36] containers.

To evaluate the impact on the model inference runtime performance, we conducted
model validation experiments on two datasets:

1. The synthetic dataset contained points in the 2D feature space of two non-linearly
separated banana-like shaped classes and were generated using the make_moons
function from the scikit-learn Python library [18].

2. The EEG eye state dataset [19] contained 14 features for detecting if the participant’s
eyes were open or closed during a 117 s recording of signal through 14 channels of
EMOTIV EEG Neuroheadset.

The number of rows for both datasets was determined according to the following
grid: {1024; 2048; 4096; 8192; 16,348; 32,768}. Since the EEG eye state dataset contained
only 14,980 instances it had to be expanded to contain 16,348 or 32,768 rows through
bootstrapping of the original dataset. Data were stored using indexing, to speed up data

Appl. Sci. 2021, 11, 1010 12 of 21

reading during the experiments. The sizes of synthetic and EEG eye state datasets in kB are
presented in Table 2. The number of peers participating in the network was set according to
the following grid: {3; 5; 7; 9; 11; 13}. These specific network sizes were chosen to represent
a gradual increase and the maximum network size was capped according to the known
limitations of the Hyperledger Fabric platform [37]. For each combination of data and
network size, the blockchain infrastructure was initialized from scratch.

Table 2. Amount of data records and size (in kB) of the corresponding JSON (JavaScript Object
Notation) structure.

Data Records Synthetic Dataset (kB) EEG Eye State Dataset (kB)

1024 114 510
2048 227 1023
4096 453 2049
8192 905 4097

16,348 1809 14,446
32,768 3650 16,384

For both datasets, we measured model inference runtimes and summarized a compar-
ison between different implementations using the overhead derived by the following ratio:

Overhead = 100 ×
(

median
(

TOracleAPI
TChaincode

)
− 1

)
(1)

where T is a set of runtimes, obtained while repeating the experiment over 100 logistic
regression models, which were prepared ahead of the experiments using the GoML li-
brary [38] on a random subsample of the dataset. The runtime was measured from the
moment the model validation function was called until the function returned the results to
the smart contract.

4.2. Synthetic 2D Dataset Results

The preparation step for the model validation use case experiment was uploading
validation data to Hyperledger CouchDB through the chaincode. During the experiment,
the peers uploaded their models. The uploaded models were validated using chaincode
and the runtime of the validation function was measured. Blockchain was restarted and
then the function that uses the oracle component rather than the chaincode was called,
measuring the oracle service runtime. The median runtimes for all the tested network and
data sizes are presented in Figure 8, where the bar plots indicate that the model inference
time substantially increases after the dataset size reaches more than 8192 rows. Surprisingly,
the linear increase in runtime with respect to the network size can only be noticed when
testing on large datasets containing 16,348 or 32,768 rows.

For the largest dataset scenario, we can observe a linear relationship between the
network size and model inference runtime (see Figures 8 and 9) except for the outliers
consistently resulting from the first run of the experiment. Interestingly, the outliers for the
chaincode were fixed at almost a constant low value, while for the oracle service the outlier
values fluctuated, especially when the network exceeded eight peers.

The largest runtimes at the extreme scenario of large network and data settings are
shown in Figure 10. We speculate that overheads are mainly due to the transferring
of data from the blockchain state database to the oracle component and receiving back
the model output, required for peers to arrive at a consensus to confirm the transaction.
Most of the runtime results are clustered around 1 min and 19 s for both model inference
implementations. Figure 10 also displays that both types of validation methods displayed
the lowest runtime values during benchmarking initialization runs, as the transaction count
between peers were still low and peers were not busy computing new blockchain blocks.

Appl. Sci. 2021, 11, 1010 13 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

Figure 8. Model inference runtime (in seconds) depending on the network size for different amounts of the synthetic
dataset.

For the largest dataset scenario, we can observe a linear relationship between the net-
work size and model inference runtime (see Figures 8 and 9) except for the outliers con-
sistently resulting from the first run of the experiment. Interestingly, the outliers for the
chaincode were fixed at almost a constant low value, while for the oracle service the out-
lier values fluctuated, especially when the network exceeded eight peers.

(a) (b)

Figure 9. Model inference runtime (in seconds) in relation to the network size for the largest variant of the synthetic da-
taset: Chaincode (a) and oracle service (b) results. The linear relationship is evident where an additional peer in the net-
work increases runtime T by 6.3 s for the chaincode and 6.28 s for the oracle service.

The largest runtimes at the extreme scenario of large network and data settings are
shown in Figure 10. We speculate that overheads are mainly due to the transferring of
data from the blockchain state database to the oracle component and receiving back the
model output, required for peers to arrive at a consensus to confirm the transaction. Most
of the runtime results are clustered around 1 min and 19 s for both model inference im-
plementations. Figure 10 also displays that both types of validation methods displayed
the lowest runtime values during benchmarking initialization runs, as the transaction
count between peers were still low and peers were not busy computing new blockchain
blocks.

Figure 8. Model inference runtime (in seconds) depending on the network size for different amounts of the synthetic
dataset.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

Figure 8. Model inference runtime (in seconds) depending on the network size for different amounts of the synthetic
dataset.

For the largest dataset scenario, we can observe a linear relationship between the net-
work size and model inference runtime (see Figures 8 and 9) except for the outliers con-
sistently resulting from the first run of the experiment. Interestingly, the outliers for the
chaincode were fixed at almost a constant low value, while for the oracle service the out-
lier values fluctuated, especially when the network exceeded eight peers.

(a) (b)

Figure 9. Model inference runtime (in seconds) in relation to the network size for the largest variant of the synthetic da-
taset: Chaincode (a) and oracle service (b) results. The linear relationship is evident where an additional peer in the net-
work increases runtime T by 6.3 s for the chaincode and 6.28 s for the oracle service.

The largest runtimes at the extreme scenario of large network and data settings are
shown in Figure 10. We speculate that overheads are mainly due to the transferring of
data from the blockchain state database to the oracle component and receiving back the
model output, required for peers to arrive at a consensus to confirm the transaction. Most
of the runtime results are clustered around 1 min and 19 s for both model inference im-
plementations. Figure 10 also displays that both types of validation methods displayed
the lowest runtime values during benchmarking initialization runs, as the transaction
count between peers were still low and peers were not busy computing new blockchain
blocks.

Figure 9. Model inference runtime (in seconds) in relation to the network size for the largest variant of the synthetic dataset:
Chaincode (a) and oracle service (b) results. The linear relationship is evident where an additional peer in the network
increases runtime T by 6.3 s for the chaincode and 6.28 s for the oracle service.

Table 3 demonstrates the runtime overhead in percentages of the oracle service com-
ponent. Results indicate that the synthetic dataset, surprisingly, had both negative and
positive overheads with an overall median overhead of 1.99%. The results could be sum-
marized as follows: (a) On all network sizes (3–13 peers) and data records not exceeding
8192 (1024–8192 records) the overhead ranges from −4.31 to 6.59%. As validation with
these configurations takes a relatively short time, the variability in inference overhead is
quite high; (b) as data increase to 16,348 records variability in overhead drops for all peers
(3–13 peers) with the overhead ranging from 0.73 to 4.28%; (c) using the highest amount of
data records tested (32,768 records), the variability in validation times drops significantly
only producing at most 2.79% overhead on the least number of peers (three peers) tested
and less than 1% (0.03–0.73%) on the remaining peer configurations (5–13 peers). Results
indicate that the overhead diminishes once the number of participants and data records
increase. The higher variability of overheads for smaller dataset sizes irrespective of the
network configuration was observed.

Appl. Sci. 2021, 11, 1010 14 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 21

Figure 10. Distribution of runtime results using a network of 13 peers with the dataset of 32,768
records in the model validation experiment. The median runtime for model validation was 1 min
19 s for the chaincode (left) and 1 min 19 s for the oracle service (right).

Table 3 demonstrates the runtime overhead in percentages of the oracle service com-
ponent. Results indicate that the synthetic dataset, surprisingly, had both negative and
positive overheads with an overall median overhead of 1.99%. The results could be sum-
marized as follows: (a) On all network sizes (3–13 peers) and data records not exceeding
8192 (1024–8192 records) the overhead ranges from −4.31 to 6.59%. As validation with
these configurations takes a relatively short time, the variability in inference overhead is
quite high; (b) as data increase to 16,348 records variability in overhead drops for all peers
(3–13 peers) with the overhead ranging from 0.73 to 4.28%; (c) using the highest amount
of data records tested (32,768 records), the variability in validation times drops signifi-
cantly only producing at most 2.79% overhead on the least number of peers (three peers)
tested and less than 1% (0.03–0.73%) on the remaining peer configurations (5–13 peers).
Results indicate that the overhead diminishes once the number of participants and data
records increase. The higher variability of overheads for smaller dataset sizes irrespective
of the network configuration was observed.

Table 3. Model inference overhead (in%) for the synthetic dataset, calculated as a median of 100
runtime ratios. The overall median from 3600 runs (6 × 6 × 100 runtime ratios) was 1.99% and the
overhead was above zero for 69.15% of all runs.

Data Records
Number of Peers in the Blockchain Network

3 5 7 9 11 13
1024 2.66 2.56 6.28 −4.31 −1.51 6.59
2048 2.18 4.48 −0.63 3.72 4.99 5.31
4096 1.17 5.61 3.93 5.37 4.27 4.89
8192 3.16 5.01 2.85 3.79 2.96 3.59

16,348 4.28 1.20 0.32 1.36 1.02 0.77
32,768 2.79 0.73 0.63 0.40 0.05 0.03

As network and data sizes increase, the performance overhead approaches zero since
the time required to transfer data to the oracle service gets relatively smaller in compari-
son to the model inference time. We speculate that the performance of the implementa-
tions compared would reach nearly identical runtime results in a real-world scenario.

Figure 10. Distribution of runtime results using a network of 13 peers with the dataset of 32,768
records in the model validation experiment. The median runtime for model validation was 1 min
19 s for the chaincode (left) and 1 min 19 s for the oracle service (right).

Table 3. Model inference overhead (in%) for the synthetic dataset, calculated as a median of 100 run-
time ratios. The overall median from 3600 runs (6 × 6 × 100 runtime ratios) was 1.99% and the
overhead was above zero for 69.15% of all runs.

Data
Records

Number of Peers in the Blockchain Network

3 5 7 9 11 13

1024 2.66 2.56 6.28 −4.31 −1.51 6.59
2048 2.18 4.48 −0.63 3.72 4.99 5.31
4096 1.17 5.61 3.93 5.37 4.27 4.89
8192 3.16 5.01 2.85 3.79 2.96 3.59

16,348 4.28 1.20 0.32 1.36 1.02 0.77
32,768 2.79 0.73 0.63 0.40 0.05 0.03

As network and data sizes increase, the performance overhead approaches zero since
the time required to transfer data to the oracle service gets relatively smaller in comparison
to the model inference time. We speculate that the performance of the implementations
compared would reach nearly identical runtime results in a real-world scenario.

4.3. EEG Eye State Dataset Results

The median runtimes for all the tested network and data sizes are presented in
Figure 11, median values presented similar results to the first experiment performed with
the synthetic 2D dataset. Similar to the synthetic 2D dataset results, the biggest increase
in the model inference time occurred when the data size reached more than 8192 records.
The bigger number of features and dataset size increased the amount of time required to
validate the model, thus displaying higher median values for the EEG eye state dataset.
Identically to the results of the previous experiment, a linear increase in runtime with
respect to the network size can only be noticed when testing on large datasets containing
16,348 or 32,768 rows.

Appl. Sci. 2021, 11, 1010 15 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21

4.3. EEG Eye State Dataset Results
The median runtimes for all the tested network and data sizes are presented in Figure

11, median values presented similar results to the first experiment performed with the
synthetic 2D dataset. Similar to the synthetic 2D dataset results, the biggest increase in the
model inference time occurred when the data size reached more than 8192 records. The
bigger number of features and dataset size increased the amount of time required to vali-
date the model, thus displaying higher median values for the EEG eye state dataset. Iden-
tically to the results of the previous experiment, a linear increase in runtime with respect
to the network size can only be noticed when testing on large datasets containing 16,348
or 32,768 rows.

Figure 11. Model inference runtime (in seconds) depending on the network size for different amounts of EEG (electroen-
cephalogram) eye state dataset.

For the largest dataset scenario, we can observe a linear relationship between the net-
work size and model inference runtime (see Figures 11 and 12) except for outliers consist-
ently resulting from the first run of the experiment. Similarly, to the first experiment, out-
liers for the chaincode were fixed at almost a constant low value, while the oracle service
outlier values started fluctuating, especially when the network exceeded eight peers.

(a) (b)

Figure 12. Model inference runtime (in seconds) in relation to the network size for the largest variant of EEG eye state
dataset: Chaincode (a) and oracle service (b) results. The linear relationship is evident, where an additional peer in the
network increases runtime T by 6.55 s for the chaincode and 6.63 s for the oracle service.

Figure 11. Model inference runtime (in seconds) depending on the network size for different amounts of EEG (electroen-
cephalogram) eye state dataset.

For the largest dataset scenario, we can observe a linear relationship between the
network size and model inference runtime (see Figures 11 and 12) except for outliers
consistently resulting from the first run of the experiment. Similarly, to the first experiment,
outliers for the chaincode were fixed at almost a constant low value, while the oracle service
outlier values started fluctuating, especially when the network exceeded eight peers.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21

4.3. EEG Eye State Dataset Results
The median runtimes for all the tested network and data sizes are presented in Figure

11, median values presented similar results to the first experiment performed with the
synthetic 2D dataset. Similar to the synthetic 2D dataset results, the biggest increase in the
model inference time occurred when the data size reached more than 8192 records. The
bigger number of features and dataset size increased the amount of time required to vali-
date the model, thus displaying higher median values for the EEG eye state dataset. Iden-
tically to the results of the previous experiment, a linear increase in runtime with respect
to the network size can only be noticed when testing on large datasets containing 16,348
or 32,768 rows.

Figure 11. Model inference runtime (in seconds) depending on the network size for different amounts of EEG (electroen-
cephalogram) eye state dataset.

For the largest dataset scenario, we can observe a linear relationship between the net-
work size and model inference runtime (see Figures 11 and 12) except for outliers consist-
ently resulting from the first run of the experiment. Similarly, to the first experiment, out-
liers for the chaincode were fixed at almost a constant low value, while the oracle service
outlier values started fluctuating, especially when the network exceeded eight peers.

(a) (b)

Figure 12. Model inference runtime (in seconds) in relation to the network size for the largest variant of EEG eye state
dataset: Chaincode (a) and oracle service (b) results. The linear relationship is evident, where an additional peer in the
network increases runtime T by 6.55 s for the chaincode and 6.63 s for the oracle service.

Figure 12. Model inference runtime (in seconds) in relation to the network size for the largest variant of EEG eye state
dataset: Chaincode (a) and oracle service (b) results. The linear relationship is evident, where an additional peer in the
network increases runtime T by 6.55 s for the chaincode and 6.63 s for the oracle service.

The largest runtimes at the extreme scenario of large network and data settings are
shown in Figure 13. The initial runs for both validation types provided the least amount
of validation time clearly describing the overhead introduced by the oracle service. All
sequential validation run results clustered around the validation time of 1 min and 24 s for
the chaincode validation and around 1 min 25 s for the oracle service validation.

Appl. Sci. 2021, 11, 1010 16 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21

The largest runtimes at the extreme scenario of large network and data settings are

shown in Figure 13. The initial runs for both validation types provided the least amount
of validation time clearly describing the overhead introduced by the oracle service. All
sequential validation run results clustered around the validation time of 1 min and 24 s
for the chaincode validation and around 1 min 25 s for the oracle service validation.

Figure 13. Distribution of runtime results using a network of 13 peers with the dataset of 32,768
records in the model testing experiment. The median runtime for model validation was 1 min 24 s
for the chaincode (left) and 1 min 26 s for the oracle service (right).

In Table 4, oracle service overheads in percentages are reported, revealing the suita-
bility of the oracle service for the larger dataset and network sizes. Results indicate that
the EEG eye state dataset had only positive overheads with the overall median overhead
of 4.06%. The results could be summarized as follows: (a) On smaller network sizes (3–7
peers) and all dataset sizes (1024–32,768 records), the overhead was in the range of 2.16 to
9.67%, using these network and data configurations the highest amount of overhead was
recorded on the smallest dataset (1024 records) and the least amount of overhead 2.16%
was recorded using the highest amount of data records (32,768 records); (b) using the
larger network sizes (9–13 peers), the validation overhead was in the range of 0.80–6.91%,
for these peer network configurations the overhead peaked at medium-sized datasets
(2048–8192 records) 6.91% for nine peers, 6.53% for 11 peers, and 6.76% for 13 peers. The
least overhead 0.80% was recorded using the largest amount of data (32,768 peers) and
network composed of 11 peers. Overall, the maximum overhead for various network sizes
was in the range of 0.80–9.67%.

Table 4. Model inference overhead (in%) for the EEG eye state dataset, calculated from a median
of 100 runtime ratios. The overall median from 3600 runs (6 × 6 × 100 runtime ratios) was 4.06%
and the overhead was above zero for 85.51% of all runs.

Data Records
Number of Peers in the Blockchain Network

3 5 7 9 11 13
1024 9.32 7.69 9.67 3.52 1.93 4.61
2048 4.83 4.36 2.80 6.91 5.89 4.95
4096 2.13 6.88 5.67 6.19 6.53 5.41
8192 5.73 5.05 7.01 6.65 6.09 6.76

16,348 4.06 2.97 2.35 2.34 1.54 2.69

Figure 13. Distribution of runtime results using a network of 13 peers with the dataset of
32,768 records in the model testing experiment. The median runtime for model validation was
1 min 24 s for the chaincode (left) and 1 min 26 s for the oracle service (right).

In Table 4, oracle service overheads in percentages are reported, revealing the suitabil-
ity of the oracle service for the larger dataset and network sizes. Results indicate that the
EEG eye state dataset had only positive overheads with the overall median overhead of
4.06%. The results could be summarized as follows: (a) On smaller network sizes (3–7 peers)
and all dataset sizes (1024–32,768 records), the overhead was in the range of 2.16 to 9.67%,
using these network and data configurations the highest amount of overhead was recorded
on the smallest dataset (1024 records) and the least amount of overhead 2.16% was recorded
using the highest amount of data records (32,768 records); (b) using the larger network
sizes (9–13 peers), the validation overhead was in the range of 0.80–6.91%, for these peer
network configurations the overhead peaked at medium-sized datasets (2048–8192 records)
6.91% for nine peers, 6.53% for 11 peers, and 6.76% for 13 peers. The least overhead 0.80%
was recorded using the largest amount of data (32,768 peers) and network composed of
11 peers. Overall, the maximum overhead for various network sizes was in the range of
0.80–9.67%.

Table 4. Model inference overhead (in%) for the EEG eye state dataset, calculated from a median of
100 runtime ratios. The overall median from 3600 runs (6 × 6 × 100 runtime ratios) was 4.06% and
the overhead was above zero for 85.51% of all runs.

Data
Records

Number of Peers in the Blockchain Network

3 5 7 9 11 13

1024 9.32 7.69 9.67 3.52 1.93 4.61
2048 4.83 4.36 2.80 6.91 5.89 4.95
4096 2.13 6.88 5.67 6.19 6.53 5.41
8192 5.73 5.05 7.01 6.65 6.09 6.76

16,348 4.06 2.97 2.35 2.34 1.54 2.69
32,768 2.17 3.63 2.16 1.76 0.80 1.82

4.4. Comparison and Summary of Results

Although the size for the EEG dataset was more than four times larger than for
the synthetic dataset, the median performance overhead only increased by 2.07%. Both
experimental results demonstrate that the model validation runtime is more sensitive to
the network size increases rather than increases in the dataset size. Moreover, the linear

Appl. Sci. 2021, 11, 1010 17 of 21

relationship between the network size and runtime was evident at the largest dataset sizes
benchmarked. We speculate that at small amounts of data for inference the communication-
related overhead outweighs the inference-related overhead. Therefore, linear dependence
is revealed only when data amounts for the inference become extensively large.

5. Discussion

Our implementation is partially related to [7] as they use similar deployment princi-
ples and the Hyperledger Fabric network. Authors of [7] implement the model validation
using chaincode and do not employ the oracle service. Even though ML can be completed
without the oracle services, we believe that these services hold potential to improve the
ecosystem of ML on private blockchains, since they unlock the flexibility to use program-
ming languages which are not supported by Hyperledger Fabric. Communication with
real-world API from the chaincode is a well-known source of failure in decentralized
blockchain applications, and recently some solutions emerged, such as Band Protocol [39]
or Hyperledger Avalon [40]. Hyperledger Avalon differs from our proposed solution by
allowing many different blockchain technologies, such as Ethereum, Hyperledger Fabric,
or Hyperledger Sawtooth, to use various oracles. These oracle components are trusted and
centralized, whereas our solution deploys an oracle service instance for each peer existing
on the blockchain network. Having oracle service implementation on each participating
node eliminates the need to access trusted real-world information outside the network.
Expecting identical computation results (in our case, predictions from the ML model)
regardless of the node is sufficient. These node-based oracle instances do not degrade the
network security level [41] and allow reducing the communication latency. The services
for model inference in the Hyperledger Fabric infrastructure could also be deployed by
some orchestration entity existing in each organization. The entity would manage updates
and would ensure that the organization’s peers use the same version of the oracle service.
Any mismatch in versions could lead to a failure state in which peers would not be able
to reach consensus. Some standard procedures should be provided for new peers joining
the network and peers rejoining the network, such as updating and setting up of the
oracle service.

During the development process, we explored more than one development envi-
ronment and discovered that the performance of the model inference depends on the
peer’s storage type, as it impacts the state database performance. Consequently, the hard
disk drive storage used during the development performed way slower compared to the
solid-state drive used in the reported experiments. A drawback of our approach is that
benchmarking was executed in a virtual environment and not on a network of physical com-
puters. Even though experiments were conducted on a single virtual server using Docker
containers for network simulation, the explored architecture is mostly restricted to commu-
nication between the smart contract and oracle service over a local connection (the oracle
service is running on a localhost). Thus, in a more realistic scenario, additional network
latency would be introduced only to maintain that the blockchain network is synchronized,
irrespective of the choice between oracle service and chaincode implementations.

We assume performance to be the most important factor for choosing between the
oracle and chaincode solution. The blockchain architecture provides additional properties,
such as scalability, privacy, auditability, decentralization, etc. In addition to performance,
the implemented solution’s scalability was partially assessed by benchmarking network
configurations of various sizes. The other properties, such as privacy, auditability, or
decentralization, were not experimentally assessed since these properties are inherent to
the Hyperledger Fabric platform and are not directly affected by the alternatives compared.

The performed experiments demonstrated that an increase in the dataset size results in
diminishing differences between implementation alternatives, and we assume that a similar
tendency would hold when switching from a simple to a more complex ML model. For
expanding experiments to cover more models, slight modifications of model data structure
and smart contract execution logic would be needed. One potential solution would be

Appl. Sci. 2021, 11, 1010 18 of 21

to use a compact text-based representation of the ML model file rather than adapting the
structure for each specific model. The introduction of a more complex ML model would
incur longer model inference runtimes with a relatively smaller communication overhead.
Therefore, the marginal differences between alternatives would diminish, even more, thus
justifying the choice of oracle for the implementation of the ML model inference logic.

In the context of this research, we consider federated learning in a broader perspec-
tive than traditional approaches concerned with collecting the ML model updates and
integrating them into a global shared model. The blockchain-based network in our case
would be used for collective sharing of a small sample of data and models trained on the
remaining privately held data. The upload of new unseen data would trigger inference for
all the previously uploaded ML models (testing use case) and the upload of the new ML
model would trigger its inference for all the previously uploaded data (validation use case).
Results of the model inference are then agreed upon by the consensus of network peers
and saved permanently in the ledger as a triple of {ML model ID; data row ID; prediction},
ensuring that for each possible combination of a shared model and data instance, the
recorded model output exists as a prediction verified by the network. Various scenarios
to achieve federated learning could co-exist and we could: (a) Upload the traditional ML
model (i.e., created using the Python library scikit-learn); (b) upload the online ML model
(i.e., created using the Python library creme); (c) take the existing online ML model from the
ledger, train it on individual data, and upload it as a model’s new version; (d) propose the
meta-model or ML ensemble as a set of weights for the fusion of pre-selected shared models
(usual candidates being a few best traditional ML models) through weighted averaging
of model-wise predictions. The blockchain network being a back-end, all other tasks of
monitoring shared models through tracking of their accuracy by various metrics (log-loss,
Kappa, AUC, RMSE, etc.) depending on the supervised ML task (usually, classification
or regression) would be fundamental front-end use cases. The envisaged solution encom-
passes all possible FL scenarios (a–d), supports a wide range of ML models implemented
in various libraries and languages (Python, R, MATLAB, Java, Rust, Go, etc.), and features
an intuitive graphical user interface in the form of a client application, which would help
monitor how the ledger evolves by tracking all the uploaded data and models (performance
metrics need to be recalculated after the new data are uploaded). Additionally, the solution
could help peers create any chosen model offline on private data without many hurdles.
However, this would need additional API endpoints for model training, bundled alongside
the model inference oracle service.

Concerns over user data privacy are becoming increasingly important all over the
world. This shift in data security also challenges the way ML models are trained and
demands techniques to train ML models without the need to share user data or disclose
it to a centralized server for processing. Concerns regarding private data protection are
serious, especially in such sectors as healthcare or finance. We speculate that the need for
privacy-preserving scenarios of ML will continue to grow in demand. While we concentrate
on security and immutability aspects of ML, the blockchain technology already provides
reliable solutions to log transaction history into the immutable ledger and trace data and
model evolution with consistent and verified performance evaluation reached through
network consensus.

6. Conclusions

The developed Hyperledger Fabric application incorporated two different implemen-
tation variants—a chaincode-based solution, and a combination of chaincode and oracle
web service component. Although the introduction of oracle service enables the reusability
of existing ML libraries and a more flexible development of FL solutions, it introduces a
runtime overhead. To determine the impact on the performance, we conducted experiments
assessing runtime differences between the standalone chaincode and the combination of
chaincode with the oracle service. Furthermore, the performance overhead was evaluated

Appl. Sci. 2021, 11, 1010 19 of 21

using two different logistic regression models validation—one of three coefficients with
synthetic data, and the other one of 15 coefficients with the EEG eye state dataset.

The benchmarking experiment using the synthetic dataset has shown promising
results with the median runtime overhead of ~2% overall and individual medians not
exceeding 6.59% irrespective of the experimental setup. Larger overheads were introduced
at smaller data sizes mostly due to the data upload step to the oracle service. As the
network and data increase, the impact on the overhead tends to diminish due to the longer
inference runtimes compared to the data transfer delay. The benchmarking experiment
using the EEG eye state dataset had a median runtime overhead of ~4% and individual
medians were in the range from 0.8 to 9.7%. Although the size of the EEG eye state
dataset was bigger more than four times (and data record dimensionality bigger than
seven times) than the synthetic dataset, the overall median overhead increased by two
percentage points, suggesting that the oracle runtime is mostly affected by the model
inference rather than the dataset transfer step. Therefore, to summarize, the performance is
not as sensitive to the dataset size changes, as opposed to the network size changes, where
an additional peer increases the runtime linearly by over 6 s at the largest amount of data
records benchmarked.

Our research suggests that the increases in runtime, due to the transfer of computations
to oracles running on individual peers, seem to be negligible if compared to the possibilities
that such an implementation has the potential to unlock. The implemented prototype and
Hyperledger Fabric need to be further developed to achieve federated learning for real-
world applications. Organizations that require more participating peers should evaluate if
the time required to validate the model using the pure chaincode is sufficiently lower than
the more universal approach using the oracle service component.

As future work, we plan to introduce the capability to combine the uploaded ML
models into the ensemble or sequentially evolve a single online ML model. Furthermore,
since the proof-of-concept demonstrated that the impact of oracle service on runtime
performance is marginal, we plan to support a wider variety of models through third-party
ML libraries and experiment with model merging approaches.

Author Contributions: Conceptualization, E.V., V.D., M.J., L.Č.; methodology, L.Č., M.J., V.D.;
software, V.D.; validation, E.V., L.Č.; formal analysis, V.D., M.J.; resources, L.Č., R.B.; data curation,
E.V.; writing—original draft preparation, V.D., M.J.; writing—review and editing, E.V., L.Č., M.J.,
V.D.; visualization, E.V., M.J., L.Č.; supervision, R.B.; funding acquisition, L.Č. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were used: Synthetic 2D [18], EEG-eye-
state [19].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays, F.; Augenstein, S.; Ramage, D. Federated learning for mobile keyboard

prediction. arXiv 2019, arXiv:1811.03604v2.
2. Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated learning: Strategies for improving

communication efficiency. arXiv 2017, arXiv:1610.05492v2.
3. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. Artif. Intell. Stat. 2017, 54, 1273–1282.
4. Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A survey on security and privacy of

federated learning. Future Gener. Comput. Syst. 2020, 115, 619–640. [CrossRef]
5. Wen, Y.; Li, W.; Roth, H.; Dogra, P. Federated Learning Powered by NVIDIA Clara. 2019. Available online: https://developer.

nvidia.com/blog/federated-learning-clara/ (accessed on 26 November 2020).

http://doi.org/10.1016/j.future.2020.10.007
https://developer.nvidia.com/blog/federated-learning-clara/
https://developer.nvidia.com/blog/federated-learning-clara/

Appl. Sci. 2021, 11, 1010 20 of 21

6. Preuveneers, D.; Rimmer, V.; Tsingenopoulos, I.; Spooren, J.; Joosen, W.; Ilie-Zudor, E. Chained anomaly detection models for
federated learning: An intrusion detection case study. Appl. Sci. 2018, 8, 663. [CrossRef]

7. Bore, N.K.; Raman, R.K.; Markus, I.M.; Remy, S.L.; Bent, O.; Hind, M.; Weldemariam, K. Promoting distributed trust in machine
learning and computational simulation. In Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), Seoul, Korea, 14–17 May 2019; pp. 311–319. [CrossRef]

8. Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. Deepchain: Auditable and privacy-preserving deep learning with
blockchain-based incentive. IEEE Trans. Dependable Secure Comput. 2019. [CrossRef]

9. Li, Z.; Liu, J.; Hao, J.; Wang, H.; Xian, M. CrowdSFL: A secure crowd computing framework based on blockchain and federated
learning. Electronics 2020, 9, 773. [CrossRef]

10. Salah, K.; Rehman, M.H.; Nizamuddin, N.; Al-Fuqaha, A. Blockchain for AI: Review and open research challenges. IEEE Access
2019, 7, 10127–10149. [CrossRef]

11. Beniiche, A. A study of blockchain oracles. arXiv 2020, arXiv:2004.07140.
12. Lo, S.K.; Xu, X.; Staples, M.; Yao, L. Reliability analysis for blockchain oracles. Comput. Electr. Eng. 2020, 83, 106582. [CrossRef]
13. Kochovski, P.; Gec, S.; Stankovski, V.; Bajec, M.; Drobintsev, P.D. Trust management in a blockchain based fog computing platform

with trustless smart oracles. Future Gener. Comput. Syst. 2019, 101, 747–759. [CrossRef]
14. Jurgelaitis, M.; Drungilas, V.; Butkienė, R.; Vaičiukynas, E.; Čeponienė, L. Modelling principles for blockchain-based implementa-

tion of business or scientific processes. CEUR Workshop Proc. IVUS 2019, 2470, 43–47.
15. Object Management Group. UML 2.5 Specification. 2015. Available online: http://www.omg.org/spec/UML/2.5/PDF

(accessed on 26 November 2020).
16. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; Caro, A.D.; Sethi, M. Hyperledger fabric: A distributed

operating system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Conference; Association for Computing
Machinery: New York, NY, USA, 2018; pp. 1–15. [CrossRef]

17. Lessmann, S.; Baesens, B.; Seow, H.-V.; Thomas, L.C. Benchmarking state-of-the-art classification algorithms for credit scoring:
An update of research. Eur. J. Oper. Res. 2015, 247, 124–136. [CrossRef]

18. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Perrot, M. Scikit-learn: Machine learning in python.
J. Mach. Learn. Res. 2011, 12, 2825–2830. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.
make_moons.html (accessed on 26 November 2020).

19. Dua, D.; Graff, C. UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer
Sciences. 2017. Available online: http://archive.ics.uci.edu/ml (accessed on 26 November 2020).

20. Li, L.; Fan, Y.; Tse, M.; Lin, K.-Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149. [CrossRef]
21. Li, Q.; Wen, Z.; Wu, Z.; Hu, S.; Wang, N.; He, B. Federated learning systems: Vision, hype and reality for data privacy and

protection. arXiv 2021, arXiv:1907.09693v4.
22. Diao, E.; Ding, J.; Tarokh, V. HeteroFL: Computation and communication efficient federated learning for heterogeneous clients.

arXiv 2020, arXiv:2010.01264v1.
23. Kim, H.; Park, J.; Bennis, M.; Kim, S.-L. Blockchained on-device federated learning. IEEE Commun. Lett. 2019, 24, 1279–1283.

[CrossRef]
24. Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; Zhang, Y. Blockchain and federated learning for privacy-preserved data sharing in

industrial IoT. IEEE Trans. Ind. Inform. 2019, 16, 4177–4186. [CrossRef]
25. Kuo, T.-T.; Ohno-Machado, L. ModelChain: Decentralized privacy-preserving healthcare predictive modeling framework on

private blockchain networks. arXiv 2018, arXiv:1802.01746.
26. Kang, J.; Xiong, Z.; Niyato, D.; Zou, Y.; Zhang, Y.; Guizani, M. Reliable federated learning for mobile networks. IEEE Wirel. Com-

mun. 2020, 27. [CrossRef]
27. Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Blockchain empowered asynchronous federated learning for secure data

sharing in internet of vehicles. IEEE Trans. Veh. Technol. 2020, 69. [CrossRef]
28. Mendis, G.J.; Wu, Y.; Wei, J.; Sabounchi, M.; Roche, R. Blockchain as a service: A decentralized and secure computing paradigm.

arXiv 2018, arXiv:1807.02515.
29. Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.-B.D.; Xia, X.; Feng, Y.; Xu, B. Smart contract development: Challenges and opportunities.

IEEE Trans. Softw. Eng. 2019. [CrossRef]
30. Rocha, H.; Ducasse, S. Preliminary steps towards modeling blockchain oriented software. In Proceedings of the IEEE/ACM 1st

International Workshop on Emerging Trends in Software Engineering for Blockchain, Gothenburg, Sweden, 27 May–3 June 2018;
pp. 52–57.

31. García-Bañuelos, L.; Ponomarev, A.; Dumas, M.; Weber, I. Optimized execution of business processes on blockchain. In Proceed-
ings of the International Conference on Business Process Management, Barcelona, Spain, 10–15 September 2017; pp. 130–146.

32. Lugan, S.; Desbordes, P.; Brion, E.; Tormo, L.X.; Legay, A.; Macq, B. Secure architectures implementing trusted coalitions for
blockchained distributed learning (TCLearn). IEEE Access 2019, 7, 181789–181799. [CrossRef]

33. Marchesi, M.; Marchesi, L.; Tonelli, R. An agile software engineering method to design blockchain applications. In Proceedings of
the 14th Central and Eastern European Software Engineering Conference; Association for Computing Machinery: New York, NY, USA,
2018; pp. 1–8. [CrossRef]

http://doi.org/10.3390/app8122663
http://doi.org/10.1109/BLOC.2019.8751423
http://doi.org/10.1109/TDSC.2019.2952332
http://doi.org/10.3390/electronics9050773
http://doi.org/10.1109/ACCESS.2018.2890507
http://doi.org/10.1016/j.compeleceng.2020.106582
http://doi.org/10.1016/j.future.2019.07.030
http://www.omg.org/spec/UML/2.5/PDF
http://doi.org/10.1145/3190508.3190538
http://doi.org/10.1016/j.ejor.2015.05.030
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
http://archive.ics.uci.edu/ml
http://doi.org/10.1016/j.cie.2020.106854
http://doi.org/10.1109/LCOMM.2019.2921755
http://doi.org/10.1109/TII.2019.2942190
http://doi.org/10.1109/MWC.001.1900119
http://doi.org/10.1109/TVT.2020.2973651
http://doi.org/10.1109/TSE.2019.2942301
http://doi.org/10.1109/ACCESS.2019.2959220
http://doi.org/10.1145/3290621.3290627

Appl. Sci. 2021, 11, 1010 21 of 21

34. Package Shim—GoDoc. Available online: https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim (accessed on
26 November 2020).

35. Package http—GoDoc. Available online: https://godoc.org/net/http/ (accessed on 26 November 2020).
36. Merkel, D. Docker: Lightweight Linux containers for consistent development and deployment. Linux J. 2014, 2014, 2.
37. Nasir, Q.; Qasse, I.A.; Talib, M.A.; Nassif, A.B. Performance analysis of hyperledger fabric platforms. Secur. Commun. Netw. 2018.

[CrossRef]
38. DiPaolo, C. Cdipaolo/goml: On-line Machine Learning in Go (And So Much More). Available online: https://github.com/

cdipaolo/goml (accessed on 26 November 2020).
39. Bandprotocol. Available online: https://bandprotocol.com/ (accessed on 26 November 2020).
40. Linux Foundation. Hyperledger Avalon Proposal. Available online: https://wiki.hyperledger.org/display/TSC/Hyperledger+

Avalon+Proposal (accessed on 26 November 2020).
41. Yamashita, K.; Nomura, Y.; Zhou, E.; Pi, B.; Jun, S. Potential risks of hyperledger fabric smart contracts. In Proceedings of the IEEE

International Workshop on Blockchain Oriented Software Engineering, Hangzhou, China, 24 February 2019; pp. 1–10. [CrossRef]

https://godoc.org/github.com/hyperledger/fabric-chaincode-go/shim
https://godoc.org/net/http/
http://doi.org/10.1155/2018/3976093
https://github.com/cdipaolo/goml
https://github.com/cdipaolo/goml
https://bandprotocol.com/
https://wiki.hyperledger.org/display/TSC/Hyperledger+Avalon+Proposal
https://wiki.hyperledger.org/display/TSC/Hyperledger+Avalon+Proposal
http://doi.org/10.1109/IWBOSE.2019.8666486

	Introduction
	Related Work
	Methods
	Implemented Blockchain Architecture
	Smart Contract Implementation Details

	Benchmarking Experiments
	Experimental Setup
	Synthetic 2D Dataset Results
	EEG Eye State Dataset Results
	Comparison and Summary of Results

	Discussion
	Conclusions
	References

