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Abstract: Hyperspectral microscope images (HMIs) have been previously explored as a tool for
the early and rapid detection of common foodborne pathogenic bacteria. A robust unsupervised
classification approach to differentiate bacterial species with the potential for single cell sensitivity
is needed for real-world application, in order to confirm the identity of pathogenic bacteria isolated
from a food product. Here, a one-class soft independent modelling of class analogy (SIMCA) was
used to determine if individual cells are Salmonella positive or negative. The model was constructed
and validated with a spectral library built over five years, containing 13 Salmonella serotypes and 14
non-Salmonella foodborne pathogens. An image processing method designed to take less than one
minute paired with the one-class Salmonella prediction algorithm resulted in an overall classification
accuracy of 95.4%, with a Salmonella sensitivity of 0.97, and specificity of 0.92. SIMCA’s prediction
accuracy was only achieved after a robust model incorporating multiple serotypes was established.
These results demonstrate the potential for HMI as a sensitive and unsupervised presumptive
screening method, moving towards the early (<8 h) and rapid (<1 h) identification of Salmonella from
food matrices.

Keywords: Salmonella; rapid detection; hyperspectral microscopy; SIMCA

1. Introduction

Salmonella is a leading cause of gastroenteritis, with severe cases occasionally resulting
in death. The World Health Organization estimates that 550 million people fall ill to
foodborne diseases annually, with 33 million healthy life years calculated as lost. Non-
typhoidal Salmonella represents one of the four primary pathogenic bacteria responsible [1].
Traditional detection methods such as the use of a nutrient enriched growth medium
or polymerase chain reaction (PCR) have been used as the standard for the detection of
Salmonella for years. While these methods are effective, the incubation time required for
nutrient enriched growth media, or the reoccurring costs along with the advanced training
requirement of PCR are disadvantages that influence the time required to correctly identify
the causative agent and source of a foodborne disease outbreak.

In recent years, hyperspectral imaging (HSI) and hyperspectral microscope images
(HMI) have been approached for food safety and quality assessment. HSI methods have
been applied for the estimation of bacterial total viable counts (TVC) on the surface of
salmon, pork, and chicken cuts [2–4]. HSI has seen application for the determination of the
Campylobacter species or Shiga toxin-producing E. coli. (STEC) serogroup of bacterial colonies
grown on their respective selective nutrient enriched agar plates [5–7]. Anderson et al. [8]
discovered that an HMI system could differentiate between spectral patterns of viable
and non-viable Bacillus anthraces spores damaged from contact with hydrogen peroxide.
Previously, our laboratory’s research has shown that bacterial species can be differentiated
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through HMI, as well as serotypes of the same species, by using a single cell-based mean
pixel intensity pattern, and early detection was possible in times of 8 h or less [9].

The previous project objectives involved the use of discriminant analyses (DA) or other
multivariate approaches to determine if the differences in a specific experimental treatment
existed. In order to advance this technology forward, an unsupervised classification
approach for HMI data is necessary to determine a taxonomical identification. Presumptive
pathogen screening of a food sample would require HMI to produce a yes/no answer,
similar to qualitative PCR. In order to construct an unsupervised prediction model that
results in a bacterial HMI slide testing positive or negative for the presence of Salmonella,
a soft independent modelling of class analogy (SIMCA) approach was chosen. In this
application, SIMCA was preferable to a DA with hard decision boundaries, because DA
will force a sample into a positive or negative category, whereas the soft boundaries
of SIMCA can reject a sample outside of the calibration model’s boundaries [10]. This is
preferable for a qualitative food safety approach that gives a binary yes or no determination
for a bacteria’s presence in a food product. If a DA forces a sample into a false-negative
or type II error, a potentially contaminated product can be overlooked and erroneously
regarded as safe, jeopardizing public health. Previously, food authentication research has
addressed the issue of a food product’s quality by using spectroscopy methods paired with
SIMCA to determine if product adulterations have been made for economic benefit [11].

HMI research has shown potential for application in early and rapid food safety
methodologies, but the validation of a comprehensive and robust modeling approach
is necessary in moving the unsupervised classification technology forward. Data were
collected over the span of five years, between May 2012 and May 2017. The aim of this
study was that a robust one-class SIMCA calibration model for rapid Salmonella prediction
at a cellular level was constructed to determine if validation from a multi-year study could
accurately predict Salmonella presence at a comparable performance to traditional detection
methods such as PCR and nutrient enriched plating, with approximately 95% accuracy.

2. Materials and Methods
2.1. Sample Preparation and Collection

Bacterial cultures were isolated and purified from broiler chicken carcass rinses at the
U.S. National Poultry Research Center by the Poultry Microbiological Safety and Processing
Research Unit and were stored in 20% glycerol at −80 ◦C, except for the Campylobacter
species, which were obtained from the American Type Culture Collection (Manassas,
VA, USA). Stock cultures were removed from the freezer as needed and were inoculated
onto the organism’s appropriate growth media, then incubated for the necessary time–
temperature relationship [12]. A list of the microorganisms and abbreviations used can be
found in Table 1.

Table 1. List of microorganisms used in this experiment and their abbreviations.

Microorganism Microorganism

Campylobacter coli (Cc) Salmonella Enteritidis (SE)
Campylobacter fetus (Cf) Salmonella Heidelberg (SH)
Campylobacter jejuni (Cj) Salmonella Infantis (SI)
Enterobacter cloacae (Ecl) Salmonella Javiana (SJ)
Enterococcus faecalis (Ef) Salmonella Kentucky (SKe)

Escherichia coli (Eco) Salmonella Kiambu (SKi)
Klebsiella oxytoca (Ko) Salmonella Mbandanka (SMb)
Listeria innocua (Li) Salmonella Montevideo (SMo)

Listeria monocytogenes (Lm) Salmonella Muenchen (SMu)
Macrococcus caseolyticus (Mc) Salmonella Seftenberg (SSe)
Paenibacillus polymyxa (Ppo) Salmonella Typhimurium (ST)

Pseudomonas putida (Ppu) Salmonella Typhimurium–NAL (STN)
Staphylococcus aureus (Sa) Salmonella Weltevreden (SW)

Staphylococcus simulans (Ss)



Appl. Sci. 2021, 11, 895 3 of 12

After incubation, the cultures were stored at 4 ◦C with sample slides prepared, and
the HMI was collected within 24 h. Bacterial cultures were sampled as mentioned in Park
et al. [13]. In brief, the method calls for an inoculation loop to pick a typical colony from
an agar plate, then it is inoculated into 100 µL of deionized water, vortexed, followed by
placing 3 µL of the bacterial suspension on a common glass microscope slide, then allowing
it to air dry under a biosafety cabinet for 15 min. A coverslip was applied, and the glass
slide was placed on the HMI system’s sample stage and viewed under a 100× oil objective
(Olympus, Tokyo, Japan). This effectively affixes the cells to the slide for hypercube image
collection, without damaging the microorganisms, resulting in HMI of individual live cells
obtained without the use of reagents, tags, or dyes.

The HMI system consists of an acousto-optic tunable filter (AOTF; Gooch and Housego,
Ilminster, UK), 16-bit electron multiplying charge coupled device (EMCCD) (Andor Tech-
nology, Belfast, Northern Ireland), optimized darkfield condenser (Cytoviva, Auburn, AL,
USA), 24 W tungsten halogen (TH) light (Osram, Munich, Germany), and a digital upright
microscope (i80 Nikon, Lewisville, TX, USA). The TH light source was offset from the
HMI system in a lamp house connected underneath the sampling stage via a fiber optic
cable, which prevents heat damage to bacterial cells generated from the lamp. The HMI
system collected 89 TIFF files in 4-nm increments in the range of 450–800 nm, stacking files
together to form a hypercube. Hypercubes were 1000 × 1000 × 89, resulting in 89 million
data points per hypercube from one sample.

2.2. HMI Processing

Fiji (ImageJ 2.0) [14] was used to process raw TIFF images collected in the hypercube
stacks. Figure 1 shows a flowchart for the image processing method that extracts the mean
single cell spectra in less than 5 min.
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The hypercube was imported into Fiji as a virtual stack, and the spectral band re-
sulting in a high cell to background contrast was identified and duplicated as an 8-bit
grayscale image for shape analysis. The auto-thresholding option in Fiji was selected, with
16 thresholding algorithms being tested. It was found that Otsu’s method gave the optimal
separation of cells from the background. Here, Otsu’s thresholding method was applied to
mask the background, leaving a mask with only pixels representing cells. Otsu’s threshold-
ing assumes a Gaussian distribution for image values, where the objective is to maximize
the difference between-group variance, in this case, the feature (bacterial cells) and the
background [15]. The probabilities of a pixel value falling into one of two groups can be
calculated by Equation (1), as follows:

P1(T) =
T−1

∑
i=0

Pi P2(T) =
Imax

∑
i=T

Pi (1)

where P1 and P2 represent cumulative probabilities of the two groups, T = a threshold that
divides the image into pixel set S1 or S2, and Pi = the probability of image value i. After
the global thresholding was computed, the Time Series 3.0 plugin [16] was used to apply
the masks to the virtual stack, calculating the mean of the pixels in each regions of interest
(bacterial cell). Next, Fiji exported two comma-separated value (CSV) files, where one file
represented the spectral data and one file represented the shape metrics. The two CSV
files were combined into one matrix, where rows were single cells with corresponding
shape and spectral data shown as columns. Circularity represents how close a shape is to
a perfect circle on a scale of 0 to 1, and was computed by Equation (2), as follows:

Cir = 4π(
A
P2 ) (2)

where Cir = circularity, A = area, and P = perimeter. Bacterial cells are not always close
to a value of 1, as Salmonella, E. coli, and many others are rod-shaped, in addition to
Campylobacter, which can take on an S-shape. It was found that extremely low circularity
values were correlated with clumps of overlapping cells, and extremely high values were
typical of a small number of pixels representing extracellular debris. Thresholding values
of 0.35–0.9 were optimal in removing large clumps of cells, as well as extracellular debris.
Figure 2 shows an example of the bacterial hypercube and data files.
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2.3. Spectral Pre-Processing

The standard normal variant (SNV) transformation has been shown to reduce spectral
variation in hypercube data sets caused by small variations in sampling conditions, particle
size, or bacterial size [17,18]. The SNV was calculated by Equation (3), as follows:

x̃i =
xi − mi

δi
(3)

where x̃i is the SNV adjusted spectra, mi is the sample’s mean, xi is the sample’s spectra,
and δi is the sample’s standard deviation. Following SNV, outlier detection was calculated
by applying a centroid-based Mahalanobis distance (MD) between two vectors, one being
the individual cell’s mean spectra, and the other vector representing the class mean spectra,
and was calculated by Equation (4), as follows:

MD = d(xi) =
[
(xi − x)TC−1(xi − x)

]0.5
for i = 1, . . . , n (4)

where xi = an object vector and x = the cluster centroid. From here, single cell values within
±3δ of the class mean MD were removed from the dataset, with 0.97% of the calibration
data and 1.37% of the validation data being labeled as outliers and being removed.

2.4. SIMCA Classification Model

The SIMCA approach has previously been well defined [19–21]. Here, the SIMCA
model was constructed for a single class, Salmonella. The calibration model was obtained
through a principal component analysis (PCA), built on an optimal number of significant
principal components (PCs) and defined as Equation (5), as follows:

XK = XK + TK(nxr)VT
K (rxp) + EK(nxp) (5)

where n = the number of objects, r = selected PCs, p = selected variables, XK = the mean
centered matrix, TK(nxr) = the score matrix obtained from n objects and r selected PCs,
VT

K (rxp) = the loading matrix obtained for r selected PCs and p variables, and EK(nxp) =
the residual matrix [22]. The leave-one-out-cross-validation (LOO-CV) was an important
step in the development of the prediction model, which has previously been shown to
reduce the number of false outliers by inflating the within class component variances [23].
Class boundaries of the SIMCA are determined by Equation (6), as follows:

s0 =

√
n
∑

k=1

p
∑

i=1
e2

ki/[(p − r)(n − r − 1)]

=

√
n
∑

k=1

p
∑

i=r+1
t2
ki/[(p − r)(n − r − 1)]

(6)

where s0 = mean distance between objects belonging to the k class model and e2
ki = squared

residual of the kth object for the ith (latent) variable. The critical distance value is then
calculated through an F-test at a specified significance level (α) by Equation (7), as follows:

Scrit =
√

Fcrits2
0 (7)

Thirteen Salmonella serotypes were used to establish the calibration model. HMI were
collected with multiple repetitions of each serotype, resulting in a collection of 3315 bacterial
cells after outlier removal. Each repetition involved culturing the serotypes from frozen
stock cultures. The experimental conditions were kept the same; however, small variances
in colony size, or cellular size could be noticed after the incubation of the same strain.
For this reason, multiple repetitions of the same strains were regrown from frozen stock
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for each serotype in the calibration model in order to sufficiently cover a robust set of
Salmonella bacterial conditions and spectral variation within the species.

2.5. SIMCA Validation

Over five years, the SIMCA prediction model was validated by Salmonella serotypes,
similar Enterobacteriaceae family members, and other pathogenic/spoilage microbes com-
monly found in food products, totaling 19 microorganisms and 3421 bacterial cells after out-
lier removal. Table 2 describes the sample size breakdown of the Salmonella spectral library
and validation. Five Salmonella serotypes common to foodborne disease outbreaks, namely
S. Enteritidis (SE), S. Heidelberg (SH), S. Infantis (SI), S. Kentucky (SK), and S. Typhimurium (ST),
were cultured, in addition to 14 other organisms known to be foodborne pathogens [24].

Table 2. List of spectral library files used in building and validating the soft independent modeling of class analogy (SIMCA)
from hyperspectral microscope images of bacterial cells.

Calibration Validation

Microorganism Reps Cells Microorganism Reps Cells

Salmonella Enteritidis 4 346 Campylobacter coli 2 27
Salmonella Heidelberg 4 388 Campylobacter fetus 2 26

Salmonella Infantis 3 282 Campylobacter jejuni 2 65
Salmonella Javiana 2 231 Enterobacter cloacae 1 142

Salmonella Kentucky 3 313 Enterococcus faecalis 3 157
Salmonella Kiambu 2 279 Escherichia coli 8 767

Salmonella Mbandanka 2 274 Klebsiella oxytoca 3 82
Salmonella Montevideo 2 156 Listeria innocua 3 79
Salmonella Muenchen 2 259 Listeria monocytogenes 2 116
Salmonella Seftenberg 3 165 Macrococcus caseolyticus 3 24

Salmonella Typhimurium 3 345 Paenibacillus polymyxa 2 66
Salmonella Typhimurium-NAL 3 140 Pseudomonas putida 3 151

Salmonella Weltevreden 2 137 Staphylococcus aureus 2 212
Staphylococcus simulans 2 190

Salmonella Enteritdis 8 350
Salmonella Heidelberg 6 149

Salmonella Infantis 5 284
Salmonella Kentucky 3 239

Salmonella Typhimurium 8 295
Total 35 3315 Total 68 3421

The HMI for these samples were collected in the same manner as the calibration model.
Preprocessing and outlier detection methods were also repeated. New single cell mean
spectra were projected onto the Salmonella calibration model’s PC space, and distances
towards the class’s model were calculated by Equations (8)–(10), as follows:

x̃new (1xp) = x̃K +
(
xnew− x̃K

)
VKVT

K (8)

enew = xnew − x̃new (9)

SK =

√√√√ p

∑
i=1

e2
new,i/(p − r) (10)

where e2
new = the new object’s squared residual, and SK = distance towards the class model

and is compared to the Scrit value from Equation (7). Bacteria cells are labeled as Salmonella
if SK < Scrit. If SK > Scrit, then the bacteria cell is classified as a non-Salmonella cell.
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3. Results and Discussion
3.1. Standard Normal Variant and Spectra

The number of outliers detected by the MD method was less than 1% for the calibration
dataset and less than 2% for the validation dataset, which was due to the image process-
ing method setting thresholding limits that removed large clumps of cells. While Otsu’s
thresholding method did improve the cell cluster separation, overlapping cells still existed.
Figure 3 shows an example image of Salmonella Heidelberg taken at 638 nm, with the raw
image shown in Figure 3A, and the cell segmentation image shown in Figure 3B. Here, we
can see that some cells are touching other cells and some are not.
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image with extracted pixels shown in white.

To increase the number of cells analyzed per image, an improved single cell separation
method would need to be implemented. Figure 4 shows the mean spectra for the Salmonella
calibration data set (n = 3315). In Figure 4A, it is noticeable that the raw TH spectra show
a large variance in intensity values, ranging from around 1500 to 16,000 a.u. at a maximum
peak of 638 nm. Applying the row-based SNV preprocessing step placed the spectra on
a consistent scale, as shown in Figure 4B.
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High collinearity between bacterial species is an issue that should be taken into consider-
ation. Because PCA utilizes an orthogonal transformation of the spectra to calculate the PCs,
this aids in negating the influence of collinearity in the classification model. An advantage
of SIMCA is that it is sensitive to dissimilarities between objects [22], which is significant
given the close spectral relationships between bacteria. Eliminating these false outliers is key
in the prediction of Salmonella, as type II errors can result in a pathogenically contaminated
food product to be released to the consumer market. Careful consideration of outliers was
performed in this application; determining too many bacterial cells to be outliers would
result in underfitting the prediction model, thus being counterintuitive to the purpose of this
SIMCA application, and potentially resulting in a high number of type II errors.

3.2. SIMCA Calibration Model

As a result of the highly collinear nature of the mean bacterial cell spectra, a large
amount of data benefited the robustness of the SIMCA’s prediction capability. It was
found that increasing the Salmonella serotype numbers and serotype repetitions began to
incorporate sufficient robustness over time, and that the model could predict the Salmonella
HMI collected several years later. In Figure 5A, the distribution of the PCA score plots
can be seen, and as more data points are added to the calibration model, the distribution
across PC1 and PC2 becomes more normally distributed. The plots shown in Figure 5
were indicative of a robust model that could offer unsupervised classification of Salmonella
cells. Figure 5B shows the loadings vectors for PCs 1–4. PC1 shows the strongest loading
vectors in the red color bands, while PCs 2, 3, and 4 appearing to be strongest in the green
color bands, and PC 4 represented the strongest of the blue color bands. The explained
variance of PCs 1–4 is detailed in Figure 5C, with 95% of the Salmonella calibration model’s
explained variance described in the first four PCs. The error matrix plotting Hotelling’s T2

values against the F-residuals is shown in Figure 5D.
There are over 2500 known serotypes of Salmonella [25]. As new serotypes are added

to this calibration model, it would be assumed that some serotypes may skew the spread
of these scores in the principal component space, but with enough HMI repetitions, the
PCA scores will progress towards filling the multivariate space representative of Salmonella.
Bacteria share many physiological traits, especially those of the same Enterobacteriaceae
taxonomical family, including common foodborne pathogens such as Salmonella, E. coli,
Shigella, Enterobacter, and Klebsiella [26]. These microbes tend to share many common traits
such as lipopolysaccharide cell wall structures, porins, and other features that make for
a single pixel differentiation between cells virtually impossible under the given conditions.
For this reason, a mean spectrum was calculated per cell. For example, the pixelwise
classification of E. coli cells resulted in many pixels misclassified as Salmonella pixels
because of the common physiological characteristics of the two Enterobacteriaceae species.
Single cell mean spectra offer an overview of the cellular characteristics, while maintaining
the representation of the inherent biological variability between bacterial species.

3.3. SIMCA Validation

Validation of the SIMCA model consisted of HMI collected from 19 microorganisms,
and resulted in 3222 of 3421 bacterial cells correctly labeled as Salmonella or non-Salmonella
and are shown in Table 3.

The SIMCA prediction model had an accuracy of 95.4%, sensitivity of 0.97, and speci-
ficity of 0.92. The five Salmonella serotypes used for validation are serotypes that commonly
appear in foodborne disease outbreaks, especially SE and ST. Fairly consistent unsupervised
prediction accuracies were obtained for all five serotypes, ranging between 94.6% (SH) and
98.0% (SE) accuracy. The PCA projections of the score plots calculated from the validation
set are shown overlaying the Salmonella calibration score plot. Figure 6A shows a visual
representation of the SE scores projected onto the Salmonella model, with most points pro-
jected inside the SIMCA boundaries of the second and third PC, while Figure 6B projects
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the validation set of Staphylococcus aureus (Sa) scores and the SIMCA calibration boundaries,
with most Sa cells projected just outside of the model.
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Table 3. SIMCA results for a one-class Salmonella prediction model obtained from hyperspectral microscope images of bacteria.

Salmonella

Microorganism Cells Yes No Accuracy (%)

Campylobacter coli 27 6 21 77.8
Campylobacter fetus 26 3 23 88.5
Campylobacter jejuni 65 9 56 86.2
Enterobacter cloacae 142 4 138 97.2
Enterococcus faecalis 157 1 156 99.4

Escherichia coli 767 9 758 98.8
Klebsiella oxytoca 82 1 81 98.8
Listeria innocua 79 9 70 88.6

Listeria monocytogenes 116 1 115 99.1
Macrococcus caseolyticus 24 0 24 100
Paenibacillus polymyxa 66 6 60 90.9

Pseudomonas putida 151 55 96 63.6
Staphylococcus aureus 212 10 202 95.3

Staphylococcus simulans 190 5 185 97.4
Salmonella Enteritdis 350 343 7 98.0

Salmonella Heidelberg 149 141 8 94.6
Salmonella Infantis 284 277 7 97.5

Salmonella Kentucky 239 233 6 97.5
Salmonella Typhimurium 295 283 12 95.9

Total 3421 1277 1985 95.4
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Figure 6. Principal component analysis projections for the validation data of (A) S. Enteritidis and (B) Staphylococcus aureus
onto the soft-independent calibration model for unsupervised Salmonella prediction.

Of the 14 non-Salmonella serotypes from the validation dataset, there was a larger
range of prediction accuracy, varying from 63.6 to 100%. Pseudomonas putida (Ppu) showed
the lowest accuracy, with 63.6% classified as non-Salmonella bacteria, while 36.4% were
misclassified as Salmonella cells. Of the three Ppu HMI repetitions, one HMI had a signifi-
cantly higher misclassification rate at 49%. The single cell mean spectra of this HMI were
not marked as outliers and were removed from the dataset; this could suggest that the MD
outlier detection threshold should be lowered. Salmonella and E. coli (Ec) are both similar in
composition and taxonomy, which is why a larger number of Ec (767 cells) were selected to
validate the Salmonella SIMCA prediction model. Previously, Eady and Park [18] showed
that the spectral patterns of Salmonella and Ec were more similar than comparing Salmonella
to Sa or Li, with Salmonella and Sa being the most dissimilar.

The prediction model resulted in a lower type II error rate, of 0.030, than a type I
error rate, of 0.076. This was preferable in regard to a single class model for food safety
application, reducing the potential of a false negative sample being made available to
consumers. Standard microbial analysis methods for food items such as PCR or the use of
nutrient enriched growth media are well established, but come with disadvantages. These
results suggest that it is possible to establish a reference library for a bacterial species of
interest and to build a SIMCA calibration model that is robust enough for species level
detection as a presumptive screening tool, effectively reducing the amount of time and
reoccurring cost associated with traditional detection methods. Microorganisms of interest
to the food industry, such as Listeria, Campylobacter, or Staphylococcus aureus, could have
HMI reference libraries established and validated. Here, the Salmonella model can be tuned
over time to incorporate the addition of more serotypes and wild type bacteria isolated
from field trials, and it could eventually be tested in industry settings for the early and
rapid presumptive screening of pathogenic microorganisms.

4. Conclusions

Previous HMI experiments address base studies in the system’s design and approach
to pathogenic bacteria detection. In order to build an unsupervised HMI classification
model for bacterial species with the sensitivity potential of single cell detection, it was
essential to include HMI collected from a range of timeframes and repetitions for adequate
model boundary definition. Here, 13 Salmonella serotypes commonly associated with
poultry were used to build the calibration model. The SIMCA prediction for Salmonella
can be used as a presumptive screening method for early and rapid bacterial detection
with a minimal reoccurring sample cost versus detection methodologies requiring expen-
sive reagent kits, dyes, or markers. Here, a Salmonella prediction accuracy of 95.4% was
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achieved, along with a specificity of 97%. Industry standards for Salmonella detection are
approximately 97–98% with qualitative PCR or plating methods. The SIMCA prediction
model can be tuned with potential outlier identification or preprocessing methods to in-
crease the selectivity of the model. Future work can add additional Salmonella serotypes to
SIMCA’s calibration model, tuning the soft boundaries of the unsupervised classification
approach for a slight prediction selectivity increase. The results shown here indicate that it
is possible to build qualitative single class prediction models for bacteria at a species level,
as a tool for high-throughput foodborne pathogen detection.
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