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Abstract: Distribution and deposition of cylindrical nanoparticles in a turbulent pipe flow are
investigated numerically. The equations of turbulent flow including the effect of particles are solved
together with the mean equations of the particle number density and the probability density function
for particle orientation including the combined effect of Brownian and turbulent diffusion. The results
show that the distribution of the particle concentration on the cross-section becomes non-uniform
along the flow direction, and the non-uniformity is reduced with the increases of the particle aspect
ratio and Reynolds number. More and more particles will align with their major axis near to the
flow direction, and this phenomenon becomes more obvious with increasing the particle aspect ratio
and with decreasing the Reynolds number. The particles in the near-wall region are aligned with
the flow direction obviously, and only a slight preferential orientation is observed in the vicinity of
pipe’s center. The penetration efficiency of particle decreases with increasing the particle aspect ratio,
Reynolds number and pipe length-to-diameter ratio. Finally, the relationship between the penetration
efficiency of particle and related synthetic parameters is established based on the numerical data.
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1. Introduction

Transport of particles through pipes has the advantages of small space occupied,
no backhaul, no pollution, flexible setting, long distance transport and so on. Therefore,
the transport of particles has been widely used in various industries such as machinery
manufacturing, metallurgy, power generation, material engineering, pharmaceutical and
food production. The transport of particles is usually accompanied by the process of
particle deposition upon the wall surface. It is crucial to reduce the particle deposition in
order to improve the conveying efficiency of particles. The mechanism of nanoparticle
deposition on a wall is complicated because it is related to the thermophoretic force [1],
inertial force of particle, gravitational force [2], Brownian and turbulent diffusion [3].

In the past several decades the transport and deposition of particles in the pipe
turbulent flow have been studied a lot for the spherical particles, but very few for non-
spherical particles. Actually, the major amount of particles is non-spherical in shape,
e.g., cylindrical particles. The transport and deposition of cylindrical particles are very
complicated because particle rotation and its orientation distribution are strongly coupled
with the translation motion [4]. Moreover, inhomogeneity in the spatial and orientational
distribution of particles affects the turbulent flow properties. There are several published
works in the literature discussing the transport and deposition of cylindrical particles. In the
case of laminar flow with no turbulent diffusion, Guha [5] indicated that the deposition rate
for the particles with an intermediate size was mainly dependent on the thermophoresis,
turbophoresis and roughness. Tavakol et al. [6] developed a new model for predicting
particle deposition and analyzed the impact of the particle aspect ratio on the deposition.

Appl. Sci. 2021, 11, 962. https://doi.org/10.3390/app11030962 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11030962
https://doi.org/10.3390/app11030962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11030962
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/962?type=check_update&version=1


Appl. Sci. 2021, 11, 962 2 of 14

In the case of inertial cylindrical particle with no Brownian diffusion, Goldenberg et al. [7]
measured the deposition velocity of particles with a diameter of 1–2 µm for different
Reynolds numbers. They showed that the deposition velocity was mainly dependent on
gravitation when Re ≤ 26,000, while dependent on the comprehensive effects of parti-
cle size, gravitation and turbulent fluctuations when Re > 26,000. Shapiro and Golden-
berg [8] measured the deposition velocity of particles of 0.6–2.5 µm in diameter for different
Reynolds numbers and particle aspect ratios, and found that the aspect ratios significantly
affected the deposition velocity of particles. Podgorski et al. [9] studied the particle deposi-
tion from a gas stream. They found that the deposition rate of flexible particles was the
lowest, while stiff particles had the highest deposition rate. Marchioli et al. [10] studied the
dispersion and deposition of particles with considering the particle inertia and hydrody-
namic forces. They found that particles tended to align with the flow direction near the
wall, but such a state was unstable for particles with higher inertia. The deposition rate
of particles with a larger aspect ratio was higher, but particle inertia had less effect on the
particle deposition in the centerline. Tavakol et al. [11] showed that the deposition rate of
particles was proportional to the particle aspect ratio, and the fluctuating velocity gradient
had an insignificant effect on the deposition rate. Shachar-Berman et al. [12] indicated that
oscillatory breathing had an important effect on the particle deposition in the lungs.

As is shown above, the transport and deposition of cylindrical particles are related to
the inertial force of particle, gravitational force, thermophoretic force, Brownian diffusion
and turbulent diffusion. For the transport of cylindrical nanoparticles in a turbulent
flow with no temperature gradient, the deposition of a particle is mainly resulted from
the Brownian and turbulent diffusion, while the thermophoretic force, inertial force of
particle and gravitational force are negligible. However, there is a lack of study on the
case of deposition of cylindrical nanoparticles under the combined effect of Brownian
diffusion and turbulent diffusion. Such a case can be found in the transport of cylindrical
nanoparticles at higher Reynolds number flows, for example, lung cancer caused by
exposure to asbestos fibrous particles in inhalation toxicology. Besides, the deposition
of cylindrical nanoparticles is related to the particle spatial and orientation distributions
that affect the characteristics of the turbulent flow field, which has not been found in
the literature. Besides, the existence of cylindrical particles would affect the turbulent
flow. Lin et al. [13] derived the modified Reynolds averaged N–S equations and the
probability distribution function for the mean orientation of cylindrical particles. Gillissen
et al. [14] explored fiber-induced drag reduction using N–S equations supplemented with
the fiber stress tensor. Lin et al. [15] solved numerically the Reynolds averaged N–S
equations with the additional stress resulting from fibers in a contraction flow. Lin and
Shen [16] developed a model by deriving the equations of modified Reynolds averaged
N–S, turbulence kinetic energy and dissipation rate with additional terms of the fibers.
In this study, therefore, the equations of mean momentum and turbulent kinetic energy
and turbulent dissipation rate of fluid including the effect of cylindrical nanoparticles
are solved numerically together with the mean equations of particle number density and
the probability density function for particle orientation including the combined effect of
Brownian diffusion and turbulent diffusion in a fully turbulent pipe flow at higher Reynolds
numbers. Then the particle distributions on a cross-section and penetration efficiencies at
outlet for different parameters are calculated. Based on the numerical data, the relationship
between the penetration efficiency and related synthetic parameters is established.

2. Models and Equations
2.1. Flow Laden with Cylindrical Nanoparticles

In practical applications, there are many cases in which the fluid carries solid particles.
At this time, to obtain the information of fluid flow and solid particle motion, it is necessary
to establish the fluid equation containing solid particles. In the present study, the flow
laden with cylindrical nanoparticles in a round pipe is shown in Figure 1. The flow is
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incompressible and fully developed turbulent. The modified Navier–Stokes with the
additional term of cylindrical nanoparticles is:

∂ui
∂t

+ uj
∂ui
∂xj

= − 1
ρm

∂p
∂xi

+
µ

ρm

∂2ui
∂2xj

−
∂u′ iu′ j

∂xj
+

µa

ρm

∂

∂xj
[aijklεkl −

1
3
(Iijakl)εkl ] (1)

in which ui and p are the mean velocity and pressure, respectively; ρm is the mixing density
(Equation (2)); µ is the fluid viscosity; u′ iu′ j is the Reynolds stress; additional viscosity µa
is related to the particle concentration, aspect ratio and orientation distribution, and is
given by extending Batchelor’s theory to account for two-body interactions as shown in
Equation (2) [17]; εkl = (∂uk/∂xl + ∂ul/∂xk)/2 is the mean rate-of-strain tensor and akl and
aijkl are the mean second- and fourth-order tensors of particle orientation, respectively, as
shown in Equation (3) [18]. The last term on the right hand side of Equation (1) represents
the effect of cylindrical nanoparticles on the flow, and the cylindrical nanoparticles are
non deformable.

ρm = (1−Φ)ρ + Φρ f ; µa =
4Φλ2µ

3 ln(1/Φ)

{
1− ln[ln(1/Φ)]

ln(1/Φ)
+

0.6634
ln(1/Φ)

}
(2)

where ρ and ρf are the fluid and particle density, respectively; Φ is the particle volume
fraction and λ is the particle aspect ratio.

aij =
∮

pi pjψ(p)dp, aijkl =
∮

pi pj pk plψ(p)dp (3)

where p is the particle orientation vector; pi is the unit vector and ψ(p) is the mean
probability density function for particle orientation.
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2.2. Reynolds Stress

The Reynolds stress in Equation (1) is given by:

− ρmu′ iu′ j = 2µT(
∂ui
∂xj

+
∂uj

∂xi
)− 2

3
ρmkδij (4)

in which the eddy viscosity is µT = 0.09 ρm k2/ε, where k and ε are the turbulent kinetic
energy and dissipation rate, respectively.

In order to solve Equations (1) and (4), the equations of k and ε for turbulent flow with
additional terms of cylindrical nanoparticles are given [16]:

ρmuj
∂k
∂xj

= −ρmu′ iu′ j
∂ui
∂xj
− ρmε +

∂

∂xj
[(µa + µT)

∂k
∂xj

] + ρmSk (5)

ρmuj
∂ε

∂xj
= −1.44

ε

k
ρmu′ iu′ j

∂ui
∂xj
− 1.92ρm

ε2

k
+

∂

∂xj
[(µa +

µT
1.3

)
∂ε

∂xj
] + ρmSε (6)

where Sk and Sε are the contribution from the cylindrical nanoparticles.
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2.3. Mean Probability Density Function for Orientation of Cylindrical Nanoparticles

The equation of probability density function ψ(p) for the orientation of a cylindrical
nanoparticle should be derived in advance in order to obtain the second- and fourth-order
tensors of particle orientation in Equation (3). The equation of ψ(p) is [19]:

dψ

dxj
= DrB

∂2ψ

∂p2
j
−

∂
(
ψΩj

)
∂pj

; Ωj = −ωji pi + ηε ji pi − ηεkl pk pl pj −
DrI
ψ

∂ψ

∂pj
(7)

where ∂/∂pj is the gradient operator projected onto the surface of the unit sphere; Ωj is
the angular velocity of particle; η = (λ2 − 1)/(λ2 + 1); ωij =

(
∂uj/∂xi − ∂ui/∂xj

)
/2 is the

vorticity tensor; DrI is the rotary diffusion coefficient induced by the interaction between
the particles [20] and DrB is the Brownian rotary diffusion coefficient [21]:

DrB = kbT√
[3.84πµL3

p(1+ 0.677
λ −

0.183
λ2 )/λ2]

2
+[πµL3

p/3(ln λ−0.662+ 0.917
λ −

0.05
λ2 )]

2
(8)

where T is the temperature; kb is the Boltzmann constant and Lp is the particle length.
Averaging Equation (7) yields:

dψ

dxj
− DrB

∂2ψ

∂p2
j
−ω ji pi

∂ψ

∂pj
+ λεji pi

∂ψ

∂pj
− λεkl pk pl pj

∂ψ

∂pj
− λεklψpk pl − DrI

∂2ψ

∂p2
j
= αψx

∂2ψ

∂x2
j
+ αψp

∂2ψ

∂p2
j

(9)

where αψx = 1.3(5 k2µ/3ερm)1/2 and αψp = 0.7(4 ερm/15 µ)1/2 [22] are the particle dispersion
coefficients of linear and angular displacement, respectively.

2.4. Volume Fraction Φ of Cylindrical Nanoparticles

In the past research, the particle volume fraction Φ in Equation (2) is usually assumed
to be a constant and in a uniform distribution. In fact the distribution of Φ is non-uniform
because of particle convection and diffusion. Therefore, in order to obtain the volume frac-
tion Φ of cylindrical nanoparticles in Equation (2), the equation of the mean number density
n for cylindrical nanoparticles should be solved. Considering the effect of convection and
diffusion, the mean equation of mean number density n for cylindrical nanoparticles is [23]:

∂n(v)
∂t

+ uj
∂n(v)

∂xj
− ∂

∂xj
[(DtB + νt)

∂n(v)
∂xj

] = 0 (10)

where v is the volume of particle; vt = 0.09 k2/ε is the turbulent diffusion coefficient and
DtB is the Brownian translational diffusion coefficient [21]:

DtB =
kbT√

[2πµLp/(ln λ− 0.207 + 0.980
λ − 0.133

λ2 )]
2
+ [4πµLp/(ln λ + 0.839 + 0.185

λ + 0.233
λ2 )]

2
(11)

n(v) can be transformed into the particle number N and volume V:∫ ∞

0
n(v)dv = N,

∫ ∞

0
vn(v)dv = V (12)

Then Φ can be calculated based on V.

2.5. Penetration Efficiency

Penetration efficiency (PE) of cylindrical nanoparticles though a pipe is inversely
proportional to the deposition rate and can be defined as:

PE =
Vout

Vin
=

Vin −Vde
Vin

(13)
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in which Vout and Vin are the particle volume at the outlet and inlet of the pipe, respectively
and Vde is the particle volume of deposition to the wall:

Vde = ∑
j

Aj(DtB + νt)
∂V
∂r

∣∣∣∣
wall, j

(14)

where Aj is the area of the jth wall cell.

3. Numerical Method and Main Steps of Simulation

(1) Equations (1), (2), (4)–(6) with Φ = µa = Sk = Sε = 0 are solved to get uj, k, ε and u′ iu′ j.
(2) Equations (10)–(12) are solved to get n(v) and Φ.
(3) Substitute Φ into Equation (2) to get ρm and µa.
(4) Substitute uj, k, ε and Equation (8) into Equation (9) and solve it to get ψ.
(5) Substitute ψ into Equation (3) to get aij and aijkl .
(6) Substitute ρm, µa, aij and aijkl into Equations (1), (4)–(6) to get uj, k, ε and u′ iu′ j.
(7) Turn to step (2) based on the new values of uj, k, ε and u′ iu′ j if necessary.
(8) Calculate the particle volume V with Equation (12).
(9) Calculate the deposited particle volume Vde with Equation (14) and penetration

efficiency PE with Equation (13).

The equations in this paper are all partial differential equations and must be solved nu-
merically. Equations (1), (4)–(6) and (10) are solved using the finite difference method. Equa-
tion (3) is integrated with the Simpson formula. The grid system consists of
70(r) × 30(θ) × 240(z) = 504,000 grid points. A grid independence test is performed
by changing grid points from 60 to 80 in radial direction, 25 to 35 in circumferential and
230 to 250 in axial direction, respectively. The parameters used in the computation are:
ρ = 1.205 kg/m3, µ = 1.808 × 10−5 Pa·s, T = 293 K and kb = 1.38 × 10−23 J/K.

4. Validation

In order to prove the validity of the model and numerical scheme, we compared the
present numerical results of mean orientation of cylindrical particles with the experimental
ones [24] in a turbulent pipe flow as shown in Figure 2 where φ is the angle between the
particle axis and pipe’s axis, and P is the probability. We also compared the penetration
efficiency as a function of particle diameter as shown in Figure 3 where both numerical and
experimental results [25] are given. In Figures 2 and 3, the parameters used in the numerical
simulation were consistent with the experimental situation. The present numerical results
could be seen to be qualitatively consistent with the experimental ones.
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5. Results and Discussion

In the following figures, only particle distributions on the half cross-section are shown
because the distributions are symmetric about the centerline of the pipe.

5.1. Distribution of Particle Volume Concentration and Orientation at Different Axial Positions

When the particles enter the tube, the particles show different distributions of the
concentration and orientation at different axial positions with the development of time.
The distributions of particle concentration and orientation can be obtained by solving
Equations (10) and (7). The distributions of particle volume concentration on the cross-
section at different axial positions are shown in Figure 4a. The uniform distribution of
volume concentration on the cross-section at inlet becomes non-uniform along the flow
direction because the distribution of particle number density is affected by the shear-
induced force caused by the mean shear rate of the fluid, Brownian diffusion and turbulent
diffusion as shown in Equations (10) and (12). The non-uniformity becomes obvious with
the increase in the axial distance from the inlet. The particle volume concentration first
decreased and then increased from the pipe center to the wall, and there was a minimum
around r/R = 0.95. As we know, Brownian diffusion makes particles move from a high
concentration area to a low concentration one, resulting in a more uniform distribution of
the particle volume concentration. So, it can be deduced that the non-uniform distributions
of particle volume concentration were caused by the shear-induced force and turbulent
diffusion. The particles in the region around r/R ≈ 0.95 were subjected to the influence of
larger shear-induced force and stronger turbulent diffusion because the mean shear rate
and the turbulent diffusion coefficient νt were large (νt = 0.09 k2/ε, while turbulent kinetic
energy k is large there), hence were diffused to the region near the centerline and the region
close proximity to the wall where the turbulent diffusion diminished to zero and particles
accumulated in the viscous sublayer with low fluid velocity.

The distributions of the mean orientation of a cylindrical nanoparticle at different
axial positions are shown in Figure 4b where the mean orientation angle φ was obtained by
averaging the orientation angles on the cross-section at a fixed axial position. The particles
with uniform distribution of mean orientation angle on the cross-section at inlet will change
their orientation angles along the flow direction. The distributions of orientation angle
become non-uniform, more and more particles aligned with their major axis near to the
flow direction. As shown in Equations (13)–(15), the mean probability density function
for particle orientation was affected by the Brownian diffusion, turbulent diffusion and
the shear-induced force, and the former two made the distribution of particle orientation
become more uniform. The shear-induced force resulted from the mean shear rate of the
fluid and the overall effect can be decomposed in two torques, one making a particle rotate
around the vorticity axis (i.e., axis θ as shown in Figure 1), and another causing a particle
spin around the flow direction, i.e., particles tended to align according to the mean shear of
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the flow. The particles flowing through the pipe were always subjected to the influence of
the mean shear of the flow, so align with the flow direction.
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5.2. Distribution of Particle Number Concentration and Orientation at Outlet
5.2.1. Distribution of Particle Orientation

Distributions of mean particle orientation in different regions on the cross-section at
outlet are shown in Figure 5 where the cross-section was divided into five regions and
the mean particle orientation angle φ in different regions were obtained by averaging
the orientation angles in the regions. We can see that more particles aligned with the
flow direction by the interplay between the shear-induced force, Brownian diffusion and
turbulent diffusion. The particles in the near-wall region were aligned with the flow
direction obviously because the highest mean shear rate and even the largest shear-induced
force appeared in the near-wall region, and only a slight preferential orientation was
observed in the vicinity of pipe’s center where the mean shear rate was low. So, it can be
concluded that the mean shear rate of the fluid was dominant for affecting the orientation
distribution of particles comparing with the Brownian diffusion and turbulent diffusion
under the parameters involved in the paper.
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5.2.2. Effect of the Particle Aspect Ratio

Figure 6 shows the distributions of particle volume concentration on the cross-section
at the outlet for different particle aspect ratios. It can be seen that the distributions of
particle volume concentration become more uniform with increasing the particle aspect
ratio. The reason can be analyzed as follows. The evolution of particle number density
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n(v) as shown in Equations (10) and (11) is determined by the mean shear rate of the
fluid, Brownian translational diffusion coefficient DtB and turbulent diffusion coefficient νt.
The existence of particles in the flow has an effect on the turbulent kinetic energy, which
increases as the particle aspect ratio increases [16] because the particles with larger aspect
ratio can make a stronger momentum transfer with providing a solid link between the
adjacent fluid layers. In return, the increase of turbulent kinetic energy can promote particle
diffusion. Besides, as shown in Equation (11), the Brownian diffusion coefficient DtB is
proportional to the particle aspect ratio, i.e., the particles are subjected to a larger Brownian
diffusion when the aspect ratio is larger. Therefore, the larger the particle aspect ratio is,
the stronger the Brownian diffusion and turbulent diffusion are, and the more uniform the
distribution of particle volume concentration is.
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Figure 7 shows the distributions of mean particle orientation in region 1 and 5 at outlet
for different particle aspect ratios. The particles tended to align with the flow direction, and
this preferential orientation is more obvious in the near-wall region and with increasing
the particle aspect ratio. The mean probability density function for particle orientation
is determined by the Brownian diffusion, turbulent diffusion and mean shear rate of the
fluid. Firstly, the Brownian diffusion coefficient was inversely proportional to the particle
aspect ratio as shown in Equation (8), so the distribution of mean particle orientation was
more non-uniform for the case of a larger aspect ratio. Secondly, the turbulent dispersion
coefficient αψp = 0.7(4ερnf/15µ)1/2 of angular displacement was proportional to the turbu-
lent dissipation rate ε, which increased with increasing the particle aspect ratio [16], so the
distribution of mean particle orientation was more uniform for the case of a larger aspect
ratio. Thirdly, the shear-induced torque exerted on the particle was larger for the case
with larger aspect ratio, which caused the particle to spin around the flow direction more
effectively. The comprehensive effect of the above factors makes more particles aligned
with the flow direction. As shown in Figure 7b, the difference in the distributions of mean
particle orientation between the cases with a different aspect ratio was small for the large
aspect ratio, which was consistent with the conclusion [26] that the orientation distribution
was not sensitive to the aspect ratio for the inertial particles with an aspect ratio larger
than 5.

5.2.3. Effect of the Reynolds Number

The distributions of the particle volume concentration on the cross-section for different
Reynolds numbers are shown in Figure 8 where the concentration distributions become
more uniform with increasing the Reynolds number, i.e., the larger the Reynolds number
is, the smaller the difference in particle volume concentration between the near-wall region
and near-center region is. The turbulent flow is characterized by some parameters among
which the most important is the Reynolds number. As the Reynolds number increased,
even though the mean velocity profile on the whole cross-section and the turbulent kinetic
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energy in the near-center region were almost unchanged [16], the turbulent kinetic energy
and induced turbulent diffusion (νt = 0.09 k2/ε) in the region around r/R ≈ 0.95 increased
obviously [16], resulting in a stronger particle diffusion and making the concentration
distributions become more uniform.
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Figure 9 shows the distributions of mean particle orientation in region 1 and 5 at the
outlet for different Reynolds numbers. As the Reynolds number decreased, the distribu-
tions of mean particle orientation become more non-uniform, i.e., more particles aligned
with the flow direction. As we know, the larger the Reynolds number, the smaller the scale
of minimum vortex, the wider the distribution of energy spectrum contained in the vortices
of different scales, and less the energy contained in the large vortex related to the mean
shear rate of the fluid are. Therefore, the shear-induced torque exerted on the particle by
the mean shear rate of the fluid was smaller for the case with larger Reynolds number,
resulting in not so many particles aligning with the flow direction.
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5.3. Penetration Efficiency

The penetration efficiency is inversely proportional to the particle deposition veloc-
ity. In normal circumstances, the particle deposition velocity is mainly affected by the
gravitational force, inertial force of particle, Brownian diffusion, turbulent diffusion and
particle shape. In this paper, the gravitational force, and nanoparticles’ inertial forces were
negligible. The particles follow the fluid motion, which includes the mean motion and
turbulence fluctuation, and the particles near the wall deposit on the wall due to Brow-
nian diffusion and turbulent diffusion, resulting in the reduction of particle penetration
efficiency. Therefore, the effects of Brownian diffusion, turbulent diffusion and particle
shape on the deposition velocity and penetration efficiency should be explored. For the
cylindrical nanoparticles, the shape was reflected by the aspect ratio.

In order to compare the numerical results of penetration efficiency with experimental
ones, we calculated the penetration efficiency of cylindrical nanoparticles with aspect ratio
λ = 1 and compared with the experimental result of spherical particles [27] as shown in
Figure 10 where Sch is the Schmidt number and PE is the penetration efficiency. The
experiment was performed in a tube of 1 m length and 4.8 mm inner diameter, and WOx
particles with diameters from 3 to 17 nm were used. It can be seen that the penetration
efficiency of particles with λ = 1 was lower than that of spherical particles, which indicates
that the effect of particle shape was significant even for the aspect ratio close to unity.
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5.3.1. Effect of the Particle Aspect Ratio

The relationships between the penetration efficiency and the Reynolds number for
different particle aspect ratios are shown in Figure 11 where the competitive effects of
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Brownian diffusion, turbulent diffusion and particle aspect ratio upon the penetration
efficiency are exhibited. It can be seen that the penetration efficiency was affected by the
particles’ shape, i.e., aspect ratio, the penetration efficiency decreased with increasing the
particle aspect ratio. Firstly, the particle volume concentration in the near-wall region
increased with increasing the particle aspect ratio as shown in Figure 6, which provides
the condition for more particle deposition. Secondly, there was a viscous sublayer close
to the wall where the particle Brownian diffusion plays a major role for the deposition
velocity. As shown in Equation (11), the Brownian diffusion was proportional to the particle
aspect ratio, i.e., the particles with large aspect ratio were subjected to a stronger Brownian
diffusion and possessed a large deposition velocity, resulting in a low penetration efficiency.
The result given above was consistent with the conclusion that longer particles tended
to deposit at higher rates in the case of inertial particle with no Brownian diffusion [10],
and high deposition efficiency corresponded to the spherical particles and even higher
deposition efficiency for the stiff particles [9].
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5.3.2. Effect of the Particle Aspect Ratio

Figure 11 also shows that the penetration efficiency decreased as the Reynolds number
increased, i.e., more particles deposited on the wall in the case with larger Reynolds number.
As shown in Figure 8, the particle volume concentration in the viscous sublayer close to
the wall increased with increasing the Reynolds number because the stronger turbulent
diffusion associated with higher Reynolds number made more particles diffuse to the
viscous sublayer, providing the condition for more particle deposition.

5.3.3. Effect of Pipe Length-to-Diameter Ratio

Figure 12 shows the penetration efficiency as a function of the pipe length-to-diameter
ratio. It can be seen that the penetration efficiency decreased with increasing the pipe
length-to-diameter ratio because the longer pipe was associated with the longer residence
time of particles in the pipe. The longer residence time corresponded to a larger probability
that particles will deposit on the wall with lower penetration efficiency.
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5.3.4. Relationship of Penetration Efficiency and Related Parameters

It is necessary to build a relationship between the penetration efficiency and related
parameters in order to effectively characterize the penetration efficiency. As shown in
Figures 11 and 12, the penetration efficiency was inversely proportional to the particle
aspect ratio λ, the ratio of pipe length to pipe diameter L/D and the Reynolds number
(Re = Q/υD, where Q is the flow rate, υ is the fluid viscosity and D is the pipe diameter).
So, we combine λ, L/D and Re into a dimensionless synthetic parameter η = D × 109/λLRe.
Based on the above numerical data, we could establish the following expression of penetra-
tion efficiency PE:

PE = 67.34105 + 4.43965 ln(η − 2.65815) (15)

Figure 13 shows the penetration efficiency as a function of the related synthetic parameter.
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6. Conclusions

Transport and deposition of cylindrical nanoparticles in a turbulent pipe flow were
studied. The equations of mean momentum and turbulent kinetic energy and turbulent
dissipation rate of fluid including the effect of particles were solved together with the
mean equations of particle number density and the probability density function for particle
orientation including the combined effect of Brownian diffusion and turbulent diffusion.
Distributions of particle volume concentration and particle orientation on the cross-section
at different axial positions were given and analyzed. The penetration efficiencies for differ-
ent parameters were calculated and discussed. The main conclusions were summarized
as follows:

Distribution of the particle volume concentration on the cross-section becomes non-
uniform along the flow direction. The particle volume concentration first decreased and
then increased from the pipe center to the wall, and there was a minimum around r/R ≈ 0.95.
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The particles with uniform distribution of mean orientation angle on the cross-section at
inlet will change their orientation angles along the flow direction. The distributions of
orientation angle became non-uniform and more and more particles aligned with their
major axis near to the flow direction. The particles in the near-wall region were aligned
with the flow direction obviously, and only a slight preferential orientation was observed
in the vicinity of the pipe’s center.

Distribution of particle volume concentrations becomes more uniform on the cross-
section with increasing the particle aspect ratio and Reynolds number. The particles
tend to align in the flow direction and this phenomenon becomes more obvious with
the increasing particle aspect ratio and with decreasing Reynolds number. The particle
orientation distribution is not sensitive to the aspect ratio for the particles with an aspect
ratio larger than 5.

The penetration efficiency of cylindrical particles decreased with an increasing particle
aspect ratio, Reynolds number and pipe length-to-diameter ratio. Finally, the relationship
between the penetration efficiency and related synthetic parameters was established based
on the numerical data.
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