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Abstract: A review of available results on non-destructive testing of physical systems, using the
concept of topological sensitivity, is presented. This mathematical tool estimates the sensitivity of a set
of measurements in some given sensors, distributed along the system, to defects/flaws that produce
a degradation of the system. Such degradation manifests itself on the properties of the system. The
good performance of this general purpose post-processing method is reviewed and illustrated in
some applications involving non-destructive testing. These applications include structural health
monitoring, considering both elastodynamic ultrasonic guided Lamb waves and active infrared
thermography. Related methods can also be used in other fields, such as diagnosis/prognosis of
engineering devices, which is also considered.

Keywords: non-destructive testing; inverse problems; topological sensitivity; structural health
monitoring; guided lamb waves; thermographic inspection; diagnosis; prognosis

1. Introduction

Non-destructive testing of a physical system aims at identifying anomalies or degra-
dations in some properties of the system from its response to (natural or forced) excitation.
In this sense, this is an inverse problem that somewhat opposites the associated direct problem,
which consists of analyzing the response of the system when its properties are known.
Direct and inverse problems can be clearly illustrated using a drum as a physical system
and questioning whether one can “hear the shape of the drum” [1,2]. In this example, the
direct problem consists of calculating the sound produced by a drum of a given shape,
while the inverse problem intends guessing the drum shape from the sound it produces.
For a drum, this formulation of the inverse problem could be called a full inverse problem.
The main difficulty in solving full inverse problems is that they are usually extremely
ill-conditioned, even if the associated direct problem is very well-conditioned. Thus, full
inverse problems are frequently almost impossible to solve with precision. Perturbed inverse
problems, instead, are usually less ill-conditioned. In the case of the drum, for the perturbed
inverse problem, the unperturbed shape of the drum and the associated sound are both
known beforehand, and only small or localized perturbations of the drum shape from
its ‘healthy’ shape, known as degradations, are considered. In this case, the perturbed
inverse problem consists of identifying these small degradations from the measured (small)
perturbations in the produced sound.

Diagnosis/prognosis of a biological (e.g., medical) or an engineering (e.g., an engine) sys-
tem consists of identifying the present degradations in the relevant properties of the system
(diagnosis), which permits predicting (forecasting or prognosis) the likely behavior of the
system over time using its present degraded (or perturbed) state from healthy conditions,
measured by its response to (natural or forced) excitation. In this sense, diagnosis (which is
a first step to perform prognosis) also requires solving a perturbed inverse problem.
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Thus, inverse problems are of interest in a variety of fields, including, among others,
structural health monitoring (SHM) for the non-destructive testing of structures [3], acoustic
waves [4,5], electromagnetic waves [6,7], medical diagnosis [8], natural resources explo-
ration [9], location of anti-personnel landmines [10], and oceanography exploration [11].

In this paper, we shall concentrate in SHM. In this field, the aim is identifying possible
(usually, localized) defects/flaws in a given structure using its response to excitation,
measured in some sensors distributed along the structure surface. Two type of excitations
will be considered in this paper: (i) guided Lamb waves produced by some localized vibrating
emitters, monitoring the elastodynamic response in some localized sensors, and (ii) thermal
excitation produced by one or more infrared (IR) lamps, using as input data the distributed
temperature at a part of the structure surface, captured by an IR thermographic camera.
This camera produces radiation intensity images, which are readily translated into color
maps for the temperature.

Concerning SHM via ultrasonic guided waves, some classical methods [3,12–14] are
based on the ‘flight time’ of a concentrated wave packet. The flight time accounts for the time
shift between the emission of the packet and its reception after being reflected/scattered by
defects. Since the propagation velocity of the wave packet is known, distances to the defects
are estimated from the time shifts. Thus, the more concentrated the wave packet, the better
performance of the method. However, reflection/scattering at defects may occur after one
or more reflections at the outer boundary of the structure, which means that locating defects
is not easy, specially when the boundary is curved. In addition, in thin plates, the wave
velocity in the case of guided waves depends on the plate thickness, which is an additional
difficulty when using these methods for the inspection of plates with variable thickness. A
different approach relies on the concept of topological sensitivity that, as presented in this
paper, is closely related to the so called topological derivative [15,16], which has been exten-
sively used to solve inverse problems in a variety of fields, including acoustics [4,5,17–21],
elasticity [22–27], photothermal problems [28,29], electrical impedance tomography [30–34],
electromagnetism [6,7,35–39], and holography [40,41]; also see Reference [42] for additional
related applications. In the context of SHM [43,44], this method identifies defects as peaks
of the distributed sensitivity (computed using the full set of elastodynamic equations) of the
system properties to possible degradations. In this sense, classical methods only use the
(easy to compute in plates with constant thickness) propagation velocity of the waves,
while the topological sensitivity approach uses the full physics and, in principle, should
produce better results. The drawback of the latter approach, in connection with its practi-
cal implementation, is that the elastodynamic equations should be calibrated to robustly
compute the response of the system. On the other hand, in the applications considered
below, the topological sensitivity computation will rely on (numerically obtained) synthetic
data, instead of on actual experimental data. This is a reasonable first step to test (and
improve) the performance of the method in the considered fields. The performance of
topological sensitivity based methods has been proven in the past initially against syn-
thetic experiments, although also some works deal with real experimental data, showing
very promising results too (see References [45–50]). Rodriguez et al. [51] succeeded in
finding the position of several defects in a thin plate with a single emitter/receiver with
the line-of-view to the defects obstructed by a saw line. They used an approach equivalent
to the one here described, but, instead of computing direct and adjoint problems from
numerical models, they computed them after the measurement of impulse response in the
healthy plate.

Using actual experimental data in the approach here described is obviously the next
step, which has been already performed via the topological derivative method in some,
scientifically-oriented applications, and will be addressed in the near future for the more
industrially-oriented cases considered in this review. Recently, an application of NDT
ultrasound techniques [52] analysis has been developed for analysis of Shielded Metal
Arc weldings.
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Other methods for solving inverse problems in NDT and SHM, which also take ad-
vantage of the full physics, can be classified into two groups: (a) imaging-based direct
methods, like the linear sampling method, the factorization method, the MUSIC algorithm
(see References [53–60]), and (b) non-linear optimization iterative methods, like level sets
or Gauss-Newton methods, see References [61–67]. Compared to these methods, the topo-
logical sensitivity based approach requires a rather smaller computational effort. On the
other hand, besides full physics-based methods, pure data-driven strategies, specially those
relying on deep learning tools, have recently attracted attention in the SHM community.
Applications range from damage detection in aluminum beams [68], monitoring of aero-
nautical composite plates [69], impedance based damage detection [70], concrete crack
detection [71], and pavement crack detection [72], to mention a few. For a very detailed
state-of-the art of this kind of methods, we refer to the recent reviews [73,74]. Deep learning
tools, however, rely on the acquisition of large databases to train the models, which, in
practice, could not be easily available. An alternative is to generate synthetic data (by, e.g.,
finite element simulations, see Reference [75]), but then the computational cost could be
very large or even unaffordable.

With the above in mind, in the remainder of the paper, a general, mathematical
formulation of the inverse problem is first presented in Section 2, where the topological
sensitivity is defined. Applications of the topological sensitivity-based method to SHM,
using guided Lamb waves and thermographic inspection, are addressed in Sections 3 and 4,
respectively. A brief account of diagnosis/prognosis of engineering devices, performing
diagnosis by solving an inverse problem, is included in Section 5, and some concluding
remarks are presented in Section 6.

2. Formulation of the Inverse Problem

This section is devoted to explain, from a general point of view, the nature of the
inverse problem, as well as the topological sensitive method, in order to apply to the
specific distinct examples discussed in next sections.

In mathematical terms, considering the simplest discrete formulation, the outcomes in
the sensors for the direct problem are given by

y = F(α), (1)

where the sensor vector y collects the obtained data in the sensors that somewhat measure
(partially) the response of the system (f.i. the produced sound in the case of the drum
mentioned above), and the vector α gives the properties of the system that are intended
to be found (the drum shape). In principle, the non-linear vector function F could be
computed using a black-box solver, with little or no knowledge of the internal details of
the solver. The full inverse problem will consist in solving the system of equations (1), to
compute α from a known sensor vector y. In the perturbed formulation, α is perturbed
around its known healthy, default value, denoted as α0, in the form

α = α0 + α̃, with ‖α̃‖ � ‖α0‖, (2)

for some appropriate norm ‖ · ‖ (e.g., the Euclidean norm). The perturbation α̃ can be called
degradation vector because it measures the small degradation of the system from its healthy
state α0. Linearizing the direct problem around the healthy condition, taking advantage of
the fact that the perturbation is small, yields

F(α0 + α̃) ' F(α0) + L0α̃, (3)

where L0 is the Jacobian of F at the healthy state.
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The aim is to compute α̃ using measurements of the response of the system at the
perturbed state, denoted as ymeasured, which are intended to correspond to the perturbed
properties of the system, namely

ymeasured ' F(α0 + α̃). (4)

This (generally non-linear) problem could be solved via an iterative method, which
is usually quite computationally expensive, specially because this problem is usually
ill-conditioned.

An alternative formulation consists of minimizing the root mean square (RMS) of the
difference between the two sides of (4), thus considering the objective function

H(α̃) =
1
2

[
ymeasured − F(α0 + α̃)

]>[
ymeasured − F(α0 + α̃)

]
, (5)

where > stands for the transpose. Again, this non-linear optimization problem could be
solved using appropriate optimization algorithms [76,77]. However, as it happened with
the former approach, this optimization problem is usually very computationally expensive,
specially because the Hessian of the objective function is usually ill-conditioned.

Instead, in the topological sensitivity approximation, the (linear) sensitivity of the objec-
tive functionH to the small perturbation α̃ is considered. The sensitivity is computed by
replacing the linear approximation (3) into (5) and retaining only the first order terms in
the small degradation vector, which yields

H(α̃) ' 1
2

[
ymeasured − F(α0)

]>[
ymeasured − F(α0)

]
+ S>α̃, (6)

where the first term in the right-hand side (namely,H(α0)), which is independent of α̃, is
the value of the objective functionH at the healthy state and the transpose of the sensitivity
vector S is given by

S> =
[
ymeasured − F(α0)

]>
L0. (7)

Thus, the Jacobian of F at the healthy state, L0, needs to be computed, which could be
done by finite differences, computed using the black-box solver for the direct problem (1).
This requires a number of computations of the direct problem that is of the order of the
size of the degradation vector. Thus, this method is affordable for moderate values of the
size of the degradation vector (say, not larger than 20). However, in some applications,
the size of α̃ is much larger, for instance, of the order of several million components in
SHM using guided Lamb waves, where α̃ collects the degradations (in, e.g., the density
and Lamé coefficients of the structure) at all points of a convenient spatial mesh. In this
case, instead of a black-box solver, a detailed formulation (e.g, an FEM formulation in SHM
using guided waves) is needed for the direct problem. Such solver computes the sensor
vector as

y = f (u), (8)

where the components of the state vector u, in which size can be huge, give the values of
some state variables (e.g., vector displacements in a spatial mesh of the structure in SHM in
the guided waves limit or in the full elastodynamic problem) that are needed to compute
the state of the system. Thus, an additional set of governing equations (e.g., the discretized
elastodynamic equations in SHM via guided waves), which is written here as

g(u, α) = 0, (9)

permits computing u in terms of α, namely

u = u(α). (10)
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It is to be noted that the (generally non-linear) problem (9) is assumed to uniquely
determine its solution (10) that is needed here. This requires, in particular, that the Jacobian
of g with respect to u, appearing in Equations (12) and (13) below, be invertible; in fact, this
Jacobian should be well-conditioned for the robust numerical treatment of (9). Substituting
(10) into (8) permits recovering (1) as

y = F(α) ≡ f (u(α)). (11)

Since degradations are small, substituting (2) into (8) and (9), and linearizing, yields

ỹ = L f ,0 ũ, Lu
g,0 ũ + Lα

g,0 α̃ ' 0, (12)

where ỹ and ũ are the perturbations (from their healthy values) in the sensor vector and
the state vector, respectively, while L f ,0 is the Jacobian of f , and Lu

g,0 and Lα
g,0 denote the

Jacobians of g with respect to u and α, respectively, all calculated at healthy conditions.
Solving for ũ the second linear equation in (12) gives

ũ = −
(
Lu

g,0

)−1
Lα

g,0 α̃, (13)

and a further substitution of this into the first equation in (12) leads to

ỹ = −L f ,0

(
Lu

g,0

)−1
Lα

g,0 α̃. (14)

Identifying this equation with (3) permits computing the Jacobian appearing in the
latter equation as

L0 = −L f ,0

(
Lu

g,0

)−1
Lα

g,0. (15)

Thus, the transpose of the sensitivity vector, appearing in (7), is given by

S> = −
[
ymeasured − F(α0)

]>
L f ,0

(
Lu

g,0

)−1
Lα

g,0. (16)

Computing the sensitivity vector in this way requires, in principe, inverting the matrix
Lu

g,0, which is extremely computationally expensive if the size of u is huge, which as
anticipated is the usual case in SHM. Thus, instead of inverting the matrix Lu

g,0, an adjoint
formulation [78] can be constructed as follows. First, a vector y∗ is defined as

y∗> = −
[
ymeasured − F(α0)

]>
L f ,0

(
Lu

g,0

)−1
, (17)

which permits rewriting (16) as
S> = y∗>Lα

g,0, (18)

or
S = (Lα

g,0)
>y∗. (19)

On the other hand, post-multiplying Equation (17) by Lu
g,0 yields

y∗>Lu
g,0 = −

[
ymeasured − F(α0)

]>
L f ,0, (20)

or, taking the transpose in both sides of this equation,

(Lu
g,0)
>y∗ = −(L f ,0)

>
[
ymeasured − F(α0)

]
. (21)

This linear system is called the adjoint problem. Note that, in this formulation, the
sensitivity vector is calculated according to (19), with the vector y∗ computed by solving
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the adjoint problem (21), which is affordable even if the size the matrix Lu
g,0 is huge. In

other words, the adjoint formulation does not require inverting Lu
g,0, which is absolutely

impractical in this case.
For both moderate and large sizes of the degradation vector, α̃, it is convenient to

have as much data as possible, which is done by increasing the amount of measured
data. This was performed by us in Reference [79], where a multi-frequency method was
presented to analyze an inverse acoustic problem using a conveniently modified version of
the topological sensitivity technique. In this case, the data size was increased by collecting
data resulting from exciting the system using a set of monochromatic excitations, with
several frequencies. Although the method was presented in Reference [79] for a particular
inverse problem, the analysis left it clear that the presented multi-frequency method can be
used for many other inverse problems, as well. In fact, results will be presented in the next
section on the application of this method to SHM via guided waves. A similar idea, i.e., to
increase the available data, will be used in Section 4, where multiple lamps, individually
switched on, will be used to obtain thermograms yielding independent data to increase the
performance of the method.

3. Application to SHM Using Guided Lamb Waves

This section deals with the use of the topological sensitivity method to post-process
data obtained from ultrasonic transducers (also used for exciting) or laser vibrometer
sensors that may (and often) coincide in position with emitters for detecting the presence
of defects in solid metals, which may consist of either holes/grooves or inclusions with
changes in density or elastic properties [43,44].

This application is particularly challenging because reflections of the guided waves
in the boundaries or diffractions at defects make it very hard to use classical methods
relying on the time/direction of flight of echo waves as the measurement principle. The
applications below focused on thin plates so that the Lamb wave limit will apply and the
system will be modeled as a two-dimensional elastodynamic problem (including variable
thickness). However, the extension to the full three-dimensional problem (for items more
complex than a thin plate) is not expected to present any new difficulties. In addition,
the method can be straightforwardly extended to detect delaminations, kiss bonding
phenomena, and defects in composite structures that would be otherwise very hard to
detect with classical post-processing methods of NDT data.

In this case, the sizes of the degradation vector, α̃ , and the state vector, u, are both
extremely large, as they have a size proportional to the number of points used to describe
the physical properties in both the healthy and damaged item (i.e., the desired resolution of
the method). Thus, the classical methods are no longer viable to solve the inverse problem
(to find the item physical properties that will produce the measured response in a reduced
number of sensors); therefore, the adjoint formulation is needed. In this application, the
physical properties that are degraded by defects are the density and Lamé coefficients of
the material (that are far different from that of the material if an air void appear f.i.).

Two relevant and demanding configurations for metallic (thus, with isotropic proper-
ties items) thin plates are considered:

• Rectangular plates with constant thickness, but exhibiting either (i) an elongate through
slit or (ii) an elongated inclusion of a different material, such as Titanium. Note that, in
case (i), the through slit does not permit any transmission of the waves through it.
Thus, the elongated slit cannot go from side to side transversally to the plate but
should leave free portions of the plate at both sides of the slit. In case (ii), instead, the
elongated inclusion permits partial transmission of the waves; thus, it can completely
cover a section in the plate, from side to side. The elongated inclusion somewhat
mimics the effect of stringers in the outer surface of aircraft wings. This application of
topological sensitivity was performed in Reference [43], where it was seen that the
method identifies defects, even in cases in which all emitters and receivers are at one
side of the elongated artifact, while the defects are located at the other side.
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• Non-rectangular plates, exhibiting a complex planform or variable thickness. Difficulties
for classical methods arise here from wave reflections in the boundaries and variable
wave propagation speed (for guided waves) due to the variable thickness. This
application was considered in Reference [44], where it was seen that, again, the
method performs quite well.

These complex configurations cannot be efficiently analyzed using flight time-based
classical methods. This is because, in the above mentioned cases, the through slit, the
inclusion, or the limits of the sample induce a sudden (even infinite) jump in the acoustic
impedance, producing a partial or total reflection of the wave that masks the reflections
coming from the defects behind. The two above mentioned configurations are addressed
below, one after another. In both cases, the set of emitters and sensors are either non-contact,
optical laser devices [80], or contact piezo-electric, which may act as both emitters and
receivers that operate as follows. Each time one of the devices acts as emitter, producing
guided waves, the remaining devices act as receivers, sensing the incoming waves. A few
dual devices will be used. These devices are located very close to the boundary of the plate
planform, which makes the analysis more demanding but will use the possible (future)
practical implementation of the method. In fact, locating these devices near the boundary
highly worsens the performance of flight time-based classical methods. This is because
the relevant outgoing (from emitters) and incoming (at the receivers) wave packets mix
with their counterparts reflected at the nearby boundary, which distorts the relevant wave
packets shape and, what is even worse, increases their thickness. Note that this decreases
the accuracy in the computation of the flight time.

The topological sensitivity will not be computed in the whole plate but only in a
slightly reduced in size interrogation window. This window is centered in the plate and
excludes both a vicinity of the lateral boundary of the plate and the dual emitting/sensing
devices themselves, to avoid misleading artifacts in the sensitivity that will appear due
to the wave reflection at the lateral wall and the large values of the sensitivity near the
emitting devices.

On the other hand, synthetic experimental data are used (obtained using an FEM solver),
instead of actual experimental data. However, these synthetic data are calculated by solving
the elastodynamic equations in a mesh that concentrates near the defects, while the mesh
used in the computation of the direct and adjoint problems (needed to solve the inverse
problem) is more equispaced, since the position and size of the defects are not known in the
application of the method. In order to increase the amount of data collected in the sensors,
the strategy developed in Reference [79] is used, in which the topological sensitivity-based
method uses data obtained by considering a set of monochromatic excitations, with several
(of the order of several tens) forcing frequencies of various amplitudes in the emitters.

Beginning with the case of a rectangular plate of constant thickness, but containing
elongated slits or inclusions of a different material, two representative results, obtained
upon application of the topological sensitivity method based on two-dimensional elasto-
dynamics, are displayed in Figure 1, where the elongated artifacts, the emitters/receivers,
and the defects are displayed. As can be seen in this figure, the dual emitting/sensing
devices are located very close to the boundary of the plate planform, at the upper side of the
elongated slit (which leaves a lateral portion of the plate free to allow wave propagation, as
anticipated) or inclusion of a different material (which goes from side to side of the plate, as
also anticipated), while the defect is located at the lower side. In spite of all these challenges,
the method identifies the position of the defect fairly well, using 30 frequencies in the case
with an elongated slit and 25 frequencies in the case of an elongated Titanium inclusion.
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Figure 1. Color maps of the topological sensitivity along a rectangular interrogation window in a
rectangular Aluminium plate containing a through slit (indicated with a horizontal black line in
the left plot) and a through inclusion of Titanium (indicated with a horizontal brown line in the
middle plot); both plots share the color scale for the topological derivative, given in the right plot. In
both cases, four dual emitters/receivers are considered, in which their positions are indicated with
black x symbols, and the actual position of the defect indicated by a white + symbol. As can be seen,
the method identifies well the position of the defect at the blue (negative) peak of the topological
sensitivity. Courtesy of Dr. Anxo Martinez.

Turning now to the case in which the plate exhibits a complex planform or variable
thickness, the outcome of the topological sensitivity method is given in Figure 2, where
two representative cases are addressed, one with constant thickness but complex planform
(which is addressed using two-dimensional elastodynamics) and the other with rectangular
planform but variable thickness (which requires using three-dimensional elastodynamics).
The complex planform configuration considered in the left plot contains a through slit
to make the identification of the defect more demanding. The variable thickness plate,
considered in the right plot, is thicker in the middle and thinner in the upper and lower
sides of the plate. As in the cases considered in Figure 1, the emitting/receiving devices are
located very close to a lateral boundary of the plate planform, and the method identifies
well the small defect using 80 and 30 forcing frequencies in the cases considered in the left
and right plots, respectively. Note that, in both cases, the emitting/receiving devices are at
a different side of the through slit or plate thicker portion than that where the defect is.

Figure 2. Counterpart of Figure 1, considering a plate with complex planform (left) and variable
thickness (right). In the latter case, that portion of the plate exhibiting larger thickness is indicated as
that between the two dashed horizontal lines. Courtesy of Dr. Anxo Martinez.

Although, for simplicity in the presentation, all examples above are concerned with
the simplest case in which a single defect is present, and the method can also cope with
multiple defects of different sizes/shapes.
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Thus, we can conclude that the topological sensitivity-based measurement post-
processing method is a very promising tool to increase the defect detection threshold.
The method is just an alternative way of analyzing data and very few modifications of
existing experimental setups are needed, just to change the excitation signal from a chirp
to several harmonic signals with different forcing frequencies. Additional details can be
obtained from the authors.

4. Application to SHM Using Infrared Thermography

Let us now consider the topological sensitivity approach for post-processing SHM
data obtained via infrared (IR) active thermographic inspection. A topological sensitivity-
based analysis using steady thermography was presented by us in Reference [81] (see
Reference [82] for a preliminary theoretical analysis using steady thermograms, and also
Reference [83] for an analysis using oscillatory, multifrequency, and thermograms) and had
been already considered by other authors in References [84,85].

Steady thermograms produced in three-dimensional media obviously provide less
information than dynamic thermograms. However, steady thermography can be more
convenient, relevant, and beneficial in certain applications, such as medical tests for tumor
detection [86] and in other areas of medical diagnosis [87].

As a general description of the technique, active thermographic inspection of a struc-
ture aims at recovering degradations in the structure properties (i.e., localized degradations
of the density and thermal conductivity) from thermograms giving the temperature dis-
tribution in a part of the structure boundary, as resulting from the illumination using one
or various lamps. In comparison with guided waves testing, IR testing has the advantage
that it is more non-contact and non-invasive. However, heat transport is short range, and
the associated signal-to-noise ratio is less favorable than its counterpart in elastic/acoustic
wave propagation.

Concentrating, for simplicity in the exposition, on steady thermographic inspection of
a rectangular plate, the governing Equation (9) is the conveniently discretized steady heat
equation with appropriate boundary conditions. In this problem, the degradation vector
α̃ is the thermal conductivity function (depending on spatial variables) corresponding to
the inhomogeneties of the metallic plate; the state vector u is the temperature field at the
illuminated face of the plate. Thus, the topological sensitivity of the cost function defined
in (5) measures the sensitivity to perturbations of the thermal conductivity in the bulk of a
homogeneous aluminum plate, which is otherwise assumed constant in the whole domain.
This direct problem does not depend on the density and, thus, only permits localizing
degradations in the thermal conductivity, which decreases the performance of the method.

Results will be given on steady IR thermographic inspection using twelve lamps
contained in a y− z plane, parallel to the cross section of the plate, in a Cartesian coordinate
system (see Figure 3). These twelve lamps steadily illuminate, one after another (waiting for
the plate reaching a steady state each time), on one side of the plate. Twelve thermograms
capture the temperature distribution at the same side of the plate, after the steady state is
reached each time. Thus, the number of available data is increased in a way similar to that
developed in Reference [79].

The cross section of the plate is a 35× 15 cm2 rectangle, and its thickness equals 0.5 cm.
A sketch of both the lamp positions and the plate with six small defects (representing no
more than 0.1% of the total volume) is given in Figure 3.
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Figure 3. Sketch showing the lamp positions and the plate (in which scale along the x axis in the plate
is enlarged to facilitate visualization, since the plate is really thin), with six small internal defects (in
green) included. The volume of these defects represent no more than 0.1% of the total volume of
the plate.

As can be seen, the lamps are located equispacedly in a plane parallel to the plate
planform, and the defects are much smaller than the transversal section of the plate.

In order to somehow mimic real experimental measurements, some random noise of
size 0.05 K (which is larger than the expected error in experimental thermograms) has been
added to the synthetic thermograms that are used here. The effect of the defects on the
obtained thermograms is given in Figure 4.

Figure 4. The thermograms obtained for two positions of the lamp (left and middle plots), as obtained
in the clean plate (without defects) and in the plate with internal defects. The difference between
both thermograms is also given in the right plots. In each plot, the active lamp is represented by an
orange circle.

This figure shows that the raw thermograms do not capture at all the presence of the
defects. The application of the topological sensitivity method, instead, produces topological
sensitivities that do localize the position of the defects, as seen in Figure 5.
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Figure 5. Color maps for the sections of the topological sensitivity with the planes x = 0 (left),
x = 0.25 (middle), and x = 0.5 (right). The actual positions of the defects are shown by the six
elongated black boxes. Negative peaks of the topological sensitivity coincide with defects positions.

Where the sections of the three-dimensional topological sensitivity with three rep-
resentative planes are given, note that the method identifies the transversal position of
the defects quite well, in contrast to what happened with the thermograms plotted in
Figure 4. It is important to note that the topological sensitivity is computed from just the
solution of the unperturbed direct and adjoint problems. The information about the defects
characteristics is only introduced through the measured thermograms. Due to the weaker
influence of depth in the topological sensitivity as compared with that of position or size
the depth of the deffects, the depth of the defects is not well identified by the topological
sensitivity. In addition, treating steady thermograms exhibits two drawbacks in connection
with its practical use:

• Precise modeling of the process, which is needed to solve the direct and adjoint
problems, is problematic, specially in connection with modeling the lamps energy
deposition.

• Experimental steady thermograms are difficult to obtain, specially due to the large
thermal relaxation time needed to reach each steady state.

It is because of the second difficulty that thermographic inspection in SHM is usually
performed experimentally in highly unsteady conditions. Specifically, unsteady thermo-
grams are recorded after illuminating one side of the plate by a quite short (of the order of
ms) flash from the lamp. In this case, the thermal relaxation process towards the ambient
temperature is recorded by the thermographic camera. In other words, this relaxation
process can be modeled by the unsteady, unforced, homogeneous heat equation with initial con-
ditions corresponding to the thermal state of the plate just after the flash. Moreover, in such
thermal relaxation process, the instantaneous temperature in the unsteady termograms
(computed at the plane illuminated by the lamp flash) can be written as

θ(y, z, t) =
N

∑
n=1

Θn(y, z) e−δnt, (22)

where Θn(y, z) correspond to decaying natural modes of the homogeneous heat equation,
and δn are the associated damping rates. Moreover, the modes and damping rates can be
identified using a convenient data processing tool to the decaying thermograms. A good
candidate tool to process these data is the recently developed higher order dynamic mode
decomposition [88] (also see Reference [89] for a reader-friendly presentation of the method
and its multiple applications), which is a very robust extension of standard dynamic mode
decomposition [90,91]. Once the modes and damping rates have been identified, these
permit applying a topological sensitivity approach in which the direct problem is robustly
modeled by a Helmholtz-like equation associated with the homogeneous heat equation
that applies here; the adjoint problem is modeled by the same Helmholtz-like equation,
forced by the obtained modes Θn, displayed in (22). This approach for solving the problem
is in progress; thus, it is well beyond the scope of this review.
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5. On Inverse Problems Associated with Diagnosis/Prognosis of Engineering Devices

Diagnosis and prognosis are concepts that arised in the medical field, in which diagnosis
stands for identifying a present disease or illness in a patient [92] using symptoms, while
prognosis [93] consists of predicting the likely future evolution of the diagnosed disease
or illness, which intends determining a good present medical treatment to allow for a
good evolution of the illness. These concepts have been extended to the technological
field to, e.g., first performing diagnosis (which involves solving an inverse problem) in
an engineering device, such as an aeroengine [94], and then using this to apply prognosis,
which permits anticipating future failures in the device. The latter is known in the field as
predictive maintenance [95], which anticipates failures, saving cost and time in the needed
maintenance of the device.

Concentrating in diagnosis of an aeroengine, a detailed model for the system behavior is
not possible. This is because such detailed model should account for the various, extremely
complex, fluid dynamic, chemical, thermal, and elastic physical processes occurring inside
the engine. Thus, a black-box model for the engine operation must be used to obtain
the outcome of the direct problem, as formulated in (1). There are several black-box
models in the field, which are based on phenomenological descriptions of the main engine
subsystems (e.g., the fan and the low and high pressure compressors and turbines) that
give very good results. One such model is built using commercial software [96]. Thus, the
simplest formulation of the inverse problem described in Section 2 must be applied, in
which the outcome of the direct problem is written according to Equation (1), which as
explained in Section 2, requires that the sizes of the sensor and degradation vectors be both
moderate. Fortunately enough, the number of components in the degradation vector is
typically of the order of 10 components in the case of an aeroengine. Thus, the black-box
solver can be used to solve problem (1), and the counterpart of the objective function
(5) minimized, which has been done in Reference [97]. Following the idea developed in
Reference [79] to increase the amount of available data, sensor measurements at two flight
conditions are used, which multiplies by two the amount of available data. In addition,
it must be taken into account that, in an aeroengine, the sensors outcomes account for
various temperatures (measured in K), pressures (measured in Pa), rotational velocities
(measured in rpm), and flow rates (measured in kg/s), which exhibit very disparate values,
namely up to five orders of magnitude apart from one another. Thus, a convenient scaling
of the sensors outcomes is a must. Let us note here that scaling is often quite important
in optimization processes [76,77]. Still, flight conditions can only be ‘measured’ (in fact,
estimated) in practice with low accuracy, which means that their precise values must be
calculated, along with the degradations, when solving the inverse problem by minimizing
the objective function.

Using an obvious (somewhat simple) scaling, the minimization of the objective func-
tion (to compute the degradations and the associated flight conditions) was performed
in Reference [97], obtaining reasonably good results. However, the aforementioned opti-
mization process was quite computationally expensive (requiring several CPU hours in a
standard PC) because the Hessian of the objective function is quite ill-conditioned, which
was to be expected, as anticipated in Section 2.

More recently, such large CPU time has been highly decreased (to a few CPU min-
utes) in Reference [98], where a suitable, somewhat subtle scaling of the sensor outcomes
is performed. Moreover, the counterpart of the topological sensitivity (as defined in (7))
approach, gives very good results when degradations are very small, which is the usual
case except if some important problem is occurring in the engine. The latter approxima-
tion gives good results requiring a very small CPU time, of the order of 0.01 s, which is
convenient to perform diagnosis in real time.

The application mentioned in this section is representative of diagnosis in realistic
engineering systems considering this task as an inverse problem. In particular, a black-box
solver must be usually employed since a detailed solver is not possible in these complex
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systems. However, using a black-box solver is possible since the size of the degradation
vector is usually moderate. Finally, appropriate scaling of the data is a crucial step.

6. Conclusions

A general description, in mathematical terms, of the nature of inverse problems was
given in Section 2, where two different cases were considered, one in which the number of
degradations that need to be computed to define the health of the system is moderate, and
another in which this number is extreamly large. Various strategies were presented to solve
the inverse problem, including the topological sensitivity approach, which is the main
object of this review. This method was used in Sections 3 and 4 to address the associated
inverse problem in SHM, considering both guided waves and themographic inspection,
respectively, which give promising results in both cases.

In the case of ultrasound sensing, the topological sensitivity-based method has shown
to be able to identify the position of small defects in very demanding cases, including
rectangular plates with through slits or elongated inclusions of a different material, plates
with more complex, non-rectangular planforms, and plates with variable thickness. In
these cases, classical methods cannot give good results at all because of signal reflection at
the boundaries or non-constant wave propagation velocity.

For thermographic analysis, steady thermography has proven, when combined with
different heating combinations, capable of detecting the position and mesauring the size of
defects. An extension of the method for unsteady thermography is expected to be able also
to correctly predict the depth at which the defects are located.

Finally, diagnosis of engineering systems, considering this task as solving an inverse
problem, was briefly addressed in Section 5, considering diagnosis of an aeroengine as test
case to illustrate the application of the methods anticipated in Section 2.

Summarizing, the topological sensitivity approach has shown to be a very powerful
tool for processing the adquired signals, with very different diagnosis techniques, allowing
for the analysis of problems with very low signal-to-noise ratio.
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